Kuhnian Issues, Scientific Revolutions and
the History of Mathematics

Leo Corry*

KunN’s AcCOUNT of the development of science, together with its associated
concepts of paradigm, normal science and scientific revolutions, has been the
focus of intensive debate ever since its first publication in 1962.! Subsidiary
issues in this debate are the applicability of Kuhn’s theory to the history of
individual scientific disciplines; in particular, the question has been discussed
whether there are scientific revolutions in those disciplines. Such discussions
are often preceded by preliminary considerations about the appropriate defini-
tion of ‘scientific revolution’; having chosen one such definition, one may
prove either that there have been or that there have not been revolutions in a
given field. Thus discussions have often remained at the semantic level.
Although the semantic freedom of authors to choose their own meaning for
the term ‘scientific revolution’ should be respected, one can still approach the
various definitions critically and evaluate their degree of interest and fruitful-
ness as analytical tools for research in the history of science.

In the present article I pursue a two-fold task. First I propose a model for re-
assessing the many interpretations of Kuhn’s theory and for evaluating their
relative interest and fruitfulness in describing the historical development of
science. Then I discuss the applicability of the relatively more interesting
versions of Kuhn to the particular case of the history of mathematics. Thus,
rather than discussing whether a definition of scientific revolutions can be
advanced such that revolutions are found to have occurred in mathematics, it
is asked whether by analysing the history of mathematics in Kuhnian terms
new insights are attained which would otherwise have been overlooked by
historians and philosophers of mathematics.

1. The Kuhnian Agenda

Debates concerning Kuhn’s theory have often addressed two separate issues:
the actual meaning of Kuhn’s theory and its related concepts, on the one hand,
and their applicability to the history of science in general and of particular
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scientific disciplines, on the other. A typical difficulty encountered while
attempting to elucidate the meaning of the theory lies in the many changes that
affected Kuhn’s own views over his successive writings. The controversial
character of Kuhn’s book stemmed from the fact that on most if not all issues
involved Kuhn originally adopted a most stringent and uncompromising
position. Later on, in the attempts to further explain his position, and perhaps
under the pressure of acute criticism, Kuhn appeared increasingly willing to
hold weakened versions of his initial views. His conceptions thus became more
acceptable, but, alas, much less bold and hence much less interesting.

Yet beyond one’s own evaluation of the merits of Kuhn’s actual views, there
is at least one undeniable virtue that must be conceded to his work: that of
having brought about the widespread adoption of a new agenda for debate in
the history and philosophy of science (as well as in many other intellectual
areas). Not that all the issues contemplated in this agenda were Kuhn’s direct
creation; several of them had been separately discussed before Kuhn, by other
authors trying to advance a non-positivistic view of science. Yet no other single
book was as instrumental as The Structure of Scientific Revolutions in making
this agenda of central concern for historians and philosophers of science. In
what follows I will refer to this agenda as the ‘Kuhnian agenda’.

The main issues considered in the Kuhnian agenda may be articulated
around four axes:

1. Normal change versus Revolutionary change
2. Paradigms

3. Rationality of Science

4. The Scientific Community.

Kuhn himself, as well as his followers and critics, often addressed the issues
belonging to the different axes without clearly separating them; this has been
the source of a second typical difficulty in discussing Kuhn’s theory and its
applicability. In order to overcome this difficulty, I will provide an exhaustive
list of the issues that arise within each of the above mentioned axes; I will claim
that these issues are logically independent, i.e. that a stand may be adopted on
each single issue regardless of the stand adopted on any of the others.
Combining different possible stands on the various issues of the Kuhnian
agenda yields several different Kuhnian accounts of the history of science.
The issues at stake on each of the above-mentioned axes admit of extreme,
uncompromising formulations. The different Kuhnian versions arise when
those formulations are adopted with varying degrees of commitment. Kuhn’s
own successive versions of the theory indicate how these varying degrees of
commitment translate into varying degrees of boldness, on the one hand, and
of acceptability, on the other hand, of the Kuhnian account of the history of
science. It is not, however, a critical account of the development of Kuhn’s
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own ideas which is of interest here, but rather an appraisal of the perspectives
opened by the Kuhnian agenda. Thus the relative degree of interest of a
particular version of the Kuhnian account will be determined by its degree of
commitment to each of the proposed formulations; the more committed an
account is, the farther it is from the positivistic conception of science and,
therefore, the bolder and most interesting. Obviously, whether some version of
Kuhn’s view is also correct is a completely different question.

1. Normal versus Revolutionary Change

This is the central axis of the Kuhnian agenda. Kuhn’s original version of
the theory was meant to establish the existence of revolutionary change, and to
explain how and when it comes about. It connected revolutions to paradigms,
it allowed irrational factors into the account of the development of science,
and it assigned a cognitive role to the scientific community. At least, many
understood Kuhn’s theory as doing so. One can, however, consider each of
those issues separately.

Normal change is change by linear accumulation, with minimal if any
rejection of existing knowledge. The main activity of scientists engaged in
normal research is ‘puzzle-solving’, namely, attempts to connect a given
problem with the existing corpus of accepted scientific knowledge. Difficulties
encountered in those attempts challenge the scientist’s individual ingenuity;
they do not question the validity of the theory as such.

In revolutionary change, