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Introduction 

CAVALIERI is well known for the method o f  indivisibles which he created during 
the third decade of the 17 th century. The ideas underlying this method, however, 
are generally little known.' This almost paradoxical situation is mainly caused 
by the fact that authors dealing with the general development of  analysis in the 
17 th century take CAVALIERI as a natural starting point, but do not discuss his 
rather special method in detail, because their aim is to trace ideas about infinites- 
imals. There has even been a tendency to present the foundation of his method 
in a way which is too simplified to reflect CAVALIERI'S original intentions. 

The rather vast literature, mainly in Italian, explicitly devoted to CAVALIERI 
does not add much to a general understanding of CAVALIERI'S method of indivi- 
sibles, because most of  these studies either presuppose a knowledge of the method 
or treat specific aspects of it. 

Yet there is one apt presentation of CAVALIERI'S theory of indivisibles; it was 
published by ENRICO GIUSTI in 1980. Only when this paper was almost finished 
did I become aware of  GIUSTI'S study which is published as an introduction, f u o r i  

commercio ,  to a reprint of  CAVALIERI'S Exerc i ta t iones  geometr ieae  sex;  hence 
GIUSTI'S and my work overlap. To keep my paper coherent I have not changed the 
sections which are similar to some in GIUSTI'S book, but only added references 
to the latter. This procedure is further motivated by the fact that  GIUSTI'S approach 
and mine to CAVALIERI'S method are rather different. He gives a background to 
the understanding of CAVALIERI'S theory and its weakness and does not treat 
many technical aspects. I intend to supplement the existing literature on CAVA- 
LIERI with a detailed presentation of his method, including its fundamental ideas, 
the concepts involved in it, its technique of proofs, and its applications. Further, 
I try to sketch how mathematicians have understood CAVALIERI'S ideas, 
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A complete study of the interpretations of CAVALIERI'S theory would be very 
useful, but requires a paper of its own (a presentation of some of the interpreta- 
tions can be found in GALUZZI & GUERRAGGIO 1983). Hence I here concentrate 
on the reactions of some of the 17th-century mathematicians, for example GALILEO, 
GULDIN, TORRICELLI, ROBERVAL, PASCAL and WALLIS, who were influental in 
creating an opinion on CAVALIERI'S method; and I add a few examples of 18 th 
century views on the method. 

My wish to treat CAVALIERI'S theory in one paper has resulted in another 
restriction: to leave out the otherwise interesting questions about similarities 
between CAVALIERI'S ideas and those occurring in medieval and renaissance 
mathematics. 

To avoid a confusion between modern concepts and the CAVALIERIan ones I 
have introduced an ad hoc notation; a list of the symbols employed can be found 
at the end of the paper. 

I. The Life and Work of Cavalieri 

I. 1. Our knowledge of CAVALIERI'S life stems mainly from his letters to GALILEO 
and other colleagues, from a few official documents, and from his first biographer 
and pupil URBANO DAVISO, who is not always to be trusted. Since complete bio- 
graphies of CAVALIERI have been compiled several times from this material, I 
shall only give a few particulars about his life as background for his mathe- 
matical work. (For more biographical information, see PlOLA 1840, FAVARO 
1888, MASOTTI 1948, CARRUCCIO 1971, and GluSXt 1980.) 

CAVALIERt was born about 1598 and as a boy in Milan he came in contact 
with the rather small order of Jesuats, the male section of which was dissolved 
in 1668. 

In 1615 CAVAHERI entered this order and on that occasion he probably took 
the first name BONAVENTUgA. The years 1616-1620, with an interruption of a 
one-year stay in Florence around 1617 (cf. GIusxI 1980, p. 3), CAVALIZRI spent 
at the Jesuati convent in Pisa, and he became a mathematical pupil of the Bene- 
dictine BENEDETTO CASTELLI. CASTELLI was so satisfied with this student that about 
1617 he arranged a contact to his own teacher, GALILEO GALILEI (Cf GALILEI 
Opere, vol. 12, p. 318). This resulted in more than 100 letters from CAVALIEgI 
to GALILEO in the period 1619-1641. GALILEO did not answer all of  them, but 
sent an occasional letter to CAVALIERI; of these all but a very few have disappeared. 

DAWSO'S version of  how CAVALIERI took up mathematics is more dramatic 
than the one presented here. DAVlSO claimed that at the age of twenty-three CAVA- 
LIERI started an intense study of mathematics, having been told by CASTELLI that 
mathematics was an efficacious remedy against depression. However, the facts 
that in 1617 FEDER1GO BORROMEO asked GALILEO to support CAVALIERI, that in 
1618 CAVALIERI temporarily took over CASXELLI'S lectures on mathematics in 
Pisa, and that CAVALIERI in 1619 applied for a vacant professorship in mathe- 
matics destroy DAVISO'S thesis of CAVAL~ERI'S late start (GALILEI Opere, vol. 12, 
p. 320, GIUSTI 1980, pp. 3-4, FAVARO 1888, pp. 4 and 35). 
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CAVALIERI did not obtain the chair in Bologna in 1619, but he went on apply- 
ing for a lettura in mathematics at various places while moving between Jesuati 
monasteries in Milan, Lodi, and Parma. In his letters he ventilated the idea that 
the reason why he was not appointed professor of mathematics was that the 
Jesuats were not very popular in Rome. Probably through GALILEO'S influence, 
CAVALIERI eventually obtained a professorship in mathematics at the university 
of Bologna in 1629. About the same time he also became prior at the Jesuati 
monastery there. The appointment to the chair of mathematics was only for a 
period of three years, but CAVALIERI had it renewed until his death in 1647. 

In his teaching CAVALIERI seems to have followed a three years' cycle of 
lectures, consisting of comments on EUCLID, Theoriea planetarum, and PTOLEMY'S 
astronomy (FAVARO 1888, p. 22). Besides his two major works, which will be 
presented shortly, CAVALIERI published eight books on mathematics and mathe- 
matical sciences and a table of logarithms. One of the books treating astrology 
was published under the pseudonym SILVIO FILOMANTIO. The other books were 
mainly textbooks, and although some of them contain references to results ob- 
tained by the method of indivisibles they do not deal with the method. Therefore 
I shall not discuss them further, but refer to the bibliography where their titles 
are listed. 

1.2. The book which made CAVALIERI famous in mathematical circles was Geo- 
metria indivisibilibus continuorum nova quadam ratione promota, Bologna 1635 
(Geometry, advanced in a new way by the indivisibles of the continua); I shall 
abbreviate this impressive title to Geometria. It is difficult to follow CAVALIERI 
through the almost 700 pages of this book, so difficult that MAXIMILIEN MARIE 
suggested that if a prize existed for the most unreadable book, it should be awarded 
to CAVALIERI for Geometria (MARIE 1883-1888, VO1. 4, p. 90); further, the mathe- 
matical language CAVALIERI employed in Geometria was characterized by CARL 
B. BOYER as "confusingly obscure" (BOYER 1941, p. 85). Nevertheless, Geometria 
was in its time considered so important that it was reprinted in 1653 in an edition 
which, unlike the first, is paginated continuously. 

The main reason why Geometria attracted attention was doubtless that most 
mathematicians of the 17 th century were interested in its topic, quadratures and 
cubatures, and that the number of publications on this subject was small. The 
mathematicians who carefully studied Geometria were probably few, but neverthe- 
less it remained a well known book.This is reflected in the treatment of Geometria 
in general works and articles on 17tU-century mathematics: it is mentioned, but 
its content is not thoroughly described. 

That Geometria is still considered an important contribution to mathematics 
can be seen from the fact that it has been translated into modern languages. Thus 
in 1940 parts of Geometria with elaborate comments appeared in a Russian edi- 
tion made by S. J. LUR'E (my inability to read Russian has prevented me from 
consulting this edition). A complete translation of Geometria into Italian, con- 
taining many clarifying comments, was published in 1966 by LucIo LOMBARDO- 
RADICE. 

Shortly before his death CAVALIERI published another work on indivisibles, 
the Exercitationes geometricae sex (1647, 543 pp.); this book has received much 
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less attention than Geometria, but is still mentioned in expositions of CAVALIERI'S 
contributions to mathematics. My presentation of CAVALIERI'S method of in- 
divisibles is based on features both from Geometria and Exercitationes, and since 
I am not going to discuss all his results I shall briefly outline the contents of these 
two books. 

1.3. Geometria consists of seven books. In the first, CAVALIERI clarifies some of 
his assumptions concerning plane and solid figures. In Book II he introduces the 
method of indivisibles, or rather his first method which I term the collective 
method, and proves some general theorems concerning collections of indivisibles. 
These theorems he applies in Books III, IV and V where he deals with quadratures 
and cubatures related to conic sections. The sixth book is mainly devoted to the 
quadrature of the spiral, but contains also some results concerning cylinders, 
spheres, paraboloids and spheroids. In the last book CAVALIERI presents a new 
approach to the method of indivisibles, which I am going to call the distributive 
method (cf. Section IX.l). 

The content of the six geometrical Exercitationes is more varied: in the first 
CAVALIERI presents a revised version of the collective method of indivisibles from 
Book II of Geometria and suggests some simplifications. The second exercitatio 
similarly takes its starting point in Book VII of Geometria and develops a new 
presentation of the distributive method. The third book is evoked by PAUL 
GULDIN'S reaction to CAVALIERI'S method. 

Throughout the last three of the four volumes of his Centrobaryca (1635-164l) 
GULDIN had commented upon CAVALIERI'S use of indivisibles and had particularly 
criticized it very outspokenly in Chapter 5 of the fourth volume. Shortly before 
GULDIN'S death CAVALIERI published a defense of his method in the section 
"Admonitio circa auctorem centrobaryacae" of his Trigonometria (1643, pp. 6-8). 
This is only a short and rather superficial reaction, not taking up the technical 
and philosophical aspects of the method criticized by GULDIN; it was only pre- 
liminary as CAVALIERI had plans about writing a more detailed answer. His letters 
to TORRICELLI from the period between September 1643 and September 1644 
show that for a time he worked on presenting the answer as a dialogue in three 
parts with the participant USUL:'A GINULOUS -- an anagram of PAULUS GULDINUS 
(ToRRICELLI Opere, Vol. 3, pp. 145, 157, 159-160, 167, 170, 179-180, 226-227)~ 
The first dialogue was printed, but CAVALIER~ gave up his plan, destroyed the 
printed copies and eventually formulated his defense as the third exercitatio (el  
GIUSTI 1980, pp. 56-58). 

In the fourth book of Exercitationes CAVALIERI presents a generalization o f  
the collective method of indivisibles, which enabled him to deal with algebraic 
curves of degrees higher than two. In the fifth exercitatio CAVALIERI turns to deter- 
minations of centres of gravity, partly based on concepts related to his method 
of indivisibles. The last exercitatio contains miscellaneous material (el GIUSTI 
1980, pp. 85-90). 

1.4. The publication of Geometria in 1635 was the climax of a longer process 
whose history will briefly be indicated here because it reveals the interesting 
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emergence of the method of indivisibles. (For more details see the Introduzione 
in LO~ARDO-RADICE 1966.) 

It was in the early 1620's that CAVALIERI got the idea of using indivisibles in 
comparisons of two areas and two volumes. In letters to GALILEO he described 
how he worked on this idea and how his thoughts gradually took form and resulted 
in a finished version of Geometria consisting of six books (el CAVALIERI'S letters 
from the period between December 15, 1621 and December 17, 1627 in GALmEI 
Opere, Vol. 13). In November 1627 CAVALIERI sent this version to GIOVANNI 
C~ANVOLI to whom he also later dedicated Geometria (ef. ibid., Vol. 13, p. 381). 
The content of the version of 1627 of Geometria was unknown until recently when 
GINO ARRIGnI became aware of a manuscript in the Bibliotheea Cortona (Codice 
(211) 292) which most probably is a copy of it (ARRI6m 1973). Being unable to 
get a reproduction of the Cortona manuscript, I have had no occasion to study 
it carefully. A cursory perusal, however, gave me the impression that before the 
text was printed, CAVALIERI changed several things in Book I, made only linguistic 
changes in the Books II-V, and changed Book VI essentially (the last change 
will be described in Section VIII.2). 

Thus in 1627 CAVALIERI had a manuscript almost ready for the press, and yet 
it took another eight years before Geometria appeared. This long period cannot 
be explained by the changes CAVALIERI made, so there must be other reasons for 
the delay. CAVALIERI himself maintained that the delay was caused by his teaching 
duties as a professor, by his desire to publish textbooks, and by failing health 
(cf. letters from CAVALIERI to GALILEO within the period from February 24, 1629, 
to September 18, 1635, GALILEI Opere, Vols. 14, 15 and 16, esp. Vol. 14, p. 171). 
Still, there may have been another reason also, which I shall discuss in Section IX.4, 
namely that CAVALIERI was waiting for GALILEO'S approval of his method. 

In 1634 when the printing of the planned Geometria was almost finished a 
further delay was introduced, because CAVALIERI decided to add a seventh book, 
as we shall see in Section IX.1. 

II. Figures 

II.1. In this chapter I am going to deal with some of the explicit and implicit 
assumptions that CAVALIERI made concerning figures and which he used in con- 
nection with his method of indivisibles. 

CAVALIERI himself devoted the whole of Geometria, Book I, to introductory 
theorems. His main concern there was to study solids of rotation, general cylinders 
and cones (having an arbitrary closed curve as generating curve), and sections 
of  these solids, in particular those which are similar. Interesting for our purpose, 
however, is only the first part of Book I dealing with tangents to plane and solid 
figures. As there is no essential difference between the plane and the solid case, 
I shall deal only with the first one. 

In Book I CAVALIERI takes it for granted that his readers understand what he 
means by a tangent, whereas in Book VII of Geometria he defines it. This defini- 
tion is fortunate because it clears up misunderstandings which a reader with a 
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traditional concept of a tangent may have had: 

I say that a straight line touches a curve situated in the same plane as the 
line when it meets the curve either in a point or along a line and when the curve 
is either completely to the one side of the meeting line [in the case when the 
meeting is a point] or has no parts to the other side of it [in the case when the 
meeting is a line segment]. 1 

This definition is in accordance with the classical concept of tangents in the 
sense that it excludes tangents as tl and tz in Figure II.1, unless limited parts of 
the curves are considered. However, it differs from both the ancient and modern 

J / 

t~ 

Fig. II.1 

concept by considering t3 as touching; further it stresses that t4 is a tangent. 
CAVALIERI included lines like t3 as tangents because he had a definite aim with 
his study of tangents, namely to ensure the general validity of the following theo- 
rem: 

Given a closed plane figure, ABCD (cf. Figure II.2) and a direction RS, 
called regula; the figure will then have two tangents, AE and CG, parallel to the 

A E 

D 

C G 
R $ 

Fig. II.2. A redrawing with altered letters of a figure in Geometria, page 8. 

1 Geometria, p. 492: Tangere autem dico rectam lineam aliam quamcunque curvam 
totam in eodem plano cure ea existantem, cum ipsa recta linea sive in puncto, sive in 
recta linea, curvae, occurrente, eadem curva vel tota est ad eandem partem, vel illius 
nihil est ad alteram partem illi occurrentis rectae lineae. 
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regula; moreover any line parallel to the regula situated between the two tangents, 
for example BD, will intersect the figure in line segments, whereas any line parallel 
to the regula outside the tangents will have no points in common with the figure 
(Geometria, pp. 14, 17-18). CAVAI3ERI called the two tangents opposite tangents. 

He needed such a result for his definition of the concept of  "all the lines", 
which will be presented in Section III.  1. Most of  the figures to which CAVALIERI 
applied his method of indivisibles do have two opposite "tradit ional" tangents 
parallel to a chosen regula. However, triangles play an important role in his theory 
and the fact that they have no "traditional" opposite tangents apparently motivat- 
ed CAVALIERI to introduce a line through a vertex of a triangle like t3 as a tangent. 
CAVALIERI'S definitions and theorems concerning opposite tangents and "all the 
lines" show a striking generality, very advanced for his time. Thus in building 
up his theory he had in mind figures as complicated as the one of Figure II.2. 

This generality made some of CAVALIERI'S demonstrations concerning curves 
erroneous, which is no wonder, since he did not have at his disposal concepts 
like differentiability which could have enabled him to analyse the assumed proper- 
ties of curves. He implicitly supposed that his curves behaved 'nicely', more 
'nicely', in fact, than some of his drawn curves actually do. 

To illustrate his style of  argument I shall present one of CAVALIERI'S means 
for obtaining the main result, the existence of two opposite tangents. I t  is a part  
of  Theorem 1 of the first book of Geometria and is repeated separately as Lemma 3 
in Book VII in the following form: 

I f  a curved line is situated in one plane and if a straight line meets it in either 
two points, two line segments, or in a line segment and a point, then we can 
draw another straight line parallel to the previous line which touches the part  
of  the curve situated between the two mentioned meetings. 2 

In Figure II.3 let BAC be the curve and BC the meeting line. CAVALIERI'S 
proof  is based on the intuitive idea, that if a line KV parallel to BC is moved 

K V 

D A F 

B 

Fig. II.3. The figure except the line KV is on page 492 of Geometria. 

2 Ibid.: Si curva linea quaecunque tota sit in eodem plano, cui occurrat recta in 
duobus punctis, aut rectis lineis, vel in recta, & puncto, poterimus aliam rectam lineam 
praefatae aequidistantem ducere, quae tangat portionem curvae lineae inter duos predic- 
tos occursus continuatam. 
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either towards BC or away from BC remaining parallel to it, then in a certain 
position it will become tangent to ABC (Geometria pp. 14-15). 

Besides being an essential tool for CAVALIERI, Lemma 3 is an interesting 
example of a precursor of an important theorem in the calculus: The mean value 
theorem, which states that if the function f(x) is continuous in the closed interval 
[a, b] and differentiable at every point of the open interval, then there is an inter- 
mediate value ~ such that ( f ( b ) -  f ( a ) ) / ( b -  a ) =  f'(~). Or, translated into 
geometrical language (cf. Figure II.4): there is at least one point on the graph 
of f(x) at which the tangent is parallel to the secant between the points (a, f(a)) 
and (b, f(b)). 

~y=f(x) 

1 
I I [ ', I 

a ~ ~ b 

Fig. 11.4 

It is exactly the last property CAVALIERI stated in Lemma 3; nevertheless I 
only consider it a precursor and not an early version of the mean value theorem, 
because it is based on geometrical ideas very different from the concepts underlying 
the mean value theorem (cf. LOMBARDO-RADICE 1966, pp. 81-82, where a different 
opinion is expressed). 

II.2. The purpose of CAVALIERI'S method of indivisibles was to provide a means 
for quadratures and cubatures of figures. His method was new, but his ideas of 
what should be understood by a quadrature or a cubature were entirely based 
on the Greek theory of magnitudes; therefore I shall briefly sketch it.a 

Greek mathematicians divided mathematical objects into different categories. 
Of particular interest for CAVALIERI'S work are the category containing the natural 
numbers and the three categories containing one-dimensional, two-dimensional, 
and three-dimensional geometrical figures respectively. Two objects belonging 
to the same category were said to be of the same kind and could be combined 
or related in various ways. The compositions and relations considered were not 
defined, but some of their properties were postulated in the common notions in 
EUCLID'S Elements, Book I. There the objects are described only as "they",  36, 
whereas in Book V of the Elements, the word magnitude, #@e#oT, is introduced 

a My understanding of the Greek theory of magnitudes originates from OLAF 
SCHMIDT'S lectures which unfortunately have not been published. In this brief outline 
of the theory I have avoided special problems connected with the theory, as e.g. the fact 
that not all Greek mathematicians considered a curve and a straight line as magnitudes 
of the same kind. For more information on magnitudes see HJELMSLEV 1950 and ITARD 
1953. 
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to characterize an object. I t  is difficult to define a magnitude precisely, but for 
our purpose it is enough to note that in the category of natural numbers the 
numbers themselves were magnitudes, and in the categories of figures, the figures 
when considered movable were magnitudes (or more precisely, the magnitudes 
were the equivalence-classes determined by the relation of congruence). 

The Greek mathematicians'  assumptions concerning magnitudes, relations 
and compositions implied that when any two magnitudes, A and B, of the same 
kind, are given then 

1. A and B can be ordered so that precisely one of the following three possibilities 
holds: 

A > B  A = B  A < B .  

2. A and B can be added; the result, which will be denoted by A + B, is a 
magnitude of the same kind as A and B. 

3. I f  A > B B can be subtracted from A, forming the magnitude, A - B, 
of  the same kind as A and B. 4 

4. A and B can form a ratio [A: B]. 

Moreover, according to EUDOXUS'S theory of proportions, set forth in Book V 
of EUCLID'S Elements, ratios between magnitudes can be ordered. 

To understand CAVALIERI'S treatment of  geometrical figures it is very important 
to keep in mind that the described calculations concern the proper magnitudes. 
Given two geometrical figures, A and B, we can interpret the relations = and > 
by saying that A is equal to or greater than B if the measure of  A is equal to or 
greater than the measure of  B. However, the Greeks'  concept of numbers did not 
allow measures like length, area and volume to be ascribed to figures, and there- 
fore they calculated directly with the figures or magnitudes. Thus to effect a 
quadrature or a cubature meant for Greek mathematicians to find the ratio between 
the figure to be determined and a "known"  figure, e.g. the ratio between a segment 
of  a parabola and its circumscribed parallelogram. 

CAVALIERI took over all the above mentioned assumptions concerning magni- 
tudes and even attempted, as we shall see in the next sections, to extend the set 
of  magnitudes. 

HI. "All the lines" 

III.  1. The first definition in Book II  of Geometria introduces the concept of  "all 
the lines" (omnes lineae): 

I f  through opposite tangents to a given plane figure two parallel and indefinitely 
produced planes are drawn either perpendicular or inclined to the plane of 

4 EUCLID only subtracted B from A if--set-theoretically speaking--A ) B, whereas 
the subtraction A -- B is allowed in ARCHIMEDES' lemma when A > B. 
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the given figure, and if one of the parallel planes is moved toward the other, still 
remaining parallel to it, until it coincides with it; then the single lines which 
during the motion form the intersections between the moving plane and the 
given figure, collected together, are called all the lines of the figure taken with 
one of them as regula; this when the planes are perpendicular to the given 
figure. When, however, the planes are inclined to the figure the lines are called 
all the lines of the same given figure with respect to an oblique passage (obliqui 
transitus), the regula being likewise one of them. 5 

CAVALIERI added that when the moving plane is perpendicular to the given figure 
"'all the lines" can be characterized as recti transitus. 

The important concept in CAVALIEm'S theory about plane figures is exactly 
tha t  of "all the lines" recti transitus, which he also called the indivisibles of  a given 
figure (Geometria, p. 114: "indivisibilia. s. omnes lineas figurae"). He did not 
make  extensive use of "all the lines" obliqui transitus; but he had a motive for 
introducing them, to which I shall return in Section III.7. Unless otherwise stated 
"'all the lines" should be thought of as recti transitus. 

Since the concept of  "all the lines" is crucial in CAVALIEm'S collective method 
o f  indivisibles, I shall discuss it in some detail in this and the following sections. 

Let us consider a plane figure like F = ABC in Figure III.1 and let the line 
BC be the regula determining a direction in the plane of F (cf. Section II.1) "All 
the lines" belonging to F, taken with BC as regula, constitute the set of  chords in 
F parallel to BC. I t  is useful to have a notation for this set, and I have chosen the 
symbol (9v(1)B c ((9 from omnes). I f  there is no doubt about the reguIa, the symbol 
(9~(1) will be used. Further, I often find it convenient to employ the term the collec- 
lion of  lines of F instead of "all the lines". 

A A 

B C B C 
F 0~{11 

Fig. II1.1 

s Geometria, p. 99: Si per oppositas tangentes cuiuscunque datae planae figurae 
ducantur duo plana invicem parallela, recta, sive inclinata ad planum datae figurae, 
hinc inde indefinit6 producta; quorum alterum moveatur versus reliquum eidem semper 
aequidistans donec illi congruerit: singulae rectae lineae, quae in toto motu fiunt com- 
munes sectiones plani rnoti, & datae figurae, simul collectae vocentur: Omnes lineae 
talis figurae, sumptae regula una earundem; & hoc cure plana sunt recta ad datam figu- 
ram:  Cure ver6 ad illam sunt inclinata vocentur. Omnes lineae eiusdem obliqui transitus 
,datae figurae, regula pariter earundem una. 
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In the quadratures which CAVALIERI actually carried out the "lines" 1 in (.0F(1) 
are line segments, but, as we saw in Chapter II, when dealing with general state- 
ments he considered figures like the one depicted in Figure II.2; hence it can hap- 
pen that some of the l's in tgF(1 ) consist in two or more line segments. 

CAVALIERI introduced "all the lines" as a tool for quadratures. How exactly 
he used this tool will be illustrated later, but for the further discussion it is adequate 
to be aware of the connection between quadratures and collections of lines. This 
is expressed in the fundamental Theorem II.3 of Geometria which states that the 
ratio between two figures equals the ratio between their collections of lines taken 
with respect to the same regula: i.e. 

FI:  F 2 = (.9F1(1) : (.0F2(1). (III.1) 

CAVALIERI'S demonstration of this relation will be indicated in Section V.4; here 
I shall return to the investigation of the very concept of "all the lines" and parti- 
cularly I will be concerned with the two following questions: How did CAVALIERI 
get the idea of using "all the lines" to calculate the left-hand side in (III.1)? 
And, how did he conceive of "all the lines"? 

III.2. An explicit answer to the first question cannot be found in CAVALIERI'S 
writings. However, I find it likely that he was inspired by the intuitive idea of  
considering a plane or solid figure as composed of infinitesimals. Many mathe- 
maticians since DEMOCRITUS have used such an idea as a starting point for their 
approach to quadratures and cubatures, and with JOHANN KEPLER'S Stereometria 
(1615) it became the basis of a method of integration. 

Probably CAVALIERI only became acquinted with Stereometria about 1626, 
that is after he had invented his own method (LOMBARDO-RADICE 1966, pp. 51-52). 
But even if he had read the book earlier, he would not have met the ideas underlying 
his own method. CAVALIERI could agree with KEPLER that a new method should 
unify heuristics and proof  which in the Greek method of exhaustion were kept 
separate. In other words a new method should provide the results and the proofs 
at the same time. However, CAVALIERI did not find KEPLER'S new method satis- 
factory. Although he was impressed by the number of problems KEPLER dealt 
with, he thought that KEPLER had built his method on a too weak a foundation 
which led to errors (Geometria, the Introduction). 

CAVALIERI believed that a sound foundation could be obtained only by keeping 
the Greek tradition of not using infinitesimals in proofs. Hence he had to suppress 
all intuitive ideas about how a plane figure is composed and which role "all the 
lines" played in the composition. 

This leads us back to the question: How did CAVALIERI actually conceive 
of "all the lines". The answer to this will be divided into two parts. First I shall 
discuss his mathematical treatment of "all the lines", and then I am going to 
follow his more philosophical ideas (for other accounts of CAVALIERI'S ideas 
concerning indivisibles see WALLNER 1903 and CELLINI 19661). 

III.3. The mathematical role of collections of lines can best be characterized by 
comparing them with the categories of the Greek magnitudes, because CAVALIERI 
treated collections of lines in a way suggesting he considered them a new category 
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of magnitudes to which Euooxus ' s  theory of magnitudes could be applied. Seeing 
"all the lines" under this aspect brings an important  clue to the understanding 
of CAVALIERI'S ideas and proofs. In the following I shall justify the interpretation 
of collections of  lines as a category of magnitudes by some examples (see also 
GIUSTI 1980, p. 28). 

A sine qua non of the relation (III.1) is that the ratio between two collections 
of  lines exists. Since each collection of lines consists of  indefinitely many lines, 
the existence of the ratio is not obvious. From his early letters to GALILEO it can 
be seen that CAVALIERI was aware of this problem from the very start of  his work 
on indivisibles. Thus on December 15, 1621, he asked GALmEO for his opinion 
on the dilemma, that on the one hand 

it seems that "all the lines" of a given figure are infinite [in number] and hence 
not covered by the definition of magnitudes which have ratios, 6 

and on the other 

for the reason that if the figure is made larger also the lines become larger ... 
it seems that they ["all the lines"] are covered by the mentioned definition, v 

His later letters to GALILEO and passages in Geometria and Exerei tat iones show 
that CAVALIER1 frequently returned to the problem for the rest of  his life. In his 
continuous struggle during the period 1621-1647 CAVALIERI mainly used two 
mathematical arguments to prove the existence of the ratio between two collections 
of lines. The first is found in a letter from March 22, 1622 to GALILEO stating 
that the ratio does exist, because any collection of lines can be multiplied to exceed 
another collection of lines (GALILEO Opere, vol. 13, p. 86). Thus CAVALIERI 
referred to the fundamental property of  Greek magnitudes described in EUCliD'S 
Elements,  Definition V.4: 

Magnitudes are said to have a ratio to one another which are capable, when 
multiplied, of exceeding one another. 

This definition, which among other things had the function of excluding infinites- 
imals and infinite magnitudes, apparently prescribed a method to test whether 
two magnitudes have a ratio. However, in the surviving Greek mathematical  texts 
it has not been used to prove the existence of a ratio. It  is the other implication 
of the definition, also called EUDOXUS'S axiom, that was used: namely that two 
magnitudes of the same kind can be multiplied to exceed each other. The Greek 
mathematicians seem to have considered the existence of a ratio between two 

6 GALILH Opere, vol. 13, p. 81: pare che tutte le linee d'una data figura sieno in- 
finite, e perb fuor della diffinitione delle grandezze che hano proportione. 

7 Ibid.: ma perch6 poi, se si aggrandisse la figura, anco le linee si fano maggiori, 
essendovi quelle della prima et anco quelle di pifi che sono nell'eccesso della figura fatta 
maggiore sopra la data, per6 pare che non sieno fuora di queUa diffinitione. 
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magnitudes of the same kind a consequence of the fact that the magnitudes can be 
added and ordered. CAVALIERI must have had similar ideas, because as his second 
argument he applied the following: Since two collections of lines have the property 
that they can be added and subtracted, it is obvious that they can be compared 
(see e.g. Geometria, p. 111, and Exercitationes, pp. 202-203). And by comparing 
CAVALIERI meant to form a ratio. (CAVALIERI never commented upon an ordering 
of collections of lines, but it is an implicit assumption in his theory, as we shall see 
in Section V.2.) 

CAVALIERI did not trust this argument of additivity sufficiently to let it be 
conclusive. Thus he provided the first theorem of Geometria, Book II, 

"all the lines" of plane figures ... are magnitudes which have a ratio to each 
other, 8 

with a proof  which was an attempt to verify his thesis that collections of lines 
can be multiplied to exceed each other. (His proof will be taken up in Section V.3.) 

Although CAVALIERI'S argumentation for the existence of a ratio between 
two collections of lines strikes more chords, his whole approach to the problem 
shows that he had the Greek magnitudes in mind when he created and developed 
his theory, and that he used the word magnitudes for "all the lines" in the Greek 
mathematical sense. 

In Exercitationes, a further support for regarding "all the lines" as an abstract 
magnitude can be found, Here CAVALIERI drew a parallel between collections of  
lines and algebraic magnitudes like roots, with which one may calculate although 
their nature is unknown: 

This [to obtain a result by using "all the lines"] is just like what happens when 
algebraists who, although they are ignorant of the nature of what they call a 
root, a side or a thing, and undetermined roots, yet by multiplying, dividing 
etc. these, at the end are led to a result of a problem by these obscure round- 
about methods. 9 

Apart from GIUSTI'S book the literature on CAVALIERI does not clearly suggest 
an interpretation of collections of lines as a new category of magnitudes. (BoYER 
stressed that CAVALIERI built his methods on conceptions of EuCLiDean geometry 
but did not explain how (BOYER 1941, p. 83).) This may partly be due to the fact 
that more attention has been paid to CAVALIERI'S comments on "all the lines", 
put forward in scholia and annotations, than to how he actually used the concept 
in mathematical arguments. CAVALIERI directed his comments particularly toward 

s Geometria, p. 108: Quarumlibet planarum figurarum omnes lineae ... sunt magni- 
tudines inter se rationem habentes. 

9 Exercitationes, pp. 202-203 : Hic enim perinde sit ac apud Algebricos, qui nescientes; 
quae sit, quam dicunt Radicem, Latus, aut Cossam, seu quales ineffabiles radices, tamen 
easdem multiplicantes, dividentes &c denique in quaesiti inventionem quasi per has obscu- 
ras ambages manuducuntur. 
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two problems; the first, already touched upon in this section, was the problem 
of avoiding absurdities in dealing with collections which consist in infinitely many 
lines. The second problem concerned the relation between "all the lines" and the 
composition of a continuum. 

The purpose of CAVALIERI'S elaborations of the concept of "all the lines" 
was undoubtedly to clarify his method of indivisibles and to anticipate scepticism, 
but they probably had the effect of creating more confusion than clarity. This 
confusion will be illustrated in the following two sections. 

III.4. In his comments on collections of lines CAVALIERI tried to explain how it 
was possible to work with a magnitude containing indefinitely many lines. Thus 
in a scholium to Geometria, Theorem II.1 (collections of lines are magnitudes 
which have a ratio to each other), he explained that it is not the number of lines 
in a collection which is used in a comparison, but 

the magnitude which is equal to being, congruent with it, the space occupied 
by these lines.1 o 

In his very critical analysis of CAVALIERI'S method of indivisibles GULDIN 
bluntly denied the existence of a ratio between two collections of lines with the 
argument that 

between one infinity and another there is never a proportion or ratio. 11 

Further, GULDIN speculated about what CAVALIERI meant by the magnitude which 
is equal to the space occupied by "all the lines". He came to the conclusion that 
there were only two possibilities, and that neither was of any help to quadratures. 
The one was that CAVALIERI mixed up "all the lines" of a given plane figure with 
the space inside the figure described by the moving tangent plane, i.e. the figure 
itself. The other possibility was that the magnitude equal to the space occupied 
by "all the lines" was a length consisting in an indefinite number of lines. 

In answering GULDIN'S point of the illegitimate comparison of two collections 
of lines CAVALIERI emphasized that although a collection of lines is infinite with 
respect to the number of lines it is finite with respect to extension (in spatio). Fur- 
ther he tried to make the ratio between two collections of lines comprehensible 
by posing the question: Is it not obvious that two collections of lines belonging to 
two congruent squares are the double of each of the collections ? (Exercitationes, 
p. 202.) 

CAVALIERI also answered GULDIN'S remarks on the space occupied by "all the 
lines". CAVALIERI'S approach to this problem was much related to the question 

lo Geometria, p. 111: magnitudinem, quae adaequatur spatio ab eisdem lineis occu- 
pato, cure illi congruat. 

11 GULDIN 1635--1641, VO1. 4, p. 342 quoted in Exercitationes, p. 201: sed infiniti ad 
infinitum nulla est proportio, sive ratio. 
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of the composition of the continuum and the role of indivisibles in this; hence I 
shall first present his ideas about this question before presenting his answer to 
GULDIN. 

III.5. The ancient discussion about how to conceive of a continuum was still 
considered very important, partly because of GAHLEO'S work, when CAVALIERI 
wrote his Geornetria. The questions with which CAVALIERI was confronted can, 
slightly simplified, be described in the following way (cf. STAMM, 1936). 

What happens if a continuum, as for example a line segment, is divided in- 
definitely often ? Would it be, as stated by ARISTOTLE, that at each step one obtains 
parts which can again be divided, being of the same kind as the continuum. Or 
would it be, as maintained by others, that ultimately indivisible parts (atoms) are 
obtained ? And would they then have the same dimensions as the continuum or 
a lower one ? (E.g. if the continuum is a line segment: would the indivisibles be 
line segments or points ?) And if AmSTOTLE was right, how then could the points 
of a line segment or parallel chords in a plane figure be conceived? Were they 
linked to the continuum as a kind of indivisible which, although they did not 
compose it, was related to its continuous nature ? And if so, could this property be 
explained by letting a moving point describe a line segment, or by letting a line 
segment describe a rectangle? 

Although these questions were closely related to his method of indivisibles, 
CAVALIERI decided not to take part in the discussion, or at least not to reveal 
his opinion. Thus, if we return to his reply to GULDIN'S interpretations of the 
magnitude equal to the space occupied by "all the lines" we see an approach to 
the problem of the continuum which is very typical of CAVAL~ERL He answered 
that if one conceives the continuum to be composed of indivisibles, then a given 
plane figure and the "magnitude of all the lines" will be one and the same thing. 
Further, he said that if one assumes a continuous divisibility, then it can be main- 
tained that this magnitude consists only in lengths, but because "all the lines" 
ought to be considered at their actual position the magnitude is limited by the 
same limits as those of the given figure (Exercitationes, p. 203). 

CAVALIERI'S inclination to leave two possibilities open in the case of the com- 
position of the continuum is often reflected in his writings (besides the reference 
above see e.g. Geometria, pp. 111, 113-114 and Exercitationes, p. 199). He did 
not state exactly how the space occupied by "all the lines" should be understood 
if continuous divisibility was assumed, but he argued for the existence of the ratio 
between two collections of lines even in this case. By following his argument, which 
should not be confused with his mathematical proof  (cf. Sections III.3 and V.3), 
we can get a vague idea about CAVALIERI'S conception of "all the lines". He 
claimed that if the indivisibles do not make up a continuum, then a given plane 
figure consists of "all the lines" and something else (aliquid aBud, Geornetria, 
p. 111). From this he concluded that the space occupied by "all the lines" is 
limited; and that made him deduce that collections of lines can be added and 
subtracted. As we saw in the last section, this last property he considered to be 
significant for the existence of a ratio between two collections of lines. 

This argument is previous to the answer to GVLDIN, presented above, but it 
discloses the same idea: In his attempt to imagine "all the lines" of a given figure 
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CAVALIERI saw them either as making up the figure or as a part  of  i t - w h i c h  some- 
how could be considered as having the same properties as two-dimensional figures. 
One gets the same impression f rom the famous comparison CAVALIERI made be- 
tween a plane figure containing "all its lines" and a piece of  cloth woven of par- 
allel threads deprived of their thickness (Exercitationes, pp. 4, 239-240). 

Although CAVALIERI did not make it clear what he thought of  the composition 
of the continuum, one may wonder whether he did not incline more to the one 
possibility than to the other. The following remark f rom CAVALIERI'S letter to 
GALILEO dated June 28, 1639, 

I have not dared to say that the continuum was composed of these [the in- 
divisibles] ... Had I dared ...12 

could give the impression that most likely CAVALIERI conceived of the continuum 
as composed of indivisibles. LUR'E seems to have maintained that this was indeed 
CAVALIERI'S opinion not expressed too explicitly because he feared an opposition 
from the Catholic church holding the ARISTOTELian view (cf  LOMBARDO-RADICE 
1966, p. 206). 

However, I think that CAVALIERI never took a definite point of  view on the 
composition of the continuum and that the could be trusted when on October 2, 
1634, he wrote to GALILEO 

I absolutely do not declare to compose the continuum by indivisibles. 13 

Moreover I find it likely that CAVALIERI'S apparent ambivalence should be ascribed 
to the circumstance that he was not genuinely interested in the philosophical aspects 
of  the composition of  the continuum. The function of "all the lines" was first 
of  all, as CAVALIERI himself stated in the introduction to Exercitationes (p. 3), 
to be an instrument for quadratures; and his mathematical treatment of  them was 
independent of  any conception of the continuum. (This point of  view is also ex- 
pressed in LOMBARDo-RADICE 1966, e.g .p .  206, and in CELLINI 19661, p. 9.) 

III.6. In Sections X.2-5 I shall discuss some of the misunderstandings connected 
with CAVALIERI'S method, but I find it appropriate even here to touch upon later 
interpretations of  CAVALIERI'S concept of omnes lineae. Let me start by repeating 
that  CAVALIERI developed his method of indivisibles under the assumption that 
there is a difference between a plane figure and its collection of lines. In modern 
terms we can describe his procedure as a construction of a map 

F -+ OF(l) 

which to each 'nice' plane figure, F, assigns a "magni tude"  (91:(1). Let us introduce 
a time parameter, t; this is given implicitly by the motion of the plane which defines 

12 GALILEI Opere, vol. 18, p. 67: Io non ardii di dire che il continuo fosse composto 
di quelli [gli indivisibili] ... s'io havessi havuto tanto ardire . . . .  

13 GALILEI Opere, vol. 16, p. 138: ... assolutamente io non mi dichiaro di componere 
il continuo d'indivisibili ... 
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"all the lines". When choosing the time unit so that the time used to traverse a 
plane figure F, recti transitus, equals the altitude, a, of  F, we can characterize 
the collections of lines of F, taken with respect to a given regula AB, as the set 

(gF(1)A B ---- {l(t) I I(t) is a chord in F parallel to AB and t E [0, a]}, 

This set was considered a magnitude by CAVALIERI. Most historians of mathematics 
have chosen to describe CAVALIER£S omnes lineae as a sum of line segments (the 
only exceptions I am aware of being LOMBhRDO-RADICE and GIUSTI). This transcrip- 
tion is unfortunate, because neither CAVALIER£S definition nor his applications of 
"all the lines" imply the concept of a sum. In Section X.5. I shall return to this 
matter and argue that the impulse to regard collections of  lines as sums originates 
in the 17 th century. 

In short outlines of the method of indivisibles CAVALIER£S results are often 
described by means of definite integrals. I trust that by now it should be evident 
that CAVALIER['S abstract magnitude, "all the lines", is conceptually very different 
from a definite integral. Still it is sometimes convenient to explain CAVALIER£S 
geometrical results by a modern concept; and occasionally I am going to use 

a 

integrals for that purpose. Thus OF(l) will be 'transcribed' as f l(t) dt when F 
has the altitude a. 0 

III.7. This last section on "all the lines" will treat those obliqui transitus. CAVA- 
LIERI introduced this concept in his definition of "all the lines" (cf. Section III.1), 
but he did not employ it much in Geometria. Hence one could wonder why CAVA- 
HERI did not restrict his considerations to "all the lines", recti transitus, and why 
he did not define them by letting a line move instead of a plane. 

Some explanation of this can be found in CAVALIER£S letter of October 2, 
1634, to GALILEO (GArILEI Opere, vol. 16, pp. 137-138), However, his ideas and 
motivation are more clearly exposed in Exercitationes, through comments on 
the c0n.cept of "all the lines" obliqui transitus. 

In elaborating on the definition CAVALIERI considered two parallel planes 
and fl (Figure III.2) and two parallelograms IKLM and IKNO. The common 

side IK is situated in the plane o~ and the sides LM and NO are situated in fl; 
moreover IKLM is perpendicular to o¢ and fl (Exercitationes, pp. 15-16). He then 

K 

A , . . - ~ ,  I I x 
f'~,,.i \ I t  

M 0 

Fig. III.2 
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imagined that ~ moves toward/3 while staying parallel to it. When the line IK 
is taken as regula, the intersections between the moving plane and the two par- 
allelograms make up "all the lines" of IKLM, recti transitus and "all the lines" 
of IKNO, obliqui transitus. CAVALIERI maintained that these two collections are 
equal, i.e. 

(~IKLM(1)recti transitus = ~IKNO(1)oblique transitus " (III.2) 

His argument was that at each position of the moving plane, the intersections, 
e.g. QP and VT, are equal. 

CAVAL~ERI further emphasized that the two parallelograms I K L M  and IKNO 
are not equal (i.e. they do not have the same area), and explained that the reason 
that two unequal parallelograms can have equal collections of lines in the sense 
of  (III.2), is that the lines in (9iKLM(1)recti transitus lie more closely than the lines in 
(gIKNO(1)obliqui transit.s" 

Thus it seems that CAVALIERI'S purpose of creating the concept o f"a l l  the lines" 
obliqui transitus was to obtain a means enabling him to distinguish between differ- 
ent distributions of lines. What purpose would this serve ? Apparently he wished 
to avoid some of the paradoxes which may be the consequence of  using arguments 
about infinitely many elements. That is, at least, the reason he displayed in the 
letter mentioned above to GALILEO, and in Exercitationes he illustrated this further 
(pp. 238-240). 

Here he presented an objection to his method which he had already dealt 
with in a letter to TORR1CELU written April 5, 1644 (ToRRICELLI Opere, vol. 3, 
pp. 170-171). Also TORRICELLI used it in a slightly different form as an example 
in De indivisibilibum doctrina perperam usurpata (ibid., vol. 1, part 2, pp. 417-418). 
At no place does it become clear from whom the objection came the only infor- 
mation being that it was sent to CAVALIERI from an anonymous person (ibid., 
vol. 3, p. 170). 

The aim of this person was to show the weakness of the method of indivisibles 
by demonstrating that it could lead to the result that all triangles are equal, or  
equivalently that all triangles having the same altitude are equal. His argument 
was this: Let ADH and D G H  have the same altitude HD (Figure III.3), if it can 
be proved, taking HD as regula, that 

0ADH(1)HD = (gD~H(1)HD; (IH.3) 

H 

A B C D E F G 

Fig. III.3 
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then it follows from Geometria, Theorem II.3 (cf. the relation (III.1)) that AADH 
= ADGH. But to obtain (III.3), he said, is easy, because to every line segment 
BK in (gADH(1), by drawing KM parallel to AG one can find a line segment FM 
in (9D~Ia(1) which is equal to it (and vice versa). 

CAVALIERI refuted the objection by pointing out that Theorem II.3 applies 
only to two collections of lines generated by the same transitus (Exercitationes 
p. 239). Such is obviously not the case in the above example, because the distance 
between two line segments as KB and IC in d)ADH(1 ) is not the same as the distance 
between their two corresponding line segments MF and LE in (gDOH(1). 

CAVALIERI'S concepts of "all the lines", recti transitus and obliqui transitus, 
and his distinction between different distributions of "all the lines" can be illus- 
trated by 'transcribing' the concepts to integrals: Let us again consider the two 
parallelograms IKLM and IKNO in Figure III.2. Let the angle between the plane 
of the parallelogram IKNO and/3 be 6); let IK = b, AM -- a; and let us, as 
earlier, also assume that a is the time used for generating the two collections of  
lines (~LKLM(1)recti transitus and (9IKNO(1)obiiqui transitus" 

Further, letting AO = c, we can then transcribe 

a 

(gmLM(l)recti transitus as f b dt = area IKLM 
0 

and 

(gIKNO(1)recti transitus as f b dt area IKNO. 
0 

The equality (III.2) then-leads to transcribing 

•IKNo(l)obliquit . . . .  itus a s  f b dt = sin O area IKNO = f b d(t sin 6)). 
0 0 

This enables us to interpret CAVALIERI'S considerations about different distribu- 

line segments a ( ib   t)a d a n  

J o  

( f b  d(t sin O)) as the geometrical equivalence of integrating with respect to 
i ,  

g 

different variables, the one being a constant times the other (the argument is 
also valid if, instead of the constant line segment b, we consider line segments 
1(0). 

]V.  Other omnes-concepts 

IV. 1. In Geometria CAVALIERI introduced a variety of ad hoe concepts to be used 
for quadratures and cubatures. In this and the following sections I shall present 
some of them and mainly those which are necessary for understanding the text o f  
the more important theorems in Geometria. 

To deal with solid figures CAVALIERI introduced collections of planes. This 
concept is defined in Geometria, Definition 11.2 for the kind of figures CAVALIERI 
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considered, that is, solids which have two opposite tangent planes (Figure IV. 1). 
CAVALIERI imagined the one tangent plane to move toward the other, remaining 
parallel to it. "All the planes" of the solid figure, taken with one of the tangent 
planes as regula, consist in the intersections between the figure and the moving 
plane. Such a collection of planes belonging to a solid figure, S, and with regula 
BCD will be denoted by (9s(P)BcD or simply by @s(P). (Despite the fact that the 
p's in Cs(p) are plane figures, like CAVALIERI I shall call them planes.) 

j A ~ /  

D 

Fig. IV.1. Inspired by CAVALIERI'S figure on page 105 of Geometria. To the left the solid 
S = ABCD having the opposite tangent planes ~ and BCD. To the right some of the 

planes of Os(P). 

CAVALIERI also assigned collections of plane figures to plane figures (Geometria, 
p. 103): For a given plane figure, F, the collection of "all similar plane figures of 
the given figure" is obtained by describing a plane figure on each 1 in (gF(1) in such 
a way that the figures are similar and situated in parallel planes determined by 
the transit of F (Figure IV.2). I shall denote a plane figure on 1 by A(1), and the 
collection of similar and parallel figures by ~0F(A(1)). 

Fig. IV.2. A given figure F and some of the similar plane figures of the collection OF(A(1)) 
when A(l) is a rectangle. 

CAVALIERI was particularly interested in the case when all the A(1)'s are squares 
and called the corresponding collection "all the squares" of the given figure; 
introducing the symbol [] 1 for the square on l, I am going to denote this collection 
by (gF(D1). The requirement that all figures in @v(A(1)) should be similar implies 
that for all 11 and 12 in @F(A(1)) 

A(ll) : A(12) = [] l~ : [] 12, (IV.l) 

a relation CAVALIERI proved and to which we shall return (Section VIA). 
It is natural to consider the solid whose surface is determined by "all the similar 

plane figures of a given figure"; the collection of planes of this solid is exactly 
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the collection of similar plane figures. This result is central in several of CAVA- 
LIERI'S proofs and is stated as a separate postulate, the second and last in Book II 
(Geometria, p. 138). That CAVALIERI found this postulate necessary is rather sur- 
prising, because the identity between the two collections of planes seems clear. 
Probably, CAVALIERI'S real problem was not to establish the identity, but to come 
from an intuitive understanding of the solid determined by the similar figures to 
a real definition of it, and this problem he then hid in an apparently obvious 
postulate. 

IV.2. A third kind of collection of plane figures belonged to CAVALIERI'S tools, 
namely some emerging from a pair of plane figures (Geometria, p. 104): Let F1 
and F2 be two plane figures having the same altitude and the common regula 
AB (Figure IV.3). If from each pair of corresponding 11 and 12 in (?F~(1) and 
dJF2(1) the rectangle It × 12 is formed, we obtain "all the rectangles" of the two 
figures. (I call 11 and 12 corresponding when they have the same distance to AB.) 
Such a collection of rectangles will be denoted by (gEl,F2(1 X 1)AB or by (gF~,F2(1 × 1). 

tl [ 2 ~  

F 2 B A F I 

Fig. IV.3. In the figure CAVALIERI used to illustrate the concept OF1,F2(1 X 1). F1 and F2 
have a straight line in common (Geometria, page 107), but the definition applies for all 

figures F1 and F2 having a common regula and the same altitude. 

CAVALIERI'S creation of a collection of rectangles has a certain resemblance 
to the construction of a solid figure from two figures standing on the same base 
and situated in perpendicular planes which was carried out by, among others, 
GILLES P. ROBERVAL and GR~GOIRE DE SAINT VINCENT and called by the latter 
ductus plani ad planum. ROBERVAL, GRI~GOIRE, and later PASCAL used these solids 
to perform geometric transformations for problems of integration. CAVALIERI'S 
purpose in introducing "all the rectangles" was a different one, namely to obtain 
a concept he could use in his geometrical calculations in the cases where a modern 

mathematician would work with integrals of the form / l t ( t ) .  12(t) dt. Thus in 
o 

connection with "all the rectangles" CAVALIERI did not consider the pertaining 
solid, but let the concept remain an abstract one. In his second method of integra- 
t i o n -  involving no omnes-concepts-CAVALIERI actually introduced solids similar 
to ductus but still not to achieve integral transformations. In Section IX.2 I shall 
return to these solids. 

IV.3. The last omnes-concepts tO be presented here relate to a line segment. The 
basis of these concepts is "all the points" of a given line segment: Let the two line 
segments ON and EM have their endpoints in two parallel planes, ON being 
perpendicular to the planes but EM not perpendicular (cf. Figure IV.4). We then 
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imagine that the one plane moves toward the other, remaining parallel to it. 
The points of intersection between the moving plane and ON are called "all the 
points" of ON recti transitus, whereas those between the moving plane and EM 
are called "all the points" of EML, obliqui transitus (Geometria, p. 100). 

From these collections of points CAVALI~RI derived a spectrum of abscissae 
concepts which he repeatedly applied. He defined the concepts both recti transitus 
and obliqui transitus. The latter are related to the line segment EM, and since they 
can easily be imagined when the first ones, related to the line segment ON, are 
known, I am not going to deal with them. 

The collection of abscissae itself, or "all the abscissae" of the line segment 
ON arises from its collection of points by assigning to each point H the line segment 
OH (cf Figure IV.4). If instead of taking all the line segments OH we take the 
line segments NH, we obtain the collection which CAVALIERI called residuce 
omnium abscissarum, "the residues of all the abscissae". Further, if, to each H 
in ON's collection of points, we assign the whole line segment ON, we get "the 
maxima of all the abscissae" of ON. 

f x x  E ,0 , j  

R 

Fig. IV.4 

"All the abscissae" and "the residues of all the abscissae" of ON differ only 
with respect to the order in which the line segments are considered. I shall let the 
order of the letters in the symbol for a line segment indicate this order and denote 
the collection of abscissae belonging to ON by (9o~(~) and the collection of residues 
by ~)oN(ON- ~); this latter collection is the same as (gNo(O0. The symbol 
0oN(ON) will be used for "the maxima of all the abscissae". 

The role of the abscissae concepts in CAVALIERI'S geometrical calculations 
can be compared with the modern use of integrals of linear functions. If we set 
!ON I = a, we can make the following transcriptions: 

(PON(O0 to 

(PoN(ON - ~x) to 

CoN(ON) to 

a 

f t d t ,  
o 

a 

f (a - t) dt, 
o 

a 

f adt .  
0 
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By adding a fixed line segment, PO or NR, say of length b, to each abscissa in 
the collections of abscissae CAVALIERI achieved geometrical concepts which can 
be transcribed as 

a a a 

f ( t  + b) dt, f ( a -  t + b) dt and f ( a  + b) dt. 
0 0 0 

Actually, CAVALIERI not only used abscissae concepts in connection with linear ex- 
pressions; in his calculations he also introduced ad hoc collections of rectangles of 
abscissae such as the one, (9oN((ON -- ~x)× (PO + c0), which is obtained by as- 
signing to each H of the collection of points of ON the rectangle NH × (PO + OH) 

a 

(Geometria, p. 172). This collection can be transcribed as f (a - t) (b + t) dt. 
0 

The abscissae concepts obliqui transitus, like "all the lines" obliqui transitus, corres- 
pond to integrals where the variable of integration has been multiplied by a con- 
stant (cf Section III.7). 

IV.4. Throughout Geometria the abscissae concepts occur very often and results 
concerning other collections are translated into the terminology of collections of 
abscissae. The idea behind the translation can be illustrated by the following ex- 
ample. 

Let us consider the parallelogram AFDC, where CD = DF (Figure IV.5). 
The collection of lines of the triangle CDF, (9CDF(1)CD, consists of all line seg- 
ments HE parallel to CD, whereas the collection of abscissae of the line segment 
FD, CFD(00, recti transitus if the angle CDF is right, obliqui transitus otherwise, 
consists of all line segments FE. The equality CD = DF implies that HE = FE 
for each HE in ~0CDF(1)CD and each FE in (grD(~) recti or obliqui transitus. This 
made CAVALIERI state that the two collections are equal (Geometria, p. 148). 
Further he set (gAFCD(1)CD equal to "the maxima of all the abscissae" of FD, 
6vD(FD ) recti or obliqui transitus, and similarly collections of of lines belonging 
to trapezia equal to other collections of abscissae. 

A F 

C D 

Fig. IV.5 

CAVALIERI'S reason for translating his results concerning collections of lines, 
rectangles, etc., to results concerning collections of abscissae was clearly related 
to his work on conic sections; this can be explained by a simple example: Let 
ABC be a segment of a parabola (Figure IV.6) having the property that 

[] EF : [] GH = BE : GB. (IV.2) 
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In some theorems CAVALIERI needed a result concerning all the squares of the 
parabola segment, i.e. 6g~c(D 1)pC. He could then use the relation (IV.2), 
in a way which will become clearer later on, to transform the problem concerning 
~ABC(D 1)DC into an investigation of (gBD(0 0 recti transitus. 

B 

A [3 c 

Fig. IV.6 

In Exercitationes (p. 17) CAVALIERI remarked that the abscissae concepts were 
not really necessary in his theory. This statement indicates that CAVAL1ERt had 
the idea that his theory would have been simpler if he had omitted the abscissae 
concepts. Such an omission would certainly have meant fewer concepts, but with 
his way of calculating not much would have been gained by so doing, because 
instead of the abscissae concepts he would have had to introduce extra figures into 
the calculations. Thus in the above example he would need a triangle whose collec- 
tion of lines could be used instead of (gBD(~). 

V. The foundation of Cavalieri's collective method of indivisibles 

V.1. This and the following sections will concentrate on the two fundamental 
theorems of CAVAHERfS collective method of indivisibles and on the question 
of  which assumptions he used to establish them. (For another analysis o f  the 
foundation of CAVALIERfS theory of indivisibles, see GIUSTI 1980, pp. 34-40.) 
Since there is no essential difference between his arguments concerning plane 
figures and solid ones, only the first will be treated. Further, I shall leave out the 
regulae, assuming that collections of lines have the same regula when they are 
compared. 

The first of the fundamental theorems, already touched upon in Section III. 1, 
is Proposition II.3 of Geometria establishing the connection between areas and 
collections of lines and between volumes and collections of planes: 

FI :  F 2 = (gF~(1) : (9F~(1) (V. 1) 
and 

S 1 " 8 2 = 0s,(p) : (-0s=(p). (V.2) 

The second is the succeeding Proposition II.4 containing a result which is often 
called Cavalieri's principle. For reasons of clarity I present it in a free translation 
(cf. BORER 1968, p. 362): 
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If  two plane (or solid) figures have equal altitudes, and if sections made by 
lines (or planes) parallel to the bases and at equal distances from them are 
always in the same ratio, then the plane (or solid) figures also are in this ratio. ~4 

Thus if two plane figures, like F~ = ACM and F2 = MCE in Figure V.1, 
have the property that for each line BD parallel to the base AE the sections BR 
and RD, in F1 and F2 respectively, satisfy the relation 

BR : RD = AM : ME,  (V.3) 

then 
ACM : MCE = AM : ME. (V.4) 

c 

A M E 

Fig. V.1. A reproduction of CAVALIERI'S figure illustrating his principle (Geometria 
page 115). In making the figure CAVALIERI was not aware that the assumption (V.3) 
implies that the curves ABC and ECD have similar curvature at corresponding points. 

After an investigation of CAVALIERI'S assumptions concerning collections of lines 
I shall return to his proofs of these two theorems, viz. the proofs of (V. 1) and (V.4). 

CAVALIERI stated only one of his assumptions explicitly, namely the one 
contained in Postulate IL l :  

"All the lines" of congruent plane figures ... are congruent, is 

That  is 
F1 ~ F2 ~ (gF~(1) "~ (-0F2(1). (V.5) 

In Geometria CAVALIERI took it for granted that his readers would understand 
what he meant by congruent collections of lines, but in Exercitationes (pp. 200- 
201) he added an explanation: When two congruent figures, F1 and F2, are placed 
so that they coincide, then each line in (9F1(1) will coincide with exactly one line 
in d~v2(1 ) (and vice versa), and the collections of lines are called congruent. 

14 Geometria, p. 115: Si duae figurae planae, vel solidae, in eadem altitudine fuerint 
constitutae, ductis autem in planis rectis lineis, & in figuris solidis ductis planis utcumque 
inter se parallelis, quorum respectu praedicta sumpta sit altitudo, repertum fuerit duc- 
tarum linearum portiones figuris planis interceptas, seu ductorum planorum portiones 
figuris solidis interceptas, esse magnitudines proportionales, homologis in eadem figura 
semper existentibus, dictae figurae erunt inter se, ut unum quodlibet eorum anteceden- 
tium, ad suum consequens in alia figura eidem correspondens. 

25 Geometria, p. 108: Congruentium planarum figurarum omnes linae, sumptae 
una earundem ut regula communi, sunt congruentes. 
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Although the concept of congruence between collections of lines is explicitly 
introduced, it did not play a great role in CAVALIERI'S theory; thus in applying 
Postulate II.1 CAVAHERI used only the implication 

F1 -~ F2 ~ (OF1(1) = (OF,(1). (V.6) 

He did not explain what it means for two collections of lines to be equal, but 
assumed that there is a relation of the kind we now call an equivalence relation, 
involving more than just identity or congruence. 

V.2. The existence of an equality relation belongs to CAVALIERI'S implicit assump- 
tions originating from his idea that collections of lines constitute a category of 
magnitudes (or more precisely that the equivalence classes of collections of lines 
defined by congruence are magnitudes). On the whole he presupposed that collec- 
tions of lines have the Properties 1, 2 and 3 listed in Section II.2 for magnitudes. 

CAVALIERI further assumed an additive property of his omnes-concept, namely 
that 

F ~ F 1 + F 2 ~ (OF(l) ----- (OFI(1) "4- (OF2(1). (V .7 )  

It  is used, for instance, in his proofs of the first two theorems of Geometria, 
Book II. 

Moreover he often employed the following implication without further com- 
ment: 

F 1 > F 2 ~ (OF~(1) > 0F,(1). (V.8) 

After the presentation of Theorem II.2 I shall reconstruct an argument on 
which CAVALIERI could have based this assumption. 

Apart from assumptions concerning additivity, equality, and ordering, CAVA- 
LIERI employed a strong requirement on (O's properties which I shall catl the 
ut-unum principle: 

As one antecedent is to one consequent so are all the antecedents to all the 
consequents. 16 

CAVALIERI formulated this principle as a corollary to Theorem II.4 of Geometria 
employing the word corollary in a rather unusual sense, because the principle 
is not a consequence of Theorem II.4, but is used to prove it. 

For  plane figures the content of the principle is the following: If  two figures, 
F1 and F2, have their bases situated on the same line, have equal altitudes, and 
if each pair of corresponding 11 and 12, in (OF1(1) and (oF2(1) respectively, are in 
the same ratio, then 0Fi(1) and 0F,(1) are also in that ratio. (As earlier, I call 
11 and 12 corresponding when they are at equal distance from the bases.) Thus, 
if in Figure V. 1 

1~ : 12 = AM : ME for all corresponding 11 and 12 (v.9) 

~6 Geometria, p. 116: ut unum antecedentium ad unum consequentium, ita esse 
omnia antecedentia ad omnia consequentia. 
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then 

OFt(l): (~FJl) = AM : ME. (V.10) 

In Sections VI.3 and 4 we are going to see that while developing his theory CAVA- 
LIERI also generalized the ut-unum principle, so that it came to mean that t~ can be 
applied to relations between line segments in which there is a certain constancy. 

CAVALIERI did not reveal his thoughts concerning the use of the ut-unum 
principle, but in Exercitationes (p. 30) he emphasized that he was not the only one 
employing this principle, but that also TORRICELLI had used it in De dimensione 
parabolae; how TORRICELLI used the principle we shall see in Section X.2. 

V.3. It would serve no purpose- indeed  it would also be quite impossible within 
the compass of one p a p e r - t o  present all of  CAVALIER£S theorems and proofs. 
Nevertheless, to facilitate the understanding of CAVAUERI'S theory and the 
reaction to it, I shall present in some detail the theorems on which the theory is 
based. 

Although CAVALIERI implicitly assumed that collections of lines have Proper- 
ties 1-3 of Section IL2 he found it necessary, as we saw in Section III.3, to prove 
that they also have the last Property 4. Thus he stated in Geometria, Theorem II. 1, 
that collections of lines are magnitudes which have a ratio to each other. 

As explained in Section II.3 CAVALIERI'S aim was to show that collections of  
lines fulfill Definition V.4 of EUCLID'S Elements. Let (9F1(1) and (gFJl) b e  the 
collections of two plane figures, Ft  = GOQ and F 2 = EAG (Figure V.2). 
CAVALIERI then had to show that they can be multiplied to exceed each other. This 
means that he would for example have to show that a multiple 

d)FJl ) + ~0FJl ) + . . .  + (gF~(1) o f  d)F~(1 ) can be found such that 

d3Fl(1) + d~FJl) + ... + ~)Fl(1) > 0FJl). 

A 

A 0 B / I C ' ~ D , , ,  0 

E R G PQ H E R G P Q 

Fig. V.2. A reproduction of CAVALIERI'S figure on page 100 of Geometria, the left for 
the case AR = OP, and the right for the case AR > OP. 

His proof is based on rather loose considerations: First he supposed the altitudes 
AR and OP of the two figures to be equal. He then argued that each It = NS 
in 0FI(I) can be multiplied to exceed the corresponding 12 = LM in Crjl) ,  
and concluded that a multiple of  d~rl(1) greater than d~rjl) exists. Thus he did 
not perceive the problem of finding a maximum of those infinitely many n's 
for which n l l >  12, It belonging to ~FI(1) and lz to tPFJl); even if he had seen 
it, he would have had no way to establish the existence of that maximum. 
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In the case where AR =~ OP, e.g. AR > OP, CAVALIERI split AR into 
parts equal to OP and a remaining part which was not greater than OP. For  the 
sake of simplicity he assumed that AR = CR + AC, where CR = OP and 
AC ~ OP. Through C he drew the line CO parallel to EG and moved the figure 
BAD into the figure HFE. As in the first part of the proof, to conclude the exis- 
tence of a multiple of (gGOQ(1) which is greater than (gEBDG(1) -}- (gHFE(1) and 
hence greater than (gEA6(1) he used the fact that each 12 = NS in (96OQ(1) can 
be multiplied to exceed the sum of the corresponding 12 = LM in (gZBDG(I) 
and la = YT in (9nFE(1) (in the last step (V.7) is used). 

The next theorem, II.2 (Geometria, p. 122) states that 

F 1 = F 2 ~ (.0Fl(1) = t~v2(1 ). (V.11) 

This implication constitutes a very important element of the foundation of 
CAVALIERI'S method; it is stronger than most of his implicit and explicit assump- 
tions and cannot be derived from those without a further assumption. Before 
saying more about the fundamental problem involved in (V.11), I shall sketch 
CAVALIERI'S proof  of it. 

Let it be given that AEB -- ADC (Figure V.3), the aim is to show that 
.(gAbs(I) = eAr, C(1). For  this CAVALIERI used a method of superposition and first 
placed the figures so that they had the area ADB in common; then he placed one 
residuum over the other and continued the process "until all the residual parts 
have been placed over each other". 17 

E 

A B C 

Fig. V.3 

He then concluded that, since the two figures are split up into congruent parts 
.-andthese, by Postulate II.1 (ef. (V.5) and (V.6)), have equal collections of lines, 
the figures also have equal collections of lines (in the last step (V.7) is employed). 

The problematic part of the proof  is the sentence "until all residual parts have 
been placed over each other", because this process may turn out to be infinite 
(AEB and ACD could e.g. be a triangle and a semicircle), and would then intro- 

duce  infinite sums in CAVALIERI'S argument. This would be unfortunate since one 
of  the main points of CAVALIERI'S method is to avoid infinite sums. In Geometria 
CAVAHERI did not comment upon the aspect of an infinite process, but he took 
i t  up later in a letter to TORRICELLI, dated March 10, 1643 (ToRRICELL~ Opere, 
:vol. 3, p. 114) and in Exereitationes (p. 212). He seems to have thought that an 
-argument in the style of the method of exhaustion could save his proof  in the case 
o f  an infinite process, but he did not go into detail about this. 

27 Geometriae, p. 112: donec omnes residuae partes ad invicem superpositae fuerint. 
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As pointed out by GIUSTI, the problem with which CAVALIERI was confronted 
stems from the fact that in the theory of magnitudes the equality F1 = F2  is 
mainly obtained as exclusions of F1 > F2  and F1 < F2 ,  and that a direct 
definition of F1 = F2 ,  when F1 and F2  a r e  not polygons, leads to an infinite 
process (GIUSTI 1980, p. 34). 

Theorem II.2 enables us to see how CAVALIERI could have concluded the 
implication (V.8): He might have argued that F1 < F2 implies that there are 
figures Fa and F ,  such that F 2 = Fa and F1 --~ Fa + F , ;  from this (V.7) and 
(V.11) it then follows that 

d)F,(1) = d)rs(1) + d)F.(1) = (¢F~(1) + (gF,(1) 

and hence that 

(OF~(1) > ¢r2(1). 

V.4. With the tools presented in the last three sections at his disposal CAVALIERI 
was able to achieve the two fundamental results (V. l) and (V.4) in the best EUCLID- 
ean style. To obtain 

F1 : F2 = 0rl(1) : 0F2(1), (V.1) 

CAVALIERI had to prove (according to Definition V.5 of the Elements)  t ha t  

F1 + F 1  + . . .  + F I > F 2  + F 2  + . . .  + F2 
n times m times 

implies that 

0FI (1 )  + CF~(1) + ... + ( - 0 F t ( 1 ) >  (9F2(1) + (gF~(1) + . . .  + Cr,(1), 
n times m times 

and similarly for = and < .  The cases involving > and < follow directly from 
(V.7) and (V.8); and the equality case is a consequence of (V.7) and (V.11). 

The results (V. 1), (V.2) and their generalizations are really the central idea of  
CAVALIERI'S theory: to transform a determination of, for instance, a ratio between 
two areas into a calculation of the ratio between their collections of lines. In later 
sections I shall illustrate how CAVALIERI managed to calculate such a ratio for 
some figures. But even now it can be noticed that one of his useful tools was what 
is called CAVALIERI'S principle ((V.3)and (V.4)). The principle itself is an immediate 
consequence of the ut-unum principle and (V.1): 

The assumption (Figure V.1) B R : R D  = A M :  ME (V.3) is equivalent to 
11 : 12 = A M  : ME (V.9); hence (V.10) implies that 

(~ACM(1) : (.0MCE(1) = AM : ME 

and the result, ACM : MCE = AM : ME (V.4) is obtained by (V.1). 
In the sections dealing with CAVALIERI'S foundation of his method, I have 

concentrated on collections of lines; CAVALIERI himself also treated collections of  
planes. However, in working out the more complicated parts of his theory, he let 
some of his fundamental results and assumptions, including the implicit ones, 
cover every omnes concept, as for instance collections of squares. 

The presentation of his foundation has revealed that CAVALIERI could have been 
more careful in making his assumptions clear, and that Theorem II.2 ((V.11)) 
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contains a really weak point. There are some problems involved also in the proofs 
of his later theorems, but after Theorem II.4 of Geometria CAVALIERI could by 
and large proceed in the style he aimed at, namely one coming near to Greek 
mathematics, although it implied other tools. 

VI. The basic theorems of Book II of Geometria 

VI.1. Although CAVALIERI'S motive for writing Geometria clearly was to create 
a new method of quadratures and cubatures, he was not first of all concerned 
with finding new results, but in showing that his method worked, and he did this 
by using his method to obtain well known theorems. Some of these are to be found 
in Book II; the book also contains preparatory theorems for Books III-V. 

In this and the following sections I shall give a survey of the topics of Book II 
and illustrate some of them by examples. The first four theorems of Book II have 
already been presented in Sections V. 1-4, and the last eight are purely algebraic 
and have no direct connection with CAVALIEat'S method; the remaining theorems, 
II.5-34, contain: 

A. Some elementary statements about the ratio between two parallelograms. 
B. Calculations of ratios between collections o f  lines, between collections of 

squares, etc. These theorems are CAVALIERI'S geometrical equivalents for calcula- 
ting the integrals of polynomials of first and second degree. His technique did 

a 

not permit him to determine the geometrical equivalent of f + fit + 7) dt 
o 

at one stroke. Instead he considered cases corresponding to 

a . a 

f t dt, f (a - t) dt, f (t + b) dt, f (a - t + b) dt, (VI.1) 
0 0 0 0 

a a a a 

f t 2 dt, f (a - 02 dt, f (t + b) 2 dt, f (t + b) t dt, 
o o o o (VI.2) 

(t + b) (a - t) dt, f (t + b) (t + b + c), f (t + b) (a - t + c) dt 
0 0 0 

where a, b and c are positive constants. 
C. Generalized forms of the ut-unum principle. 
D. Two general theorems stating that two similar plane figures are in the duplicate 

ratio of their linear ratio, and that two similar solids are in the triplicate ratio 
of their linear ratio. 

E. Results concerning the ratios between pairs of the following solids: cylinders, 
cones (including truncated ones), prisms and pyramids (including truncated 
Ones). 

VI.2. CAVALIERI'S method was well fitted to achieve results concerning parallelo- 
grams: If two parallelograms have equal altitudes it follows directly from CAVA- 
LIE~U'S principle (cf. (V.3) and (V.4)) that they are in the ratio of their bases. And 
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from this CAVALIERI easily concluded that two parallelograms are in a ratio com- 
posed by the ratio of their altitudes and the ratio of their bases. 

The group of theorems mentioned in B contains the most important results 
in Book II and constitutes the base of the calculations in Books III-V concerning 
conic sections. Therefore I shall give some detailed examples of their formulation 
and proofs. As previously mentioned CAVALIER1 introduced many ad hoc concepts 
to obtain the geometrical equivalents of the integrals occurring in (VIA) and 
(VI.2); I shall restrict the presentation to the theorems involving the least compli- 
cated concepts. The first one to be considered is the result corresponding to 

f t dt = ½a 2, Geometria, Theorem II.19: 
0 

If  a diagonal is drawn in a parallelogram, the parallelogram is the double of 
each of the triangles determined by the diagonal. 18 

Let ACDF be a parallelogram and CF one of its diagonals (Figure VI. 1); Theorem 
II.19 then states that 

ACDF = 2 A F A C  = 2 A C D F .  (VI.3) 

A F 

C D 

Fig. VIA 

To prove this CAVALIERI considered an arbitrary pair of corresponding line seg- 
ments BM and HE in d~FAC(1)C D and d~CDF(1)C D respectively; that BM and HE 
are corresponding means that CB = FE. By using Theorem 1.26 of the Elements 
CAVALIERI concluded that 

ACBM ~ AFEH, (VIA) 
and hence 

BM = HE. 

Since this is valid for all corresponding line segments in 0rAc(l) and ¢CDF(1), 
CAVALIERI deduced that 

(gFAC(1) = d)CDF(1). (VI.5) 

(In relating this deduction to the question of the foundation of CAVALIERi'S 
method, we can instead of triangle FCD consider a triangle congruent to it having 
its base on the line AF and the same altitude as triangle CAF; (VI.5) then follows 

is Geometria, p. 146: Si in parallelogrammo diameter ducta fuerit, parallelogram- 
mum duplum est cuiusvis triangulorum per ipsam diametrum constitutorurn. 
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from the ut-unum principle.) The relation (VI.5) together with Theorem II.3 (ef. 
(V.1)) implies that 

AFAC = ACDF,  (VI.6) 

from which the result (VI.3) is obtained. 
In this proof  CAVALIERI seems to have taken unnecessary trouble, since 

instead of employing Theorem 1.26 of the Ele;nents to achieve (VI.4) he could 
have used it to deduce that the triangles FAC and CDF are congruent, which 
means that he could have obtained (VI.6) directly without using "all the lines". 

The reason why CAVALIERI used collections of lines in the proof  may of course 
be that he wanted to base most of the proofs in Geometria on omnes-concepts; 
but it is also possible that he made this detour because his main concern was not 
to prove (VI.3) but to obtain a result concerning collections of lines or abscissae. 
Thus in the second corollary to Theorem II.19, he returned to equality (VI.5) 
and deduced that 

¢gAcDV(1 ) = 2(.gFAC(1 ) . (VI.7) 

Considering a parallelogram in which CD = FD, CAVALIER~ could translate 
this result, as mentioned in Section IV.4, into terms of "all the abscissae" (Geo- 
metria, p. 148): 

t0FD(FD ) = 2d?zD(a), (VI.8) 

these abscissae being recti transitus if the angle CDF is right, and otherwise obliqui 
transitus. In the first case (VI.8) is CAVALIERI'S geometrical analogy of 

a 

a z = 2 f t dt. 
0 

Similarly he found the geometrical results corresponding to the other integrations 
listed in (VI.1). 

VI.3. The next step was to find a geometrical equivalent of integrating tz; CAVA- 
LIER~ did so in Geometria, Theorem II.24: 

Let there be given a parallelogram in which a diagonal is drawn; then "all 
the squares" of the parallelogram will be the triple of "all the squares" of any 
one of the triangles determined by the diagonal, when one of the sides of the 
parallelogram is taken as common regula. 19 

CAVAL1ERI built his proofs of this theorem on results obtained in the preceding 
theorems. Before presenting his proof I shall outline three of these results; first 
Theorem II. 11 which, in my notation, states that when P1 and P2 are two parallelo- 

19 Geometria, p. 159: Exposito parallelogramrno quocunque in eoque ducta dia- 
metro; ornnia quadrata parallelograrnrni ad omnia quadrata cuiusvis triangulorurn per 
dictarn diarnetrurn constitutorum erunt in ratione tripla, uno laterurn parallelograrnrni 
cornrnuni regula existente. 
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grams (Figure VI.2) with altitudes h~ and ha and bases bl and b2, then (Geometria, 
p. 123) 

(~v~(F1 1): (Pv~(E:] 1) = (V] bl : [ ]  b2)" (ha : h2), (VI.9) 

the regula being parallel to the bases. 

P1 J I 
1 P2 h2 

b~ b 2 

I I 

A B 

Fig. VI.2 

To achieve this result CAVALIERI first considered the situation where hi -- h2. 
All corresponding squares in the collections of squares of the two parallelograms 
are in the constant ratio [] bl : [] b2, and since the altitudes are equal, CAVA- 
LIER~ concluded, through the ut-unum principle, that 

( ~ p l ( •  1)A B : [Op~([-] 1)A B --~ [ ]  b I : [ ]  b 2 .  (VI.10) 

He then considered the case where h~ ~ h2 and b~ = b2 and claimed that 
according to the Elements' Definition V.5 of equal ratio and (VI.10), it can be 
seen that 

(~v~(~ 1)AB : (gP,(V] 1)AB = ht : h2. (VI.11) 

(In this deduction he implicitly presupposed that nh~ > mh2 implies that 
(gnvl([] 1) > (gmp~([] 1), that is, a generalized form of (V.8).) 

The required relation (VI.9) then follows from a combination of (VI.10) and 
(VL 11). 

Another result which CAVALIERI used in his proof of Theorem II.24 is formulat- 
ed in Theorem II.22. It states that if A~ and A2 are two triangles determined by 
diagonals in the parallelograms P~ and P:, respectively, then 

(gvl(D I) : (~1(~ 1) = (~v~(• l) : (¢~(D 1); (VI.12) 

which means that the ratio between the collection of squares of a parallelogram 
and the collection of squares in a triangle determined by the diagonal is constant. 

CAVALIERI established this result by a thorough reductio ad absurdum proof. 
He supposed that (VI. 12)is not valid, and arrived at a contradiction by letting the 
triangles be circumscribed and inscribed by figures consisting of parallelograms 
of equal and sufficiently small altitudes (Figure VI.3) and by using (VI.9). 

The remaining problem in Theorem II.24 is to prove that the ratio between the 
collections of squares of the parallelogram and the triangle is 3. 

Before showing this, CAVALIERI introduced in Theorem II.23 a rule which might 
be called a generalized ut-unum principle (Geometria, pp. 155-158): He considered 
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, L  ...... 

D B  

C I 

Fig. VI.4. A reproduction of CAVALIERI'S figure in Geometria, page 156. 

for all BD. The generalized ut-unum principle, Theorem II.23, then states that (9 
can be applied to this relation, resulting in 

(-0ABIA([] 1) + (-.0AIDA([] 1) = 2((gABCA([[[] 1) + (gACIA([] 1)). (VI.14) 

CAVALIERI'S proof  of this theorem consists of  a reference to the ut-unum principle. 
Now let A C G E  be the parallelogram and CGE the triangle of  Theorem II.24 

(Figure VI.5); it then has to be proved that 

(gAcc~([] 1)Ec -- 3(gCGE([] 1)Z~. 

A 8 C 

E F 6 

Fig. VI.5 

(VI.15) 

M ~ 7 

Fig. VI.3. From Geometria, page 151. 

a plane figure ABCD divided by some curves like AC and AI in Figure VI.4 and 
imagined that for each 1 = BD in (_gA~CD(1) there is the same relation between 
the parts BE, EF, and FD into which BD is divided by the curves AC and AI 
(endpoints of the curves may be excluded). For example in the case where the curve 
AC bisects all BD so that BE = ED we have, according to Theorem II.9 of  the 
Elements, that 

[] BF + [] FD = 2(• BE + [] EF) (VI.13) 

A 
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CAVALIERI drew the line BF bisecting the parallelogram and let the lines BF and 
CE have the role of the curves in the generalized ut-unum principle. When RV is 
an arbitrary line parallel to EG, intersecting BF in S and EC in T, a relation anal- 
ogous to (VI.13) holds, namely 

[ ] R T  + [ ] T V =  2 N R S +  2 [ ] S T .  

From this CAVALIERI concluded as iii the case of (VI.14), by letting M be the 
midpoint of the parallelogram, that 

(-.0ACE([] l) -1- {~CEG([-] 1) = 2d)ABFE([] 1) " l -2 (~BCM(N 1) + d)MEF([] 1)). 

By using the result that congruent figures have equal collections of squares CAVA- 
LIEm could reduce this equality to 

d0czG(• 1) = (.0ABFE(F11) + 2d)iZF([] 1). (VI.16) 

A combination of (VI.9) and (VI.12) leads to 

~czG([] 1) : 0M~F([] 1) = (• EG : [] EF) • (CG : MF) = 8 : 1. (VI.17) 

Moreover (VI.9) implies that 

0ACOp.([] 1) : (gABFE ( [ ]  1) = [] EG : [] EF = 4 : 1. (VI. 18) 

The relations (VI.16), (VI.17) and (VI.18) lead to (VI.15), that is, to the statement 
of  Theorem II.24. This result has as an immediate consequence that a pyramid 
with a square base is one third of its corresponding prism. In Section VI.6 more 
results based on Theorem II.24 will be presented. 

Having obtained the relation (VI. 15) CAVALIERI introduced new ad hoc con- 
cepts related to collections of squares of abscissae, and he could then give a geo- 
metrical formulation of the relation 

& 

f t 2 dt = ½a a. 
0 

Similarly he could by considering collections of rectangles of trapezia achieve 
results which were geometrical equivalents to a calculation of the final integrals 
in (VL2). 

VI.4. We saw in the last section that CAVALIERI generalized the ut-unum principle 
so that (9 could be applied to relations of the form (VI.13); Book II of Geometria 
contains another generalization of the ut-unum principle put forward in the Pro- 
positions 25 and 26. In these CAVALIERI considered two figures like BEC and BFE 
in Figure VI.6 having bases situated on the same line CF, which is taken as regula, 
and having the same altitude BE; further he looked at their circumscribed paral- 
lelograms ABEC and BDFE. He imagined that for each line MQ parallel to the 
regula cutting AC in M, CB in I, BE in O, BF in P, and DF in Q there is given a 
relation, for instance, like 

MO : IO = OQ : OP, (VI.19) 
or like 

MO:  IO = [] OQ : [] OP. (VI.20) 
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C E F 

F i g .  V I . 6  

The statement of Propositions 25 and 26 is that (9 can be applied to such relations; 
this is not an immediate consequence of the u t - u n u m  principle, because there is 
no constant ratio in the proportions. 

In the case of a homogeneous relation like (VL19) the result 

(~ABEC(1) : (gBEc(1) - -  ~BDFE(1) : g0aFB(1) 

is easily obtained by interchanging MO and OP in (VI.19), using the u t - u n u m  

principle twice to conclude (.gBFE(1) : (~BEC(1) = OQ : MO = (gBDEF(1) : ~ABEC(1), 
and making a second interchange. In the case when the proportion is inhomogen- 
eous, such as (VI.20), CAVALIERI could not use this procedure because only magni- 
tudes of the same kind have a ratio. He solved that problem by multiplying the terms 
on the left-hand side of (VI.20) by a constant and by introducing auxiliary "cylin- 
ders" having the rectangles obtained by the multiplication as collections of planes 
and the figures BEC and BFE as bases. Since by that device CAVALIERI had achieved 
a situation where interchanging of terms is possible, he was able, after some cal- 
culation, to reach the result 

(gABEC(I) : (~BEC(1) = (~BDFE( [] 1) : (gBEF([] 1). 

Thence he concluded that in general (9 can be applied to both sides of a proportion 
where either the antecedents or the consequents are constants. 

VI.5. The results mentioned under D, concerning similar plane and solid figures 
are contained in Theorems II. 15 and II. 17 of Geometr ia .  In this section I shall para- 
phrase CAVALIERI'S proof  of the first result, stating that when F~ and F 2 a r e  similar 
plane figures with altitudes h~ and h2 and "bases" b~ and bz ("bases" here mean 
"horizontal altitudes", Figure VI.7), then 

V~ :F2 = (h~ :h2)" (hi :h2) = (h~ :h2) "(b~ :b2). (VI.21) 

CAVALIERI'S idea was to use the u t - u n u m  principle, and for that he needed an 
auxiliary figure with base b~ and altitude h2. To obtain this he transformed the 
figures F~ and F2 in two steps into figures H~ and H2 situated around two axes 
and limited by curves which, in modern terms, are graphs of monotone functions. 
(For a brief account of CAVALIERfS proof, using modern concepts and terminology, 
see ZEUTHEN 1903, pp. 257-258.) First he constructed the figure Gi with the 
same altitudes as Fi, i = 1, 2, such that each I in ¢%(1)AC was defined by having 

its one endpoint at BiC i and by being equal to the line segment or to the sum of 
the line segments of the corresponding 1 in (gFi(1)AC; e.g. T i U  i = P i Q i  -}- R i S i .  
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V~ B~ B 
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A1 K1 .~________~L1 / 
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E1 Z1 D1 
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E2 Z2 D2 
- - b 2 - - - -  

Fig. VI.7. The figure occurs in Geometria, page 128, but with different letters. 

Since corresponding l's in C0Fi(1 ) and d~Gi(1 ) are equal, it follows from the principle 
named after CAVAUEm (cf. (V.4)) that 

F1 = G1 and F2 = Gz. (VI.22) 

CAVAL~ERr transformed the figure Gi into an H i with altitude hi, i = 1, 2, by the 
same process, now considering the collections of lines with respect to the regula 
BD; thus KiZi in (gHi(1)B D was defined by having the endpoint Z i on EiD i and 

b y  Z i K  i = X i V  i. Again it follows from the construction that H i = Gi ,  and hence 
by (VI.22) that 

F1 = Ht  and F2 = H2. (VI.23) 

The advantage of dealing with figures Ha and H2 instead of F~ and F2 is that each 
"line" of dJ%(1), both with respect to the regula AC and the regula BC, is a line 
segment having one endpoint on an axis, and not a sum of arbitrarily situated line 
segments. Having introduced the figures H1 and H2, CAVALIER[ was able to 
construct an auxiliary figure Ha with base EaD~ = bl and altitude C3D1 = h2, 

namely by defining each 13 like YZ1 in d~n3(1)B D by the corresponding 11 in 
(gHI(1)BD through the relation 

11 :la = hi : h2; (VI.24) 

thus K~Z~ : YZ1 = C1D~ : CzD2 = hi : hE. By applying his principle, CAVA- 
LIERI concluded from (VI.24) that 

Ht  : H3 = hi : h2. (VI.25) 
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CAVALiERI'S next step was to prove that for each pair of corresponding la in 
(~n~(1)Ac and 12 in (gH~(1)A c the following relation holds: 

13 : 12 = hi : h2. (VI.26) 

To obtain it, CAVALIERI first noticed that the similarity of Fa and F2 implies that 
Ha and H2 are similar. He then let NDa = L2D2 and considered the correspond- 
ing line segments YN (=  la) and K2L2 (=  12). According to the construction 
of Ha the point Y is determined by the relations: Y N  = KIL~'  and KiZ1 : YZ~ 
= ha : h2; since YZ~ -- ND~ -- L2D2 and KIZa = LID~ We can ~ conclude 
that LaD~ : L2D2 = h~ : h2. Thus the line segments K~La and K2L2 are similarly 
situated in the similar figures Ha and H2 which means that KaLa : K2L2 = ha : h2. 
This is equivalent to (VI.26) because 13 - YN = K~La and 12 = K2L2. 

Applying his principle to (VI.26), CAVALIERI got the relation 

Ha : H2 = hi : h2.  (VI.27) 

The required result (VI.21) is then obtained by a combination of (VI.23), (VI.25) 
and (VI.27). 

VI.6. Having proved that similar plane figures are in a ratio which is the square 
of their linear ratio CAVALIERI was able to deduce results concerning collections 
of similar plane figures. As we saw in Section IV. 1, a collection of similar plane 
figures, (gF(A(1)), belonging to a given figure F is obtained by constructing similar 
and parallel plane figures, A(1), on the l's in 0v(1). 

We also saw that together with (gF(A(1)) CAVAHERI considered the solid whose 
collection of planes is (gF(A(1)); I shall denote this solid by S(A(1), F). 

CAVALIERI was particularly interested in comparing two solids, S(A(1), F1) 
and S(A(1), F2), which have the property that the plane figures of their collections 
of planes, (~FI(A(1)) and (gF2(A(1)), are mutually similar. By combining the result 
concerning similar plane figures (VI.21), with (V.2) and the ut-unurn principle he 
found in Theorem II.33 of Geometria that 

S(A(1), Va): S(A(t), F2) = (-0F1([2 1): ~)e2([~ l), (VI.28) 

This result is essential in CAVALIERI'S theory and was employed to obtain 
several relations between solid figures. In Book II of Geometria CAVALIERI especially 
used it for comparing cylinders, cones, truncated cones, prisms, pyramids, and 
truncated pyramids. These solids can be obtained by letting the given plane 
figures be parallelograms, triangles or trapezia, and by letting the similar figures 
be either circles, parallelograms or triangles. Thus, if the given plane figures are 
chosen as two parallelograms, P1 and P2, and the similar figures as circles, two 
cylinders C1 and C2 are generated. The relation (VI.28) provides the first step in 
finding the ratio between the cylinders (Geometria, p. 184): 

C a : C 2 = d)p,(]~ 1) : (.0p2([~ 1). (VI.29) 

The second step is to employ the result (VI.9) concerning the ratio between 
collections of squares belonging to parallelograms. 

To have another illustration of CAVALIERI'S use of (VI.28) let us consider 
a cone and its corresponding cylinder (Geometria, p. 185). These solids can be 
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obtained by assigning a collection of circles to a triangle, A, and a parallelogram, 
P. Therefore (VI.28) gives the result 

cone:  cylinder = (fa(F1 1) : Cp([S] 1), (VI.30) 

and the right-hand side CAVALIERI had already calculated (cf. (VI. 15)) to be 1 : 3. 
Proceeding along this line, CAVALIERI was able to find relations between all 

the solids mentioned under E. When the considered cylinders and cones have circu- 
lar bases the results CAVALIERI got from (VI.29) and (VI.30) were not new; but he 
was aware that (VI.30) also applied for any cone having a closed curve as base, 
and that (VI.29) can be, used for two cylinders having similar closed curves as 
bases (Geometria, pp~ 184-185). Thus CAVALIERI showed in the second book of 
Geometria that his method led to results which were otherwise difficult to demon- 
strate. 

VII. Application of the theory to conic sections 

VII. 1. In Books III-V of Geometria CAVALIERI showed how his new theory could 
be used to obtain results concerning conic sections. As the pattern in these books 
is the same, I shall only deal with Book IIl. It consists of one section with 33 theo- 
rems and one with 29 corollaries which are applications of the theorems. In addi- 
tion to a determination of the ratio between two ellipses (i.e. the ratio between their 
areas), the theorems mainly contain calculations of relations between collections 
of squares and rectangles belonging to figures defined by an ellipse. These rela- 
tions are applied to effect cubatures of various solids in the corollaries. 

To give an impression of how this worked I shall present one theorem, its 
proof and its applications in detail. Further, I shall indicate the content of the 
most important of the remaining theorems. First, however, I am going to give 
a slightly simplified description of how CAVALIERt found the ratio between two 
ellipses. 

In dealing with ellipses CAVALIERI made drawings where their properties were 
related to the axes and where the regula was one of the axes. Actually most of his 
theorems are formulated so that they also cover the situation where two conjugate 
diameters are used instead of the axes. For  simplicity I shall mainly refer to the 
axes. 

To find the ratio between two ellipses (Geometria, pp. 211-214) CAVAUERI 
first considered two quarter-ellipses having one axis in common, like Q1 = AFTB, 
Q2 = AFVC in Figure VII.I, and their circumscribed rectangles R~ = A F G B  

F G H ~ × 

C 

Fig. VII.1 
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and R 2 = A F H C ;  he let the regula be parallel to AC. For  any line SX parallel 
to AC cutting the axis at S, the first ellipse at T, the line BG at U, the second ellipse 
at V, and the line CH at X, he found f rom the properties of the ellipses that 

S T : S V =  S U : S X .  

An application of (~ to this relation leads to 

(~Q~(1) : (gQ~(1) = (gR,(I) : (gR,(1); (VII. 1) 

since areas have the same ratio as their collections of  lines (cf. (V.1)) and since 
R1 and R2 have the same altitude, the relation (VII. l)  implies that 

Q I : Q 2  = R I : R 2  = A B : A C .  

Using this relation twice, CAVALmRI found that the ratio between two ellipses is 
equal to the ratio between the rectangles of  their axes or to the ratio between rect- 
angles of  corresponding conjugate diameters. In modern terms we would say that 
the area of  the ellipse is proportional to the product of the lengths of  its axes; 
that the factor of  proportionality is zc/4 CAVALIERI expressed by considering the 
ratio between an ellipse and its inscribed circle. 

VII.2. The other results of Book II I  a r e - a s  ment ioned- re la ted  to two-dimen- 
sional collections. As an example of these I present Proposition I l i a  of  Geometria. 
Let DEPR be an ellipse having ER as the one axis and the regula parallel to the 
other axis, and let DEP be a segment of the ellipse where DP is parallel to the 
regula and cuts the axis at the point B (Figure VII.2). Further, let D F H P  be the 
rectangle having the same base and altitude as the segment and A DEP be the 
inscribed triangle of the segment. The theorem then states that 

(~0DEP([~ 1) : ~0DFI~P([~ 1) = (+BE + ½RB) : RB (VII.2) 

and 

ODEP([~ 1) : (gADEP(E] 1) = (½RE + RB) : RB (VII.3) 

or, in C A V A L I E R I ' S  words, 

When the base is taken as regula, all the squares of  a segment of  a circle or 
an ellipse will be to all the squares of  the parallelogram, having the same base 
and altitude as the segment, as the composition of a sixth part  of  the axis or 
diameter of  the same [segment] and a half of the remaining part  is to the axis 
or diameter of  the remaining part. And the same will be to all the squares of 
the triangle with the same [base and altitude] as the composition of a half of 
the whole axis or diameter and the remaining part  is to the axis or diameter of  
the remaining part. 2° 

20 Geometria, p. 197: Omnia quadrata portionis circuli, vel Ellipsis, ad omnia qua- 
drata parallelogrammi in eadem basi, & altitudine cum portione constituti, regula basi, 
erunt, ut composita ex sexta parte axis, vel diametri eiusdem, & dimidia reliquae por- 
tionis, ad axim, vel diametrum reliquae portionis: Eadem verb ad omnia quadrata tri- 
anguli in iisdem existentis erunt, ut composita ex dimidia totius, & reliquae portionis 
axi, vel diametro, ad axim, vel diametrum reliquae portionis. 
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F E H F E H 

R R 

Fig. VII.2. The ellipse segment DEP and the rectangle having the same base and altitude 
as the segment in the cases where DEP is less than or greater than half an ellipse. 

To prove this, CAVALIERI considered a line CM parallel to DP cutting the ellipse in 
N and the line HP in M, and observed that the properties of the ellipse imply that 
[ ]BP:  [ ] C N  = ( R B × B E ) : ( R C × C E ) ,  or since BP = CM, that 

[ ] C M :  [ ] C N  = ( R B × B E ) : ( R C x C E ) .  

Since the antecedents, [] CM and RB × BE, are the same for all lines CM, CAVA- 
LIER1 concluded that (9 can be applied to this proportion (el Section VI.4), and 
in this way he was led to the following relation between collections of squares 
and collections of rectangles of abscissae (cf. Section IV.3): 

(9~EHP(• 1) : (gBENP(• 1) = (gBE(RB × BE) : (gBE((RB + ~) × (BE - o¢)). (VII.4) 

In a corollary to Proposition II.30 of Geometria CAVALIER1 had calculated that 

(gBE(RB × BE)" (gBE((RB + ~)× (BE - ~)) = RB" (-~BE + ½RB) (VII.5) 

which is his geometrical result corresponding to 

( / ) ( /  ) b a d t  : (b + t ) ( a - t ) d t  = b : ( ~ - a +  ½b). 
x 

Using (gDEV(• 1) : (gDFHv(F1 1) = (gBEYV([] 1) : (gBE~V([] 1), CAVALIERI obtained 
the required relation (VII.2) from (VII.4) and (VII.5). The second result, (VI.6), 
then follows from the theorem that (gDwv([] 1 )=  3(9~DEP([] 1) (el (VI.15)). 

The relation (VII.2) gives the ratio between the collections of squares belonging 
to a segment of an ellipse and its circumscribed rectangle in the case where the 
segment DEP is less than or equal to half the ellipse. When DEP is greater than 
half the ellipse, D F H P  is not the circumscribed rectangle of the segment, but since 
CAVALIERI disposed of a result concerning the ratio between collections of squares 
belonging to two rectangles (el (VI.9)), he was able to use (VII.2) to find the ratio 
between "all the squares" of DEP and "all the squares" of its circumscribed 
rectangle for both cases (Geometria, p. 200). Thus, although the ratios do not have 
the same form in the two cases, there is in principle no difference between them, 
wherefore I, unlike CAVAUER~, shall deal only with the case where DEP is less than 
or equal to half an ellipse. 

In Corollary one of the third book of Geometria CAVAHERI drew conclusions 
from (VII.2) by considering collections of similar plane figures belonging to the 
segment DEP and the rectangle DFHP, (gDEv(A(1)) and (gDFHv(A(1)), and the 
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solids S(A(1), DEP) and S(A(1), DFHP),  generated from these (cf Section IV.I). 
By a combination of the relations (VI.28) and (VII.2) he obtained 

S(A(1), DEP)" S(A(1), DFHP)  = (-~BE + ½RB): RB. (VII.6) 

When the A(1)'s are circles, S(A(1), DEP) is a section of the ellipsoid of revolution, 
or spheroid as CAVALIERI called it, obtained by rotating the ellipse around the 
axis ER, and S(A(1), DFHP)  is its circumscribed cylinder. If we set the altitude, 
BE, of these solids equal to h and RE = 2a, we get from (VII.6) that 

section of ellipsoid : circumscribed cylinder -- (a - ½h) : (2a - h). 

Setting h = a, CAVAL1ERI realized that the ratio between half the spheroid and 
its circumscribed cylinder or the ratio between the whole spheroid and its circum- 
scribed cylinder is 2:3 (Geometria, p. 259). 

CAVAL1ERI also considered the situation where a plane cuts a spheroid in an 
ellipse DQPS having its center on the diameter ER (Figure VII.3), and applied 
relation (VII.6) to find the ratio between the section EDQPS and its circumscribed 
cylinder with elliptic base (Geometria, p. 259). He maintained, rightly, that the 
collection of planes belonging to EDQPS consists of similar ellipses, whence 
(VII.6) gives the ratio between EDQPS and its circumscribed cylinder (in the case 
that EDQPS is less than half the spheroid). 

H 

F 

R 

Fig. VII.3. Illustrating a section of an ellipsoid and its circumscribed cylinder with elliptic 
base. 

Further, CAVAL1ERI applied the relation (Vii.3) and obtained results which 
were similar to the one just described, involving inscribed cones instead of cylinders. 
These last results were in accord with theorems ARCHIMEDES had proved in On 
Conoids and Spheroids. It was doubtlessly rather important for CAVALIERI to 
show that his new theory led to the results concerning conic sections which had 
been found by the method of exhaustion or had been published by KEI'LER in 
Stereornetria. The next step was to gain new insight. Actually he used (VII.6) 
for obtaining a new cubature: he considered the situation where the A(1)'s are 
squares and thus found the ratio between a solid like the one in Figure VII.4 
and its circumscribed parallelepiped. On the whole, CAVAUERI reached new rela- 
tions by transforming the results of Book II, particularly those which correspond 
to calculating the integrals listed in (VI.2), to conic sections. 
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Fig. VII.4. A solid generated by a section of an ellipse and squares. 

VII.3. To give an idea of the content of the remaining theorems of Book III, 
I have shown in Figure VII.5 some figures determined by ellipses; for each of 
them CAVALIERI found the ratio between its collection of squares and the collec- 
tion of squares belonging to its circumscribed rectangle (or an inscribed triangle), 
all the regulae being horizontal. CAVALmR[ applied these results in the same way 
as described in the last section. He found it particularly important to point out 
how each result implied that the ratio between a solid of revolution and its circum- 
scribed cylinder was determined. 

,r r~ ~ " 1  

Fig. VII.5 

CAVALIERI carried his calculation of ratios between solids of revolution further 
than determining those equal to a ratio between the collections of squares belong- 
ing to the generating figures. As an illustration of this I shall outline how he found 
the ratio between an "elliptic ring" and its circumscribed "cylindrical ring"; 
exactly what these solids are will be explained in the following. Let R~ = CD G H  
(Figure VII.6) be the circumscribed rectangle of an ellipse E, R E = GHIJ be 
a rectangle between the same parallels as R1, and having a side in common with 



Cavalieri's Method of Indivisibles 335 

it, and F be the "complement" of the ellipse, the hatched figure in Figure VII.6. 
In Proposition III.30 CAVALIERI proved that 

(d)Ri ([] 1) + 20R,R,(1 × 1)) : ((gE([] 1) + 2(~F,E(1 × 1)) = R1 : E. (VII.7) 

D G J 

C H I 

Fig. VII.6 

From this relation he obtained the ratio between the ring, A, obtained by rotating 
E around I J, and its circumscribed cylindrical ring, B (Geometria, p. 279): An 
elaboration of relation (VI.28) leads to 

B: A = [0RI+R~(r-1 1) -- ~)R,(r7 1)l: [~E+F([~ 1) - (~F(V7 1)1; (VII.8) 

since by the generalized ut-unum principle (cf. Section VI.3) ~)RId_R2([-] 1 ) -  
~9R,(D 1) = (~R~(r7 1) + 2E)R,R~(1X1 ) and ~)E+F([~ 1) - (.0v([] 1) = (gE(P, 1) + 
2(gE,F(l×I ) the relations (VII.7) and (VII.8) imply that 

B : A  = R I : E .  

In other words the ratio between the two rings is equal to the ratio between the 
rectangle circumscribing the ellipse and the ellipse, and thus independent of the 
distance between the ellipse and the axis of rotation. 

Book III ends with corollaries drawn from a theorem similar to Proposition 
Ili.30 just described but more complicated because instead of circumscribed 
rectangles or parallelograms determined by the directions of a set of conjugate 
diameters, CAVALIERI considered an arbitrary circumscribed parallelogram. 

The purpose of the presentation of CAVALIEm'S achievements concerning 
ellipses has been to show that CAVALIERfs method led to impressive results; 
however, the reader should not be misguided by the compactness of my descrip- 
tion; employing hardly any symbols, CAVALIERI needed almost 90 pages to prove 
the results sketched here. 

VIII. Generalizations of the omnes-concept 

VIII. 1. Even while developing his method of indivisibles CAVALIERI was interested 
in applying it to quadratures of figures found by a straight line and a part of the 
ARCHIMEDEAN spiral. It is rather obvious that collections of lines cannot be of 
much help for this, and CAVALIERI therefore introduced the concept of "all the 
circumferences" which he presented in Book VI of Geometria and which will soon 
be explained. 
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After having published Geometria CAVALIERI naturally could turn to other 
problems to try out his method. During the 1630's and 1640's the activity in mathe- 
matical analysis was concentrated on the following topics : quadratures of the new 
curves which emerged in that period, cubatures of solids of revolution, determina- 
tion of centres of gravity and of tangents. CAVALIERI'S method was particularly 
applicable to investigations of centres of gravity and the new algebraic curves; 
hence he took up these problems and presented his results in Exercitationes. In 
adapting his method to the determination of centres of gravity he created some 
more omnes-concepts. In dealing with new quadratures and cubatures he invented 
an almost algebraic omnes-concept which enabled him to perform a geometrical 
integration of t n for n > 2. 

The following sections are devoted to a discussion of the three different gen- 
eralizations CAVALIERI made of the omnes-concept in connection with his work 
on the spiral, on the geometrical integration of t n, n > 2, and on centres of 
gravity. 

VIII.2. CAVALIERI'S work on spirals dates back to the early 1620's when he got 
the idea of comparing a spiral with a parabola. On the 9 th of April 1623 he sent 
a manuscript to GALILEO, containing some of his results (GALILEI Opere, vol. 13, 
p. 114). ANTONtO FAVARO has traced this manuscript among GALILEO'S papers and 
in 1905 he gave a description of it (cfi FAVARO 1905). In Book Six of the man- 
uscript from 1627 of Geometria (cfi Section 1.4) CAVALIERI presented another 
version of his work on spirals, and the printed Geometria from 1635 contains a 
third version. 

The three different versions indicate that CAVALIERI was in doubt about the 
extent to which he should base his proofs on the concept of "all the circum- 
ferences". These are introduced in the manuscript of 1623, whereas the proofs in 
the manuscript of 1627 are in the style of the Greek method of exhaustion without 
indivisibles, and then again the printed Geometria contains proofs using the indi- 
visibles of a spiral figure. In my presentation of these indivisibles "all the circum- 
ferences" will be based on the latter version of CAVALIERI'S work. 

CAVALIERI first defined omnes circumferentiae of a given circle (Geometria, 
p. 427). Let a circle ABD (Figure VIII.l)  with radius ED be given, and consider 
the collection of points of ED (cfi Section IV.3). If one imagines that through each 
of the points of this collection a circle is drawn with centre E, one obtains the 
collection of concentric circles which CAVALIERI called "all the circumferences" 
of the given circle. Further, CAVALIERI defined "all the circumferences" of a 

i D 
[3 

Fig. VIII.1 
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figure F inside the circle ABD as all the parts of  "all the circumferences" of  ABD 
cut off by the figure (Geometria, p. 427). Thus the segment ECD (Figure VIII . l )  
has a collection of circumferences consisting of the arcs of "all the circumferences" 
of  ABD cut off by ED and EC. I shall use the notation 0r(c) for the collection 
of circumferences of  F. In general ~F(C) depends on the circle used to define the 
circumferences, but when the figure F is limited by a straight and a spiral line, 
CAVALIERI lets the circumferences be determined by having the origin of the spiral 
as their centre. 

Let S = ABDE be the first turn of  the spiral with origin A and first distance 
AE;  we shall now see how CAVALIERI applied the concept of  "all the circumferen- 
ces" and his idea of comparing spirals and parabolas to obtain the quadrature 
of the sector S. First he let the spiral define a parabola OTQ, by setting (el Fig- 
ure VIII.2) 

RT = arc GHD,  where OR = AD = AG.  (VIII . l )  

o R V 

N (/ 

Fig. VIII.2 

(That this really defines a parabola can be seen in the following way: let the equa- 
tion of the spiral in polar coordinates be r = aO; let < G A D  = O, and sup- 
pose x = O R = A D  = aO; then y = RT = a r c G H D  = aO 2 and hence 
T(x, y) is a point of  the parabola ay = x2.) 

Let Q be the point on the parabola whose abscissa OV is equal to AE; CAVA- 
LIERI introduced the straight line OQ and investigated the properties of  its 
points. Thus f rom the fact that the parabola has been constructed so that VQ 
is equal to the circumference of the circle having radius AE, and from 
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RU : VQ = OR : OV = AG : AE,o he concluded that 

RU = circumference of circle with radius AG.  (VIII.2) 

Instead of determining the sector S = ABDE directly CAVALmRI considered 
the difference between the circle, C, circumscribing the sector, and S, that is the 
figure AEIEDA = C - S; he compared this figure with the figure X = OTQVO 
cut off by the parabola. I shall not repeat CAVALIEm'S actual deduction because it 
is only the underlying idea which is important for understanding his work on col- 
lections of circumferences. His idea was to verify that for each pair of correspond- 
ing points G on AE and R on OV (i.e. AG = OR) the c = arc G H D  in d)c_s(C) 
and 1 = RT in (gx(1)oN are equal (cf. VIII.l);  he used this to realize the result 

(gC_S(C) = (gX(I)o N. (VIII.3) 

Moreover CAVALIERI compared the triangle A = OQV with the circle C. Using 
the relation (VIII.2), he intuitively concluded that 

tPc(C) = (gz(1)oN. (VIII.4) 

The two last results combined with an intuitive interpretation of the indivisibles 
lead to the following relations: 

C : (C - S) = d)c(C ) : d)c_s(C) = ~)a(1) : d)x(l) = d : X. (VIII.5) 

The last ratio is known from the quadrature of the parabola to be 3 : 2; hence 
(VIII.5) gives ARCHIMEDES'S result that the first turn of the spiral, S, is one-third 
of the circumscribed circle r C. In a similar way that ratio between other sectors 
of spirals and sectors i o~ circles can be found. 

CAVAL1ERI formulated some theorems in an attempt to legitimize the above 
form of deduction, as for instance the theorem that if each of two figures has the 
property that it contains/"all the radii" from a given point to the points of the 
perimeter, then the ratio ibetween the figures will be the same as the ratio between 
their collections of circumferences (Geometria, p. 433). This guarantees the first 
equality in (VIII.5); but CAVaLmRI did not give any arguments for the second 
equality or for (VIII.3) and (VIII.4). Thus CAVALIZRI seems to have found it too 
laborious to establish a foundation of his technique based on "all the circum- 
ferences". Instead of working out a careful theory he supplemented his proofs in 
the printed Geometria @ith exhaustion proofs like those he had used in the version 
of 1627 of Geometria. The function of collections of circumferences in the printed 
Geometria therefore appears as being mainly heuristic: to show how results con- 
cerning the spiral can be realized. What mattered most to CAVALIERI in this 
connection was not the actual results since all of them could be found in ARCHI- 
MEDES'S On Spirals, apart from one concerning sectors of spirals of more than one 
revolution. The important thing for him was to show that the very idea of comparing 
a spiral and a parabola could lead to these results. This turned out to be very 
inspiring to other mathematicians working on quadratures and rectifications 
(cf. PEDERSEN 1970 and KRIEGER 1971). 

VIII.4. CAVALIERI'S second generalization of the omnes-concept ,"all the powers", 
relates more directly to the concepts of Geometria, Book II. We have seen that 
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in this book he managed to find geometrical results which correspond to integra- 
tions of polynomials of second degree. His results could not, however, solve all 
existing problems, as for example the one KEPLER had posed in Stereometria 
(1615): The cubature of a parabolic cask, i.e. a solid obtained by resolving a 
segment of a parabola around its base (KEPLER Opera, vol. 4, p. 601, and Sec- 
tion VIII.8). 

CAVALIERI found this problem fascinating and in the late 1630's he started 
to look for a generalization of his method of indivisibles which would enable him 
to perform geometrical integrations of t n for n > 2. In the cases n = 1 and 
n = 2 CAVAUERI had transformed such integrations to a determination of 
~1,(1) : (94(1) and (9p([5] 1) : (94(1) where A is a triangle and P its corresponding 
parallelogram. By extrapolating from this CAVAUEm got the idea of introducing 
collections of powers of line segments belonging to P and A (in the next section 
it will be explained exactly what these collections are). He soon guessed that the 
required ratios between the collections of powers were equal to (n + 1): 1, 
for n = 3, 4 etc. (CAvAUEm 16391, p. 523 and Exercitationes, p. 243); his prob- 
lem was to prove these results. 

From the beginning of his investigations CAVAUERS was aware that results 
concerning the ratio between collections of powers belonging to a triangle and a 
parallelogram had more applications than solving KEPLER'S problem, and that 
it for instance could be used for effecting quadratures of the parabolas y = x n. 
Often he even characterized his investigations by referring to those quadratures. 
Thus on December 29, 1637 CAVAUERI wrote to GAULEO that he had found 
questa bella eosa, namely the quadratures of y = x"; he added that he was going 
to publish his discovery in his forthcoming book (GAULEO Opere, vol. 17, pp. 243- 
244). The book he meant was Centuria, a kind of handbook for solving various 
problems by means of logarithms. It appeared in 1639 and had a postscript 
containing CAVALIERI'S results formulated as relations between collections of 
powers. Here the results were stated generally, but CAVALIERI very honestly admitted 
that he had been able to prove them only for n ~ 4. An analysis of the technique 
CAVALIERS had used in Geometria for n -- 2 and of the one he later employed 
in Exercitationes shows that his main difficulty was to express (a + b)" + (a - b)" 
in terms of powers of a and b, and that this difficulty was caused partly by his 
wish for an entirely geometrical formulation. 

In the preface to Exercitatio IV (p. 243) CAVAUEm related that he had dis- 
cussed his problem with J. F. NSCERON in 1640, asking him to present it to J. BEAU- 
GRAND in Paris. On that occasion NICERON may have told CAVALIERI, that FER- 
MAT, DESCARTES and ROBERVAL had already achieved the quadratures of the 
parabolas y = x n for n > 2; but anyway he complied with CAVALIERI'S wish 
(for more details see MERSENNE Correspondance, vol. 9, p. 221). On the 8 th of 
November 1640, shortly before he died, BEAUGRAND wrote a reply to CAVALIERI, 
who received it only after more than six months (cf. Exercitationes, p. 245 and the 
letter from CAVALSERI to GALILEO, dated August 20, 1641, GALILEI Opere, vol. 18, 
p. 346). BEAUGRAND'S letter is lost but the way CAVAUEm referred to it in Exer- 
citationes shows that BEAUGRAND among other things supplied CAYALIERI with 
the needed expression for (a + b) n + (a - b)" (p. 245 and p. 283). 

CAVAUERS seems to have searched for a proof  of his own, probably not wanting 
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to use as much algebra as BEAUGRAND had done. Thus on September 22, 1643, 
he wrote to TORRICELLI that he was working on a proof of the geometrical inte- 
gration of t", which had already been found by his pupil GIANNANTONIO ROCCA 
for n = 5 and generally by BEAUGRAND ( T O R R I C E L L I  Opere, vol. 3, p. 144). In 
the following sections we shall see how CAVALIERI eventually decided to present 
his solutions in Exercitationes. 

VIII.5. The results CAVALIER~ proved in book four of Exercitationes were the 
geometrical equivalences of integrating t" for n = 3, 4, 5, 6 and 9, but he stated 
the general result. CAVALIERFS reason for limiting the n's in the proofs is mainly 
due to his lack of a notation for expressing general statements. In particular he 
had no way of  expressing the coefficients of a n-2i b 2i in the relation we would 
write as 

[½"l ( n )  a"-2ib2i (VIII.6) (a + b)" + (a - b)" -- 2 Y~ 2i 
i = 0  

unless n was a specified number. With a reference to BEAUGRAND he calculated 
(a + b)" + (a - b)" explicitly for n = 5, 6 and 9 ,  one of the few instances where 
CAVALIEm applied an algebraic notation (Exercitationes, pp. 283-285). For n = 3 
and 4 he employed his usual verbal style to obtain (VIII.6), formulated as a 
result concerning the third and fourth powers of line segments produced by dividing 
a given line segment into equal and unequal parts (Exercitationes, pp. 269-271). 

A general proof  of the result of "integrating" t", based on CAVAUERFS idea, 
also requires the use of complete induction. CAVALIERI was unable to do so; yet 
he was aware that an induction argument was necessary, and that his proof  for 
n = 9 assumed that the result had been proved for n = 7 and 8. Having pointed 
out the limitations in CAVALIERI'S proofs, I shall for simplicity introduce a general 
n in the presentation of his arguments. 

CAVALIERI'S first step was to introduce the concept which has been mentioned 
several times in the preceding section: powers, potestates, of a line segment, 1. 
These he denoted by 1.q., 1.c., 1.qq., 1.q.c., etc. (the letters after the 1 meaning 
quadrature, cubum, quadrato-quadratum, quadrato cubum) and, when the power 
was unspecified, 1.p. (potestas); I shall use the notation 1 n. The seeond power 12 
is the same as the square [] 1 considered in Geometria; the third power 1 a also 
has a geometrical meaning as a cube with the line segment 1 as side; beyond n = 3 
the powers are abstract or imaginary (imaginariae, Exereitationes, p. 247), but 
still they are geometrical magnitudes, not numbers. CAVAL~ERI assumed that powers 
of line segments can be added and multiplied, and that they obey the usual alge- 
braic rules like 

1 n , 1 m = p+m (VIII.7) 

(Exercitationes, p. 247). For  specified n's he also used 

n(n - 1) 1~_212 + + 1~. (VIII.8) (1~ + 12) n = 1~ + nl~ -112 + ~ . . .  

CAVAHERI then generalized some of the concepts which had been very instru- 
mental in his first theory of indivisibles. Thus he introduced the concepts omnes 



Cavalieri's Method of Indivisibles 341 

cubi, omnia quadrato-quadrata, etc., or, in general, omnes potestates of a given 
figure. These collections of powers belonging to a figure are produced similarly 
for "all the squares", i.e. by assigning 1 n to each 1 in (gF(1) for n = 3, 4, etc. 
CAVALI~RI sometimes used the notation o.p. for "all the powers"; I shall use the 
notation (gF(ln). CAVALIERI further employed a generalization of"a l l  the rectangles" 
of two figures F and G having the same altitude and common regula. He described 
this new concept as the product (factum) of "all the powers" of figure F and "all 
the powers" of G (Exercitationes, p. 249). This expression may lead the reader to 
think of a kind of product: (gF(1 n) × (gG(lm); however, the way CAVALIERI applied 
the concept clearly shows that he had something different in mind: the magnitude 
emerging when the product l~×l~ is formed for each corresponding It and 12 
in F and G respectively. This collection of "rectangles" will be denoted by 
(PF,O(1 n × lm). 

VIII.6. CAVALIERI treated his new omnes-concepts as he had treated the earlier 
ones, and among other things stated a generalized ut-unum-principle (cf Sec- 
tion VI.3) for "all the powers" (Exercitationes, p. 249, p. 265). Hence if Fl and 
F2 have the same altitude, CAVAHERI allowed an application of (9 to (VIII.8) 
and found that 

(gv2+r~(l") = (9F1(1 n) + n(gF1,F~(ln-~ X1)+ - -  

again for specified numbers n. 

n ( n -  1) 
(gFi,F2(ln--2 X 12) + . . .  + (9F2(ln), 

(VIII.9) 

Further, CAVALIERI maintained (Exercitationes, p. 247) that it is clear that 

(gV, V(1 n × 1 m) = (9V(ln+m). (VIII. 10) 

Moreover he stated that when a figure, F, and a parallelogram, P, have the same 
altitude and regula, then 

(9p(1 n+m) : (gp,F(1 n X 1 m) = (9p(1 m) : (gF(lrn). (VIII. 11) 

To obtain this result (Exercitationes, pp. 260-263) CAVALI~RI first noticed that 
for corresponding l~'s in P and lz's in F, we have that 

(11×1~): (1~×1~) = 1~': 1~; (VIII.12) 

from which (VIII. 11) would follow by an application of (9 (cf. (VIII. 10)). However; 
CAVALIERI could not apply (9 directly to this proportion since none of the ratios. 
is a constant (12 varies with its distance from the regu[a). Neither could he use: 
his technique for proving a generalized ut-unum-principle for collections of lines 
and squares (cfi Section VIA), because there are no geometrical figures connected 
with collections of powers of higher degrees. The only solution CAVALIERI saw 
to this problematic situation was to prove that (VIII.12) implies that 

(El~ x 1~) : (Eli' × 1~) = (Z1T) : (ZI~) 

where Z ~ is afinite sum, and to assert that TORRICELLI had employed a result which 
corresponds to deriving (VIII.11) from (VIII.12) (ibid., p. 261; cf TORRICELLI 
Opere vol. I, part 1, pp. 123 and 153-154). CAVALIERI'S "proof"  did not only cover 
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the part icular  case of  (VIII.12),  bu t  all cases where the antecedents in a p ropor t ion  
are constants,  and he concluded that  d) can be applied to bo th  sides of  such a 
propor t ion .  

I t  is noticeable that  CAVALIERI here tried to argue for  a result concerning d) 
by showing tha t  a similar result is valid for  finite sums. Such an a rgument  may  
very well have opened the way for  the interpretat ion of  CAVALIERI'S ornnes- 
concepts  as infinite sums (e l  GIUSTI 1980, pp. 38-39). 

In  terms of  integrals the three relations (VIII .9-11)  can be unders tood  as the 
geometrical  equivalents o f  

a 

f (11(0 + 12(t)) n a t  = f (ll(t)) ~ dt + n  f (ll(t)) n-l" 12(0 dt + . . .  + f (12(t)) n d t ,  
0 0 0 0 

(viii.9') 
a 

f (l(t))" X (l(t)) m d t  = f ( l ( t ) )  n + m  dt,  (VIII .10 ' )  
0 0 

and 

a ? 
f bn(l(t)) m dt = b" (l(t)) mdt .  (VIII.1 r )  
0 0 

VIII .7 .  The  presentat ion of  CAVALIERI'S concepts  and assumptions  has now come  
so far  tha t  we can follow his proofs  of  his mos t  no tewor thy  achievement,  the geo- 

a a n + l  

metrical  equivalent  of  the result f t n dt - ~ ,  tha t  is, the relat ion 
o n +  

(9~(P) : (.gd(1 n) = (n + 1): 1, (VIII .13)  

where P is a para l le logram and A one of  the triangles determined by a diagonal  
in P. 

CAVALIERI'S proof ,  or ra ther  his separate  proofs  for  n = 4, 5, 6 and 9, employ 
the same idea as his p r o o f  for  n = 2 in Geometria (cf. Section VI.3)21 : Let  A B C D  

21 For n = 3 CAVALIERI gives an elegant proof based on an idea which "transcribed" 
to integrals looks like 

a a 

f a 3 dt = f (a - t + 03 dt = 
0 0 

a a a a 

f (a - t )  3 dt + 3 f (a - 0 2 .  t dt + 3 f (a - t ) .  t 2 dt + f t a dt.  
0 0 0 0 

From symmetry we get 

f a a d t = 2 f t a d t + 6 f ( a - t ) ' t 2 d t .  (1) 
0 0 0 

On the other hand it follows from a 2 dt = 3 f t 2 dt that 
0 0 

f a f a 3 dt = 3 at 2 dt = 3 f (a - t + t) t 2 dt; 
0' 0 0 
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be the parallelogram, AC one of its diagonals, and suppose that ABCD is bisected 
vertically and horizontally by EF and L N  (Figure VIII.3). Further let RV be an 
arbitrary line parallel to AD which intersects AB in R, EF in S, AC in T, and CD 
in V. 

Owing to the fact that RS = SV, the following relation holds: 

(RT) n + (TV) n = (RS -I- ST) n + (RS - ST) n. 

B E C 

A F D 

Fig. VIII.3 

Hence by using the result (VIII.6), which CAVALIERI called BEAUGRAND'S lemma, 
he obtained 

3, (2k + 1) (RS)2k+l_2 i (ST)2i ' ( R T )  2k+l + (TV)  2k+l = 2 i=o y '  \ 2i 

( R T ) 2 k + ( T V ) 2 k = 2 ~ ( 2 k )  ( R s ) 2 k i = 0  2i 2i(ST)2i" 

An application of d~ to these relations led CAVALIER[ to 

[0ABC(12k'l) + (~ACD(12k+l) = 2(.0ABEF(12k+l) + 

k (2k + 1] rio gl 2k '1 -2 i  12i) l0 /12k+l--2iv12i'~l 
2 ~] \ 2i ] I'WFMND'AMFkL X -~- WLBEM,MECkt A * )j 

i=l 
(VIII.14) 

and 

(gABC(12k) + (gACD(12k) = 2(gABEF(12k) + 2((gAMF(12k) + 0MEC(12k)) + 

k-a (2k )  rzo (12k--2i 12i) 2k--2i 2i 
2 ~] 2i tWFMND'AMFk" X "-]- (~LBEM,MEC(I X1 )] .  

i=l 
(viii.15) 

hence 
a a 

a 3 d t = 3 f ( a - t )  t 2 d t + 3  f t  3dt. (2) 
0 0 0 

a 

By comparing (1) and (2) we see that 3 f (a -- t) • t 2 dt = f t 3 dt, which inserted in (1) 
0 

or (2) gives 
a a 

f a 3 dt = 4 f t 3 dt. 
0 0 

This idea cannot be used for even numbers, and for odd n's higher than 3 the calculations 
become rather complicated, involving ½(n + 1) equations. 
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By use of the equalities (9ABC(P) =¢AcD(ln), CAMF(1 n) = (.0MEc(ln), and 
(9FMND,AMF(lnx1 m) = (gLBEM,MEc(ln×! TM) the relations (VIII.14) and (VIII.15) 
can be reduced to 

= (gABEF(12k+l) + 2 ~ (2k + 1 )~  q2k+'-2i×12i' (VIII. 16) (.0ABC(I 2k+l) i=l \ 2i . LBEM,MECk ] 

and 

k- i  ( 2 k )  ( 9 rl2k-2i X 12i, (fiaBC(12k) ---~ (.0ABEF(I 2k) -]- 2(~MEC(12k) "-[- 2 Y~ 2i LBEM,MECk J" 
i=l 

(Vlii.17) 
In the required relation (VIII.13) the collection ¢ABC(I") is compared with 

(gABcD(ln); hence CAVAHERi compared the magnitudes on the right-hand side 
of (VIII.16) and (VIII.17) with 0ABCD(P)- Before proving (VIII.13) CAVALIERI 
had calculated that (Exercitationes, p. 255) 

(gAB~F(1 n) : ~ABcD(l") = (AF)" : (AD)" = 1 : 2" (VIII. 18) 
and 

g?LBrM(1 n) : 0ABCD(1 n) = (LB : AB)" [(LM) n : (AD) n] = 1 : 2 "+1. (VIII.19) 

To compare CLUrM,MEC(I"-J×I j) with ¢ABCD(I"), CAVALIERI put in the term 
CLBrM(P) and used (VIII.11) and (VIII.D) to get 

(gLSEM,M~C(1 n --i × 1 j) : (gAUCr,(P) 

= [(9~UEM,MEC(I" -j × P) : ~LBrM(P)] " [¢LBEM(1 n) : (gABCD(I")] 

= [(gM~c(li) " ~MECN(I~)] • [1 : 2"+1]. 
(viii.20) 

For an odd number, 2k + 1, the relation (Vlii.13) can now be obtained if it 
is assumed that the relation has been proved for numbers less than 2k + 1, be- 
cause then (VIII.18) and (VIII.20) inserted in (VIII.16) give 

1 k ~ 1  \ (2k+ l ) 2 i  CaBc(12k+l) " d)ABCD(12k+1) = + 2 i~l [tgMEC(12i) : 0MEcN(lZi)] 

1[ ) ] 1 

- \ 2 i  i=l 

-- 22k+ 1 1 + 2k +-------2 i=* 2i + 1 

2-"[ 1J (VIII.21) 2 2k+l 2k + 2 2i + 2k + 2" i=0 

This last calculation CAVALmRI could carry out only for specified numbers. 
Further, an even number requires the calculation of ~)MEC(12k) : (.0ABCD(12k) 

(cf. (VIII. 17)). Maintaining that Theorem 22 of Geometria, Book Two (cf. (VI. 12)) 
is valid for all powers (Exercitationes, p. 277), CAVALmRI first deduced that 

d)MEC(12k) : ~)ABC(I 2k) ~--- d)MECN(12k) : d)AUCD(12k) ; 



since (gMECN(12k) = (gLBEM(12k), the last ratio is known from (VIII.19) to be 
1 : 2 2k+l. From this he obtains 

(gMEC(12k) : (gABCD(12k) = (1 : 22k+l) " ((gABC(12k) " (9ABCD(12k)). (VIII.22) 

A combination of (VIII.17), (VIII.18), (VIII.22) and (VIII.20) together with the 
assumption that (VIII.13) is valid for numbers less than 2k leads to the result 

1 
/n,',,,WABCtl2k) : /~ l ,  x l Y A B C D t l 2 k }  - -  2k + 1" (VIII.23) 

Since the relation (VIII.13) has been proved in Geometria for n = 1 and 2, 
(VIII.21) and (VIII.23) show that it is true for all natural numbers n (Exercita- 
tiones, pp. 273-287, pp. 286-291). 

fa an+l 
After having obtained this geometrical equivalent of t n d t -  

0 n + l '  
CAVALIERI turned to geometrical integrations of other polynomials of degree higher 
than two using collections of "rectangles of powers" belonging to trapezia and 
triangles. Building on BEAUGRAND'S achievements, he presented a result which 

a 

corresponds to calculating f (a + b - t) ~ t mdt (Exercitationes, pp. 296-299). 
0 

VIII.8. CAVALIERI'S results concerning collections of powers served, as has already 
been noticed, for quadratures of the parabolas y = x n, which CAVALIER[ in 
Exercitationes (p. 279) called diagonals of higher degree. In a parallelogram or 
rectangle like ABCD in Figure VIII.4 he defined a series of diagonals in the follow- 
ing way: the first diagonal is a usual diagonal, namely the straight line AC, and 
the second diagonal is the curve AHC given by 

[ ] D A :  [ ] A F  = F E : F H  

(DA) 3 : (AF) 3 = FE : FJ 

which means that AHC is a parabola with axis AB, as CAVALIERI also notices 
(Exercitationes, p. 281). Similarly, the third diagonal AJC is defined by 

& 

F 

13 C 
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Fig. VIII.4 
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and is therefore a cubical parabola for which CAVALIERI gave no name but the 
third diagonal; continuing in this way, he obtained diagonals of arbitrary orders. 

From the result CABCD(1 n) i (gACD(1 n) = (n + 1) : 1 CAVALIERI obtained the 
quadratures of these diagonals or parabolas in the following way: let Hn be a 
point on the n th diagonal; then by definition we have 

FE : FH n = (DA)n : (AF)~; (VIII.24) 

further, from the similarity of the triangles AGF and A C D  and from FE = DC 
it follows that 

(FE)" : (FG) n = (DA)n : (AF) n. 

A combination of the last two equations implies 

FE : FH~ = (FE) n: (FG) n. (VIII.25) 

Taking CD as regula CAVALIERI applied (9 to this relation (cf his deduction of 
(VIII. 11)), t h i s -  together with (V. 1 ) -  leads to (Exercitationes, pp. 279-280) 

ABCD : AHnCDA = (gAtlCD(1) : (gAHnCDA(I) 

= (gABCD0 n) : (gACD([ n) = (n -1- 1) : 1. 

To demonstrate that his theory led to this result, which was a 17 th century 
discovery, must have been rather satisfactory to CAVALIERI. It was also natural 
for him to show that he could determine KEPLER'S fUSUS parabolicus, since the 
desire to solve that problem had motivated his creation of the concept of collections 
of powers. KEPLER'S parabolic cask is obtained if a segment of a parabola, 
AHCB (cf. Figure VIII.4), having the axis AB, is rotated about BC. The ratio 
between the paraboloid and the cylinder formed by rotating ABCD around BC 
is equal to (cf. (VI.28)) 

(gAHCB(12)CD : (gABCD(12)CD • 

To calculate this ratio CAVALIERI proceeded as follows (Exercitationes, pp. 281- 
282; I have made small simplifications in the presentation by introducing sub- 
tractions, by avoiding some of CAVALIERI'S manipulations with proportions, and 
by letting AB be an axis and ABCD a rectangle rather than a diameter and a 
parallelogram). CAVALIERI used the relation 

(gAHCB(12) = (gABCD(12) -- 2(gAHCB,AHCD(I X 1) --  (gAHCD(I 2) (VIII.26) 

and the fact that the ratios between the magnitudes on the right-hand side and 
(gA•CD(12) can be determined. First he found (gAHCD(12) : (gABCD(12): The parabola 
AHC is given by (VIII.24) for n = 2; hence a squaring of (VIII.25) implies that 

(EF) 2 : (HE) 2 = (EF)4 : (GF) 4. 

The antecedents in this proportion are constants; hence C A V A L I E R I  concluded, 
with a reference to the generalized ut-unum-principle, that 

(gABCD(12) : (gAHCD(12) ~--" (gABCD(I 4) : (gAACD(14) = 5 : 1, (VIII.27) 
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where the last equality is obtained by (VIII.13). To find (.0AHCB,AHCD(1 ×1): 
dPABCD(12), CAVALIERI observed that 

(.0AHCB,AHCD(1 × 1) = (9ABCD,AHCD(1 X 1) -- (.0AHCD(12) ; (VIII.28) 

by using (VIII.11) and the quadrature of the parabola he obtained 

~ABCD,AHCD(1 )< 1) : (.OABCD(12) = (.OAHCD(1) : ~ABCD(1) = AHCD : ABCD = 1 : 3. 

(VIII.29) 
A combination of (VIII.26)-(VIII.29) gives the required ratio 

(9AHCB(12) : ~ABCD(12) = 8 :  15, (VIII.30) 

and thus the cubature of KEPLER'S cask. 
CAVALIERI did not stop at this but went on to calculate generalizations of the 

last results. Thus if in Figure VIII.4 we imagine that AJC is the "n  th diagonal", 
similarly to (VIII.27) he found that 

(.0ABCD(1TM) : (PAJCD(1 m) = (m- n + 1) : 1. (VIII.31) 

Moreover, he t abu la t ed - in  a complicated w a y - a  generalization of (VIII.30) 
(Exercitationes, pp. 307-300) corresponding to 

{~ABCD(12) : (OAJCB(12) = [(n ÷ 1) (2n + 1)] : [2n2]. (VIII.32) 

Continuing this line of thought he described a procedure for finding the ratio 
GABcD(la) : (.QAJCB(13) (Exercitationes, pp. 309-311). 

CAVALIERI did not list all possible applications of his results concerning 
collections of powers, but he showed how (VIII.31), for m = 2, and (VIII.32) 
could be used to find solids of revolutions of the parabolas y = x n. One of his 
pupils, STEEANO ANGELI, later wrote a whole book, De infinitis parabolis (1659), 
on conclusions drawn from CAVALIERI'S results in Exercitationes, Book IV. CAVA- 
LIER1 himself ended this book by showing how cubatures of solids obtained by 
rotating hyperbolas could be reduced to the quadrature of the hyperbola (pp. 314- 
319). 

VIII.9. The last omnes-concepts to be discussed here occur in Exercitatio V in 
connection with centres of gravity. This book opens with a careful list of defini- 
tions and postulates indicating that CAVALIER~ originally intended to compose a 
complete theory of centres of gravity based on indivisibles. If he ever had this 
idea, he gave it up, maybe because he started his work on centres of gravity shortly 
before Exercitationes was printed, in a period when he was seriously ill (cf. GIusTI 
1980, pp. 80-81). Instead of working out a full theory he decided to take over some 
results from previous works on the subject; in particular, he referred to GU~DO- 
BALDO DEL MONTE'S edition of 1588 of ARCHIMEDES and LUCA VALERIO'S De 
centro gravitatis solidorum (1604). In his own proofs he often avoided the use of 
indivisibles and instead used the "ARCHIMEDEan style" (Exercitationes, p. 322). 

In a way, it is natural that the topic of centres of gravity invited CAVALIERI 
to employ indivisibles, especially because he considered both homogeneous and 
inhomogeneous distributions of mass, the latter being uniformly difform. In the 
theory of indivisibles a uniformly difform mass distribution of a figure has an 
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obvious interpretation, namely that the masses of equal indivisibles of the figure, 
taken with respect to a regula, are proportional to their distances to a given line 
or plane parallel to the regula. 

On the other hand the use of indivisibles for centres of gravity in the CAVA- 
LEgIan style required a new system of omnes-concepts which was difficult to handle 
in a mathematically satisfactory way. CAVALIERI solved this dilemma by employing 
indivisibles without letting them be fundamental in his theory. I shall therefore 
not present the content of Exercitatio V, but only give an example of how CAVA- 
LIERI generalized the omnes-concept for the purpose of finding centres of gravity. 

Let F be a plane figure and (PF(1)AB its collection of lines. To each 1 in OF(1 ) 
CAVALIERI assigned among other things a mass (gravitas) and a moment with res- 
pect to a given point o; let us denote these concepts by m(1) and MoO) respectively. 
For  CAVALIERI m(1) and MOO), like areas and volumes, were magnitudes and not 
real numbers. That means that all calculations with them were to be based on ratios 
between masses or between moments. For  example, if re(l j) = m(12), and dl 
and d 2 are  the distances between 11 and 12 and the line through o parallel to the 
regula AB, we have 

Mo(l~) : Mo(12) = dl : d2, 

and if dl = d2, then 

Mo(ll) : Mo(12) = m(ll) : m(12). 

When dealing with such or more complicated relations CAVALIERI applied 0, 
and in this way introduced the concept of "all the moments" (Exercitationes 
p. 340) and "all the masses". The latter he set, without comment, equal to the 
mass of "all the lines" (ibid., p. 343). 

Apart from formulating the postulate that the centre of gravity of "all the 
lines" of a given figure is the same as the centre of gravity of the figure (ibid., 
p. 330), CAVALIER[ was not at all careful in specifying the assumptions he made 
in dealing with masses, moment and other concepts in connection with "all the 
lines". His attitude towards magnitudes as collections of moments seems to have 
been that they, like collections of circumferences, were instruments for finding 
results which should be proved in the classical way. 

In concluding the sections on CAVALIERI'S three generalizations of the omnes- 
concept, it may be noticed that only one of them, namely "all the powers", was 
completely incorporated in CAVALIERI'S theory, whereas the others mainly were 
used intuitively for making discoveries. 

IX. The distributive method 

IX.1. On July 22 nd, 1634, CAVALIERI wrote to GALILEO: 

As the printing of the first five books of my Geometria is already finished I 
wanted to send them to you so that you can have a look at them when it is 
convenient for you; that would do me a great favor and greatest if you would 
tell me what you think of my foundation of the indivisibles. Suspecting that 
this concept of infinitely many lines or planes may cause difficulties for many, 
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I have later decided to compose the seventh book in which I show the same 
things in a different w a y - a l s o  different f rom Archimedes's. 22 

From this we gather that it was only at the eleventh hour CAVALIERI decided to 
add the seventh book to Geometria. Considering that the five books already printed 
were 541 pages long, that Book VI would add another 71 pages, that the first 
five books had been ready for printing since 1627 and the sixth since 1629, and 
that the printing process had been long and difficult, it was quite a decision to 
make (cf  LOMBARDO-RADICE 1966, p. 19). In the letter to GALILEO CAVALIERI 
touched upon the reason for this decision, and in the Introduction to Book VII  
he specified his motive: He feared that certain mathematicians and philosophers 
would doubt the validity of his arguments. This doubt could arise, he said, despite 
the fact that he had treated collections of  lines and planes according to their 
finite nature, which is reflected in the property that they can be augmented and 
diminished (Geometria, p. 483). 

In my opinion it was not so much a fear of  certain mathematicians'  opposition 
as a wish to convince GALILEO thath motivated CAVALIERI to create a second 
method. Although GALILEO did not receive a complete presentation of CAVA- 
LIERI'S method of indivisibles until the summer of 1634, through CAVALIERI'S 
letters he had got an impression of the idea it was based on, and he had put 
forward rather sceptical remarks concerning the omnes-concepts. In replying to 
these CAVALIERI strongly defended his concepts and at the same time expressed 
the hope of having il maestro accept his method. It  is very likely that his waiting 
for such approval was one of the factors delaying the appearance of the Geometria. 
However, CAVALIERI did not get the acceptance he wished, and it may very well 
have made him so uneasy that he decided to add another approach. 

IX.2. The best desription of the difference between CAVALIERI'S first and second 
method is found in Exercitationes Book One (p. 4). CAVALIERI there considered 
two figures ABCD and E F G H  with the same altitude and the common regula 
LM (Figure IX. 1). He supposed all lines parallel to LM to be drawn in both figures. 

x : A :  K 

Fig. IX.1 

22 GALILE10pere, vo1. 16, p. 113: essendosi gih finita la stampa de' primi cinque 
libri della mia Geometria, gliel'ho voluti inviare, acci6, havende agio, gli dia un puoco 
di un'occhiata, che mi sar~t di molto favore, e massime se mi direr quale gli riesca il mio 
fondamento delli indivisibili. E perch6 dubito che a molti sia forsi per dar fastidio quel 
concetto delle infinite linee o piani, perci6 ho poi volsuto fare il settimo libro, nel quale 
dimostro per altra via, differente anco da Archimede, le medesime cose. 
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These linos can be compared in two ways, either collectively (collective), that is 
the whole collection of lines of ABCD is compared with the whole collection of 
lines of EFGH,  as it was done in the first books of Geometria, or distributively 
(distributive), which means that each pair of corresponding lines, like BD and FH, 
is compared separately. 

In Exercitationes CAVALIERI named his two procedures the first and the second 
method of indivisibles2a; in distinguishing between them I shall call them the 
collective and the distributive method. In a way it is strange that CAVALIERI 
attached the word indivisibles to the second method, because he had created it 
exactly to avoid the use of the indivisibles, "all the lines" and "all the planes". 
Nevertheless, when he gave the two methods similar names, the reason could be 
that he treated the distributive approach as supplementary to the collective method, 
and not as an independent theory. Thus his two presentations of the distributive 
method, Book VII of Geometria, and Book II of Exercitationes, have the character 
of appendices in which it is shown, or at times merely hinted, how results obtained 
by the use of an omnes-concept can be achieved in another way. 

Since the main topic of this paper is CAVALIERI'S omnes-concepts, I shall re- 
strict the treatment of the distributive method to a brief description of the means 
employed in Book Seven of Geometria to avoid the omnes-concepts. 

The most important tool is the theorem called CAVALIERfS principle. We saw 
that it had occurred as a proposition in Book II (cf. Sections V.I and V.4), but since 
it was there formulated in terms of "all the planes" and "all the lines", it had to 
be reestablished in the distributive method by a new proof. Because there are 
translations of this proof  into English and analyses of it (EVANS 1917, pp. 447-451, 
SMITH 1929, pp. 605-609, STRUIK 1969, pp. 210-214, CELLINI 19662, CARRUCCIO 
1971), I will only indicate some of CAVALIERI'S steps. 

He started in the first theorem of Geometria, Book VII, by imagining that two 
figures like F = BZV, G = CRT in Figure IX.2 have equal altitudes with 
respect to the regula, YH, and that corresponding chords (or sum of chords), 
like MN + OP and SX, parallel to YH, are equal. The theorem then states that 

F -- G. (IX.l) 

B C 

/ 1 1  I ~ ~ , ' /  ; \ 
L V / k "7 ; 1 
/ /,-" / ,' i 

Y Z V R T H 
F G 

Fig. IX.2. Part of CAVALIERI'S figure in Geometria, page 485. 

23 Exercitationes, p. 3: Ultramque igitur non incongru~ methodum Indivisibilium 
appellabimus, hemp6 illam priorem, posteriorem alteram. 
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To prove this CAVALIERI used superposition. He put F over G so that the 
points B and C coincided and corresponding "chords" were on the same line. 
He then considered the part, F1, of figure F, which does not cover parts of figure 
G and the part, G1, of figure G which is not covered. F1 and G1 have equal alti- 
tudes, and their corresponding "chords" parallel to YH will be equal. CAVALIERI 
maintained that continuing this process would at the end split F and G into parts 
which would cover each other and hence be equal. As in the proof  of Theorem II.2 
he did not state whether he had a finite or an infinite process in mind (cf. Section 
V.3). But anyway the proof  is problematic. CAVALIERI may have been aware of this; 
at least he provided also a longer proof  in which he transformed the figures, used 
an argument of exhaustion with quite some display of intuition. For  the content 
of this proof  I refer to the above-mentioned literature. 

Turning to the general situation CAVALIERI looked at two figures F and G 
with equal altitude and the property that for all corresponding "chords"  11 and 
12 in F and G: 

11 : 12 = a : b. (IX.2) 

His principle then states that 

F : G = a : b .  

CAVALIERI'S idea was to prove this by using Definition V.5 of EUCLID'S Elements. 
Hence he had to prove that 

a + a + . . .  + a > b  + b + . . .  + b (IX.3) 
n times m times 

implies that 
F + F + . . .  + F > G +  G + . . .  + G,  (IX.4) 

n times m times 

for  arbitrary multiples, and similarly for = and < .  In the case where there is 
an = in (IX.3) we have the situation that corresponding "chords" in the multiples 
o f  the figures are equal, and (IX.4) with an = then follows from (IX. 1). CAVALIERI 
finished the proof by claiming that it is obvious that (IX.4) follows from (IX.3) 
in the cases involving > or < (Geometria, pp. 498-499). He progressed analogously 
Jn making his principle for solid figures independent of "all the planes". 

IX.3. One of , C A V A L I E R I ' S  ways of obtaining results in the distributive approach 
was a more extensive use of similar figures than in the previous books. That 
:similar plane (solid) figures are in the duplicate (triplicate) ratio of their linear 
ratio, he took over from Book II (cf Section VI.5). In his proofs of these theorems 
• CAVALIERI had used "all the lines" and "all the planes", but these proofs, as he 
pointed out, can be reconstructed by using the CAVALIERIan principle instead 
,(Geometria, pp. 504-505). 

A large and important group of theorems in Books I I -V were dependent on 
geometrical equivalents of integrating a polynomial of second degree. To obtain 
the less complicated of these theorems CAVALIERI took over from EUCLID'S Ele- 
ments XII.7 the fact that a pyramid is a third of its corresponding prism, a theorem 
which is not based on a proof  by exhaustion. Combining this result with one con- 
.cerning similar figures and his principle, he was able to deduce theorems concerning 
pyramids, prisms, cones, and cylinders. Thus that the ratio between a cone and its 
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corresponding cylinder is ½ can be seen by applying CAVALIERI'S principle in com- 
paring the cone with a pyramid and the cylinder with a prism. 

In deducing the more complicated results from the above mentioned group 
CAVALIERI introduced a substitute for the concepts of "all the rectangles" and 
"all the squares" which had played a considerable role in the collective method. 
This new concept, solidum rectangulum, is similar to GRI~GOIRE'S ductus (el Sec- 
tion IV.2) and is defined in the following way (Figure IX.3): 

A B 

C 

N 0 

Fig. IX.3 

The solid figure ABSRCDON is called solidum rectangulum sub the surfaces 
CNOD and ODBS if all sections made by planes parallel to a given regula (in 
casu RNOS) are rectangles having their perpendicular sides in CNOD and ODBS 
respectively (Geometria, p. 514). In case the rectangles are squares the solid is 
called solidum quadrature. 

Applying his principle to these solids, CAVALIERI obtained new geometrical 
results which correspond to integrations of second degree polynomials; and on 
the whole he achieved the goal of Book Seven: to obtain the important theorems of 
the first books of Geometria without employing the omnes-concepts. 

IX.4. One may naturally wonder whether CAVALIERI'S creation of the distributive 
method meant that he dissociated himself from the collective approach. The answer 
is no. He continued to value the collective method, which had been on his mind 
for many years. This can be seen from the way he treated the two methods in 
Exercitationes in 1647. While the story of the printing of Geometria had made it 
natural to present the distributive method as a supplement to the collective method, 
in writing Exercitationes CAVALIERI had the chance to elevate the distributive 
method to the main theory, had he wished to, but he did not. He did revise his 
presentation of the distributive method, but not to such an extent, that it could 
be studied independently of the collective method. 

In describing his views on the relative merits of the two methods, CAVALIERI 
in effect remarked only that the collective method had the advantage of allowing 
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figures which have unequal altitudes to be compared, while the distribution 
method had the advantage of avoiding infinities (cf. for instance Exercitationes, 
pp. 5 and 30). In other words, he seems to have thought that the one method had 
its strength in its generality, the other in possessing a more acceptable foundation. 

CAVALIERI clearly valued the first aspect above the second. He proceeded with 
his investigations of  the applicability of  the collective method and found, as we 
have seen, that it could be used for geometrical integrations of  t n and for deter- 
minations of  centres of gravity. Thus the collective approach remained the most 
important  part  of  CAVALIERI'S method of indivisibles while the distributive ap- 
proach never became more than an appendix to the former. 

X. Reaction to Cavalieri's method and understanding of it 

X. 1. Although CAVALIERI was convinced that his collective method was a useful 
new approach to quadratures and cubatures, he was probably also aware that 
he had not solved all the fundamental problems connected with it; in remarks in 
Geometria and in his letters to GALILEO he revealed at least that he foresaw some 
opposition to his method (cf. Section IX.l) .  He was right,; his method came to 
meet some opposition, but it also inspired other mathematicians to continue the 
study of geometrical quadratures along a new line. In this and the following 
sections I shall outline the main reactions to CAVALIERI'S method (this topic is 
also treated in GfUSTI 1980, pp. 40-65). Further I am going to show that most 
mathematicians did not make themselves acquainted with CAVALIERI'S own work 
but based their knowledge of his method on a study of ~EVANGELISTA TORRICELLI'S 
presentation of the method of indivisibles. 

CAVALIERI was, as mentioned in Section IX.I ,  very eager to get a positive 
reaction from GALILEO; however, his hope was not fulfilled. GALIELO'S own state- 
ments concerning Geometria are lost, but that he was not enthusiastic about it 
we learn from a letter CAVALIERI wrote to him October 23, 1635: 

I am sorry that my Geometria turns out to be as difficult and laborious as you 
say. This is my fault, because I have explained myself badly, but the subject 
is in itself also very difficult ... I therefore think that you ought to be indulgent 
towards me; that I have had nobody here with whom I could discuss similar 
matters is the reason why until now I found that easy which a dicussion would 
have taught me was difficult. 2. 

What  GALILEO himself thought of indivisibles as mathematical entities is not dear ;  
thus his treatment of  indivisibles and infinities in the Discorsi (1639)leaves many 

24 GALILEI Opere, vol. 16, pp. 327-328: Mi dispiace chela  Geometria mia riesca 
cosi difficile e laboriosa come dice: sar/t colpa mia, che malamente mi sat6 saputo espli- 
care, ma ad ogni modo la materia per s6 stessa 6 anco molto difficile ... Mi dovr~ per6, 
credo, compatire V. S., che non havendo qua con chi conferire di simili materie, 6 ca- 
gione che mi sia tal hora parso facile quello chela conferenza mi harebbe fatto conoscer 
per difficile. 



354 K. ANDERSEN 

open questions. However, GALILEO'S ideas dearly did not accord with CAVALIERI'S 
(cf. GIUSTI 1980, pp. 40-44). As LOMBARDO-RADICE has pointed out (LOMBARDO- 
RADICE 1966, pp. 18 and 767-768), it must have been a disappointment to CAVA- 
LIERI that GALILEO made a flattering remark on CAVALIERI'S Lo specckio ustorio 
(1632) in the Discorsi, where the discussion is about burning glasses but kept silent 
upon the Geometria earlier in the long discussion about indivisibles (GALILEI 
1914, pp. 41-42). 

Others, and particularly non-Italian mathematicians, expressed their scepti- 
cism and doubts more explicitly than GALILEO did. Among these GULDIN is the 
most noticeable; he virtually tried to tear CAVALIERI'S method of indivisibles 
completely apart, first of all by finding all the weak points in the foundation of 
the method. GULDIN did not stop at criticizing the method but maintained in 
addition that CAVALIERI had taken over all his ideas from others, especially KEP- 
LER and BARTHOLOMEUS SOVER (GuLDIN 1635-1641, vol. 2, pp. 3-4, or Exercitatio- 
nes, pp. 179-182). 

CAVALIERI must have found it rather insulting to learn both that this method 
had no value and that it was based upon plagiarism. His reaction to GULDIN'S 
attacks on the content of the method has already been discussed (cf. Section lII, 
3-5; see also LOMBARDO-RADICE 1966, pp. 773-777, and GIUSTI 1980, pp. 55-65), 
so here I will only deal with CAVALIERI'S reply to the accusation of plagiarism. 
He easily established his independence of KEPLER by a reference to the fact that 
KEPLER'S theory of quadratures and cubatures as presented in Stereometria is 
very different from his own theory of indivisibles (Exercitationes, p. 180, see also 
Section III.2). In showing that he was not influenced by SOVER and his book Curvi 
ac recti proportio promota, CAVALIERI gave a chronological argument; he had sent 
a copy of the manuscript of the seven books of Geometria to OTTAVIANO ZAM- 
BECCARI in 1629, and SOVER'S book was not published until 1630 (Exercitationes, 
pp. 182-183). 

That  is not quite true, since only the first six books of Geometria were finished 
in 1629 (cf. Section 1.4). The seven instead of the six may very well be a slip of 
the pen; but the argument is a shade suspicious, because CAVALIERI was of the 
opinion that GULDIN particularly compared SOVER'S work with CAVALIERI'S 
second method, the distributive one presented in Book VII. Thus CAVALIERI'S 
argument invites investigation of SOVER'S concepts. 

In Book Five of Curvi ac recti we find the clue to GULDIN'S accusation. Here 
SOVER introduced the concept of analogous figures; in the simplest case (which is 
sufficient for the present purpose) SOVER considered two figures ABCD and 
K L M N  (Figure X.1) having the "axes" AC and KM and situated between the 

A K 

C M 

Fig. X.1 
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parallel lines AK and CM. He then imagined that the line AK is displaced parallel 
until it reaches CM, and defined K L M N  to be analogous to ABCD, if at any mo- 
ment of the motion the line segments cut off between the "axes" and the perimeters 
of the figures satisfy the relation 

FV : VI -- OS : SQ (X.1) 

(SOVER 1630, pp. 278-279). SOWR used this concept partly to define new curves 
and partly for quadratures which he obtained from relation (X.1) by exhaustion 
proofs. 

GULDIN did not explicitly state which of CAVALIERFS tWO methods he imagined 
to be inspired by SOVER. If he focused on the idea of using motion to define con- 
tinuous relations between corresponding line segments, which by the way was 
in the air at the time, he might have thought of the collective method and would 
then have been wrong, because this method had been worked out long before 
CAVALIERI had any chance of knowing SOVER'S book. If, on the other hand, GUL- 
DIN concentrated on SOVER'S use of relations like (X. 1) in a manner which CAVA- 
LIERI would call distributive, he would, as CAVALIERI thought, have had the second 
method in mind. The possibility that this method was inspired by SOVER cannot 
be completely excluded. CAVALIERI might have got the idea of simplifying SOVER'S 
work by replacing the latter's exhaustion proofs by a use of the principle later 
named after CAVALIERL It is however more likely that CAVALIERI, independently 
of SORER, got the idea to base a method on this principle which was already 
present in the collective theory. 

The attacks by other mathematicians on CAVALIERI'S method were not so 
strong as GULDIN'S, but certain circles opposed the method. In the preface of 
De infinitis parabolis (1659) STEFANO ANGELI, who was a Jesuat like CAVALIERI, 
remarked that these circles mainly contained Jesuit mathematicians. ANGELI 
mentions not only GULDIN but also MARIO BETTINI and ANDREAS TACQUET. 

X.2. ANGELI belonged to the group of Italian mathematicians who evaluated 
CAVALIERI'S method favorably. Among the other members were DAVISO, PIETRO 
MENGOLI, TORRICELLI, HONORATUS FABRY (cf. FELLMANN 1959), and C. RENAL- 
DINUS. The latter gave a rather clear exposition of CAVALIERI'S tWO methods of 
indivisibles in De resolutione et cornpositione rnathematica (1668). 

Also outside Italy the method of indivisibles became gradually acknowledged, 
and by the 1650's it was widely accepted. However, what outside Italy was called 
the method of indivisibles and attributed to CAVALIERI had in general very little 
in common with his elaborate theory of collections of lines and planes, which 
aroused the interest of  only a few mathematicians. The method of indivisibles was 
thought to be based either on the idea that a plane figure is a sum of line segments, 
or on the idea that it is a sum of infinitesimals. In this section I will deal with the 
first idea, for which TORRICELLI is the main source. 

During the first years after the publication of Geometria (1635) TORRICELLI 
took a rather sceptical attitude toward CAVALmRFS method (cf. LOMBARDO- 
RADICE 1966, pp. 21--22). But about 1641 he changed his mind and found that 
it opened a "royal road" to quadratures (ToRmCELLI Opere, vol. 1, part 1, p. 140), 
and he gave examples of the use of the method in his Opera geometrica, published 
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in 1644. This book was well received by European mathematicians and became 
influential in spreading knowledge of the method of indivisibles; for several mathe- 
maticians it remained the only origin of this knowledge. 

Since TORRICELLI is such an important link between CAVALIERI'S method and 
the general understanding of it, I shall present an example of how he used in- 
divisibles. The example is from the part "De  dimensione parabolae" of Opera 
geometrica, in which TORRICELLt provided 21 different examples of the quadrature 
of  the parabola. After having given ten examples based on classical means TORRI- 
CELLI declared that he would show how the method of indivisibles, invented by 
CAVALIERI, could be used. He then considered a segment ABC of a parabola, 
whose tangent at C is CD, and whose diameter through A is AD (Figure X.2). 

D F E 

A G C 

Fig. X.2 

He completed the parallelogram ACED, and searched for the ratio between 
ABCD and ACED (TORRICELLI Opere, vol. 1, part 1, pp. 140-141). 

To find this he drew an arbitrary diameter GF cutting the parabola in B and 
the line CD in I, and he proved that 

F G : I B  = (circle with diameter FG) : (circle with.diameter IG). 

For  all FGs parallel to DA, the first term in this proportion is equal to DA, 
and the third term is equal to the circle with diameter DA. From this TORRICELLI 
concluded that 

(all FG) :  (all IB) -- (all circles with diameter FG) :  

(all circles with diameter IG); 

or in his own words: 

All the first ones together, that is the parallelogram AE, will be to all the second 
ones together, that is to the trilineum ABCD, as all the third ones together, 
that is the cylinder AE, to all the fourth ones together, that is to the cone ACD. 2 s 

Thus, without further comment TORRICELLI set "all the lines" of a plane figure 
and "all the planes" of a solid figure equal to the figures themselves. Using the 

25 TORRICELLI Opere, vol. 1, part 1, p. 140: erunt omnes primae simul, nempe paral- 
letogrammum AE, ad omnes secundas simul, nempe ad trilineum ABCD, ut sunt omnes 
tertia simul, nempe cylindrus AE, ad omnes quartas simul hoe est ad conum ACD. 
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fact that the cone ACD (which has the circle with diameter AD as base and vertex 
at C) is one third of its corresponding cylinder, TORmCELLI found that the acquired 
ratio between ABCD and ACED is k; from which he was able to deduce that the 

4 of its inscribed triangle. parabolic segment is ~- 
When CAVALIEm'S elaborate system of concepts and theorems is compared 

with TORRICELH'S example, it becomes clear why mathematicians preferred the 
latter's exposition of the method of indivisibles. It should, be noticed however, 
that TORRICELLI obtained a short cut in the calculations by not bothering about 
the foundation of the collective method. CAVALIEm had taken great trouble to 
establish the existence of the ratio (9F1(1) : (_9F2(1) for two plane figures and to verify 
the relation 

F1 : F2 = 0Fl(1 ) : (.0F~(1) (X.2) 

whereas TORRICELLI presented the method, as we saw in the quotation, in a way 
implying that 

F = 0F(1). (X.3) 

In De dimensione parabolae TORRICELLI did not comment on this aspect of the 
method; neither did he explain what should be understood by "all the lines". 
Yet he used omnes in other connections in the treatise, where it quite clearly meant 
a sum of a finite or infinite number of elements ( T O R R I C E L L I  Opere, vol. 1, part 1, 
pp. 132-133, 148-149). Thus TORRICELLI opened the way to the interpretation 

0F(1) = ~ 1. (X.4) 
F 

Combining (X.3) and (X.4), we get 

V = • 1 (X.5) 
F 

as the understanding of the collective method of indivisibles TORRICELH offered. 
Indeed in this manner TORRICELLI created his own method of indivisibles, but by 
referring to CAVALIZR~ he gave the impression that he had employed CAVALIERI'S 
method; that had the effect, as mentioned earlier, that many mathematicians 
identified the method of indivisibles with TORRICELLI'S version of it. 

TORRICELLI'S way of employing indivisibles was accepted by many of his col- 
leagues; their confidence in his work is illustrated in a letter FRANS VAN SCHOOTEN 
wrote to CHRISTIAAN HUYGENS September 27, 1650 (HuYGENS Oeuvres, vol. 1, 
pp. 130-132). In this letter VAN SCHOOTEN commented upon some examples 
HUYGENS had composed to warn against the use of "CAVALIERI'S principles" 
(ibid., p. 131). VAN SCHOOTEN found that HUYGENS was too sceptical and that one 
should not be afraid of building something on these principles as long as it was 
done as TORRICELLI had done in his demonstrations. 

It is natural to wonder how CAVALIERI reacted to the fact that TORRICELLI 
presented the method of indivisibles as being based on the idea F = ~] 1. In 

V 
view of  CAVALIERI'S great concern about foundations, it could be expected that 
he refused to acknowledge TORRICELLI'S treatment. That did not happen; on the 
contrary he took advantage of the respect TORRICELH'S work had gained. Thus 
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a few times in Exercitationes CAVALIERI tried to make a problematic argument 
more convincing by referring to a similar argument in TORRICELLI'S De dimensione 
parabolae (cf. Section VIII.6). 

On the whole CAVALIERI seems to have been delighted that TORRICELLI took 
interest in the method of indivisibles, implying among other things that after GALI- 
LEO'S death in 1642 he still had a skilful mathematician with whom he could discuss 
the method. It may have been disappointing to CAVALIERI that TORRICELLI did 
not take up the points in his letters concerning the foundation of the method (cf. 
G~USTI 1980, p. 45), but yet TORRICELLI was an inspiring correspondent. The two 
Italian mathematicians came so close scientifically in their last years that in his 
will TORR~CELLI appointed CAVALIERI to be his scientific executor, an undertaking 
CAVALIERI could not carry out because he died a few months after TORRICELLL 

X.3. All of TORRICELLI'S examples of quadratures based on indivisibles consisted 
in a transformation of the ratio between a segment of a parabola and its inscribed 
triangle into a known ratio between two other geometrical figures, as in the ex- 
ample presented in the last section. Thus TORRICELLI'S technique did not lead to 
an approximation or to an arithmetic determination of Z' 1. Such approaches to 
quadratures were worked out by the French mathematicians PIERRE FERMAT and 
GILLES P. ROBERVAL at the same time as CAVALIERI'S Geometria was in print, and 
are quite often mentioned in the correspondence of the MERSENNE circle from 
1636 and onwards. 

In the literature the arithmetical methods have often been mixed up with the 
method of indivisibles. I shall therefore discuss some of the arithmetical methods, 
particularly under the aspect of how their users related them to CAVALIERI'S 
method; and I shall argue that some l?th-century mathematicians provoked 
confusion of arithmetical methods and the method of indivisibles, and also the 
idea that CAVALIERI'S method employed infinitesimals. 

FERMAT never disclosed his ideas about the foundation of arithmetical integra- 
tions, whereas ROBERVAL revealed his thoughts in his famous Epistola an Torri- 
cellium written in 1647 (printed in several books, for instance ROBERVAL 1730 and 
TORRICELLI Opere, vol. 3) and in "Trait6 des indivisibles", composed at an un- 
known time and printed posthumously in 1693 (reprinted in ROBERVAL 1730, 
pp. 207--290). When ROBERVAL first worked on his method he called it "a method 
of infinities". Later, however, he became so influenced by the fame of CAVALIERI'S 
indivisibles that he took over the word indivisibles. Thus "Trait6 des indivisibles" 
opens with the phrase "To  draw conclusions by means of indivisibles ...,,.26 
This does not mean that ROBERVAL had adopted CAVALIERI'S method of indivi- 
sibles, or TORRICELLI'S version of it. ROBERVAL'S collection of "indivisibles" 
emerged by a continuous subdivision of the surface and were, as he stressed, "an 
infinity of small surfaces" (ROBERVAL 1730, p. 209); in other words they were 
infinitesimals. 

Nevertheless the concept of toutes les lignes often occurs in connection with 
ROBERVAL'S quadratures. To illustrate how he employed this concept I shall 

26 ROBERVAL 1730, p. 207: Pour tirer des conclusions par le moyen des indivisibles. 
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paraphrase his quadrature of the parabola. Let ABC be a segment of a parabola 
whose vertex is A and whose axis is AB (Figure X.3). ROBERVAL imagined that 
the tangent AD has been 'divided in "an infinity of equal parts", AE, EF, etc., 
and that lines EL, FM, etc., have been drawn through the division points parallel 
to AB (ibid., p. 214). He then stated that 

(area ACD) : (rectangle ABCD) = (toutes les lignes of ACD) : (toutes les 

lignes of ABCD). (X.6) 
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Fig. X.3 

This relation is similar to CAVALIERI'S fundamental relation (X.2) concerning 
quadratures. ROBERVAL'S justification and employment of it is, however, quite 
different from CAVALIERI'S. ROBERVAL first maintained that 

(area ACD) : (rectangle ABCD) = (all infinitesimal rectangles of ACD): 

(all infinitesimal rectangles of ABCD), (X.7) 

where the infinitesimal rectangles are determined by the division of AD. Since the 
rectangles all have a base equal to AE, this line segment can be cancelled on the 
right-hand side of (X.7), whereby (X.6) is obtained. Thus in (X.6) toutes les lignes 
means the sum of the ordinates. 

In modern terms ROBERVAL'S use of (X.6) can be explained in the following: 
way: Let F1 and F2 be two plane figures with rectilinear base AD (Figure X.4). 
and further limited by the graphs of the functions fk, k = 1, 2, and the lines AB,. 
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Fig. X.4 
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AD and DC. ROBERVAL then determined the ratio F1 : F2 from the relation 

Ft  : F2 -- lim ( i )  ix-+ oo 

f2 AD 
i = l  

When F1 is a segment of a parabola and F2 a rectangle the functions fl and f2 
i 2 

are characterized by fl ( l A D )  
l l  D 

n"T, f2 \ n  AD]  ~-, 1. Hence R O B E R V A L  trans- 
/ 

formed the quadrature of the parabola to a determination of 

n i 2 

i lira "= = lim ½ha + ½n2 + y n  
a -->- oo n ~  n-~- co n 3 

1 
i = 1  

ROVERVAL argued that the quantity on the right-hand side is equal to ½, because 
1 ½n 2 + -,n 

can be neglected for large n's. 
n a 

Thus it is obvious that ROBERVAL'S procedure leading to a determination of a 
limit (which in the 17 th century was done by omitting certain terms) was an 
approach to quadrature quite different from CAVALIERI'S calculations with collec- 
tions of lines. However, ROBERVAL himself did not seem to have considered his 
method very different from CAVALIERI'S. This is illustrated in the above-mentioned 
letter he wrote to TORRICELLI in 1647. Besides disputing with TORRICELLI about 
the priority of the kinematic method of tangents, one of ROBERVAL'S concerns 
in this letter was to prove that he had discovered his method of quadrature in- 
dependently of CAVALIERI. The point that the two methods were based on different 
foundations and required different procedures of calculations, could have provided 
the necessary argument. But that was not how ROBERVAL argued; he talked only 
.about a "small difference" between the two methods. 27 

Further he stated that some mathematicians who were envious of CAVALIERI 
had wrongly claimed that CAVALIERI really meant that surfaces were composed 
of lines (TORRICELLI Opere, vol. 3, p. 489; ef. also WALKER 1932, pp. 15--16 and 
35). This indicates that ROBERVAL thought that CAVALIERI'S indivisibles of a sur- 
face were like his own small rectangles. On the whole ROBERVAL'S attitude to- 
ward CAVALIERI'S theory was to project his own ideas into it, instead of concen- 
trating on the differences between the two methods. Thereby he introduced new 
misunderstandings concerning CAVALIERI'S method of indivisibles, namely that 
it was based on infinitesimals and was related to arithmetical methods. Further 
he contributed to the idea, introduced earlier by TORRICELLI, that "all the lines" 
:should be understood as a sum. 

ROBERVAL'S views on indivisibles influenced the skilful architect of a well 
developed theory of arithmetical integration, BLAISE PASCAL. The similarities 

27 TORRICELLI Opere, vol. 3, p. 489: exigua differentia. 
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between ROBERVAL'S and PASCAL'S ideas can be seen in PASCAL'S Lettre de A. Det- 
tonville it Monsieur Carcavy (1658). In this treatise he explained that the indivisibles 
of a plane figure constitute an infinity of infinitesimal rectangles, whose sum 
differs from the figure only by a quantity smaller than any given one (PASCAL 
Oeuvres, vol. 8, p. 352). He further asserted that it was only in manner of speaking 
that the method of indivisibles was different from the ancient method of exhaustion. 

In his other treatises on arithmetical integration PASCAL took the position 
that the method of indivisibles was so well established that he did not need to 
explain its foundation. Instead he concerned himself with finding the arithme- 
tical sums applicable for quadratures, cubatures and determinations of centres 
of gravity. His expression for a sum used for quadratures was summa linearum, 
la somme des lignes or la somme des ordonn~es. 

These few remarks on PASCAL'S method should be sufficient to make it clear 
that those who became acquainted with "the method of indivisibles" through a 
study of PASCAL'S ingenious works would learn a method much different from 
CAVALIERI'S, 

The other great contributor to arithmetical integrations was JOHN WALLIS 
who worked out an infinitesimal method independently of the French school and 
presented it in Arithmetica infinitorum (1655). In its preface WALLIS stated that 
while creating his own method, the arithmetics of infinities, he knew the method 
of indivisibles only through a study of TORmCELLI'S work, because he had not 
been able to see CAVALIERI'S Geometria, but still he found that there were similari- 
ties between the two methods (WALLIS 1972, p. 357). 

Thus we have another example of how the method of  indivisibles became known 
through TORR~CELLI'S work and of how 17th-century mathematicians did not pay 
much attention to the difference between an arithmetical integration and the geo- 
metrical method of indivisibles. Indeed we can conclude that the mathematicians 
of the 17th-century tended to call all methods of integration emerging during the 
period 1635-1665 methods of indivisibles. Therefore they made no sharp distinc- 
tion between CAVALIERI'S use of the concept of omnes lineae and e.g, PASCAL'S use 
of  summa linearum. In particular, it was not recognized that CAVALIERI'S collection 
of lines belonging to a given figure was a magnitude, which was neither the area 
of  the figure nor an approximation to it. 

While working on quadratures and cubatures in the early 1670's G. W. LEIB- 
NIZ took over the mixture of names and concepts connected with quadratures 
and used the abbreviation omn. for omnes to signify a sum. His first introduction 
of the symbol f 1 in October 1675 was only meant to be a further abbreviation 
of omn. 1 making it clear that omn. prefixed, for instance, to a line segment yields 
a two dimensional magnitude (LEmNIZ 1820, p. 90). However, by that step he 
was inspired to investigate the operational rules for f and was led to the creation 
of the calculus. 

X.4. The creation of the calculus did not imply that the method of indivisibles 
fell into complete oblivion. In the 18 th century the knowledge of  it was kept alive 
through textbooks of infinitesimal calculus (especially their prefaces), through 
the encyclopedias of sciences, and through J. E. MONTUCLA'S Histoire des mathd- 
matiques (1758). Doubtless the 18th-century views of the method of indivisibles 
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played a great role for the later understanding of it and will therefore be described 
briefly in this section. 

While the 17th-century mathematicians had been at variance as to whether 
the method of indivisibles was based on the idea that a plane figure is composed 
by line segments or by infinitesimal rectangles, most 18th-century writers agreed 
on the first opinion. Also they often focused on the central place CAVALIERI'S 
principle had in the theory. Several characterizations of the method of indivisibles 
were indeed very close to the following one given by J. C. STURM: 

The Method of indivisibles ... goes to work after a way which seems to be 
more natural than any other, by supposing plane Figures to consist of innumer- 
able lines, and solids of innumerable Plans (called their indivisible Parts or 
Elements because the Lines are conceived without latitude, and the Plans without 
any thicknes, and relying on this self-evident Axiom, That if all the Indivisibles 
of one Magnitude collectively taken, be equal or proportional to all the corres- 
pondent Indivisibles of another, or taken separately each to each, then also 
those Magnitudes will be equal or proportional among themselves (STURM 
1700, Preface § IX). 

STURM himself was influenced by reading RENALDINUS'S treatment of the method 
of  indivisibles (cf. Section X.2) and thus remarked that CAVALIERI had both a 
collective and a distributive method. MONTUCLA also made this point, but it was 
ignored by many writers. 

In tracing the history of the method of indivisibles most 18th-century mathe- 
maticians agreed that this method was the one which CAVALIERI and TORRICELLI 
had employed. Thus a distinction between the method of indivisibles and methods 
of  infinitesimals was introduced. Although this did not add to the understanding 
of CAVALIERI'S proper method, it could have been a means to improve on the 17 th- 
century confusion about methods of integration. However, this confusion sur- 
vived because the important writer on history of mathematics, MONTUCLA, did 
not follow his contemporaries' general description of  CAVALIERI'S methods. 
MONTUCLA thought that in Geometria CAVALIERI had given the impression that 
he considered a plane figure as composed of line segments. But he was also of the 
opinion that in his answers to GULDIN, CAVALIERI had clearly shown "that  his 
method is nothing but a simplified method of  exhaustion" based on infinitesimals 
(MONTUCLA 1758, p. 27). 

The evaluations of the method of  indivisibles made in the 18th-century were 
rather diverse. Some mathematicians dismissed the method completely; others 
had the attitude that it was a useful short cut for a demonstration and that it could 
be "saved". The means suggested for this were the two MONTUCLA had mixed 
up. Thus one group would argue as had JOHN HARRIS that "this Method of  In- 
divisibles is only the Ancient Method of  Exhaustion a little disguised and concen- 
trated" and would suggest the introduction of a real exhaustion proof  if necessary 
(HARRIS 1704-1710, vol. 1, article: indivisibles). Another group would rescue the 
method by replacing the indivisibles by infinitesimals, so that a method based on 
the assumption F = Z' 1 Ax, where dx  is an infinitesimal latitude, was obtained. 

A very few 18th-century mathematicians were aware that CAVALIERI had been 
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rather scrupulous in trying to untie the Gordian knot for finding a new method 
of  integration as exact as the Greek method of exhaustion. Thus, in his introduction 
to A Treatise of Fluxions, COLIN MACLAURIN wrote about CAVALIERI: 

In proposing it [the method of indivisibles] he strove to avoid supposing the 
magnitude to consist of indivisible parts and to abstract from the contempla- 
tion of infinity ... (MACLAURtN 1742, pp. 38-39]). 

However, such a statement did not disturb the general opinion of indivisibles; 
we can therefore observe that the 18th-century treatment of CAVALIERI'S method 
contributed much to cement the idea that it was based on the assumption F = X 1. 

X.5. All earlier confusion about CAVALIERI'S method is reflected in historical 
expositions from this century. The method has been explained by setting F = • 1 
or F -- Z'l • Ax and by arithmetical calculations. In 1941 BOYER pointed out the 
great difference between CAVAL1ERI'S method and methods, like the arithmetical 
ones, which discarded certain terms. Thus BOYER brought some clarity into the 
understanding of CAVALIERI'S method; however he retained the interpretation 
of CAVALIERI'S omnes-concepts as sums, and so did most writers on the subject. 

In recent years this view has been criticized and modified; thus GIUSTI presents 
CAVALIERI'S collections of lines as magnitudes (GIUSTI 1980, pp. 33-38) as I 
have done in this paper and as has been done also in an earlier publication (PE- 
DERSEN 1980, pp. 32-36). GIUSTI has further explained how CAVALIERI'S lack of  
explicitness made the interpretation of the omnes-concepts as sums possible 
(GIuST11980, pp. 38-39), a point which has also been touched upon in Section VIII.6. 
In his comments accompanying the Italian translation of Geometria LOMBARDO- 
RADICE often stressed that "all the lines" was conceptionally far from a sum. 
He preferred to see the omnes-concept as a precursor of CANTOR'S concept of a set 
(LOMBARDO-RADICE 1966, e.g.p. 194). It is true, as shown in Section III.5, that 
"all the lines" form a set, but that does not necessarily mean that CAVALIERI had 
any explicit understanding of the concept of set. 

Altogether, CAVALIERI'S concepts were so special and had so little direct 
influence on further development that it does not make much sense to relate them 
to later concepts. The comparisons between CAVALIERI'S various concepts and 
concepts like the LEiaMzian integral, the CAucm" integral, and NEWTON'S flu- 
xions which have been made particularly by certain Italian historians of science, 
therefore do not have much historical value; at most they can have interest as 
examples of how the way of thought has changed in the course of time. 

Concluding remarks 

The preceding pages contain many details about CAVALIERI'S theory and quite 
some calculations, although only a small part of those CAVALIERI carried out. 
My presentation of the topic has been circumstantial because I am of the opinion 
that only through familiarity with CAVALIERI'S concepts and techniques is it possible 
to understand how elaborate and special his method was. To understand this is 
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essential for an evaluation of the method, and particularly for seeing its role in 
the transition from the Greek method of exhaustion to the LEm~Izian calculus in 
the proper perspective. 

Rounding off this paper I shall focus on three points which are central for a 
proper historical perspective on CAVALIEm'S method of indivisibles. The first 
point is that in the transition process CAVALIERI had a very isolated position. He 
was the only one among the leading 17th-century mathematicians who attempted 
to extend the Greek theory of magnitudes to quantities involving infinitely many 
elements, viz. the omnes-concepts, and thus the only one to create a new method 
of integration which was not a complete break with Greek tradition. 

The second point is that CAVALIERI, despite his isolation, had an influence 
on the development of more heuristic methods of integration; an influence he 
gained by inspiring TORRICELLI to create his own version of the method of in- 
divisibles. 

The third point is that although the content of Geometria in general was very 
little known, the mere fact that the book existed stimulated several mathematicians 
to write down their own investigations concerning new methods of integration. 
In this way CAVALIERI had an indirect influence on the acceptance of infinitesimal 
methods, although he carefully avoided the use of  infinitesimals. 

In reviewing CAVALIERI'S method it is also important to observe that his prin- 
ciple had a long life and survived the creation of the calculus. It has now dis- 
appeared from mathematical textbooks, but is still used in less rigorous deductions. 

My last remark will concern the name CAVALIERI chose for his theory: the 
method of indivisibles. If  the reader wonders why CAVALIERI used that expression 
at all, I have gained one of the aims of this paper, namely to show that CAVALIERI'S 
method is independent of theories concerning the composition of the continuum; 
it just happened that he decided to use the term indivisibles as an alternative for 
"all the lines" and "all the planes". 
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¢r(1) 

es(p) 

List of Symbols 

R 

"all the lines" introduced in Section III.1, transcribed as f l(t) dt in 
Section Ili.6. 0 

"all the planes" introduced in Section IV.1. 

"all similar plane figures" belonging to the figure F, introduced in 
Section IV. 1. 
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d)F1,F2(1 X 1) "all the rectangles" of  F1 and F2, introduced in Section IV.2. 

0ON(O0 "all the abscissae" of the line segment ON, introduced in Section IV.3. 

d~F(c ) "all the circumferences", introduced in Section VIII.2. 

~F(1 n) "all the powers", introduced in Section VIII.5. 

The ut-unum principle, presented in Section V.2. 
The generalized ut-unum principle, presented in Section VI.3. 
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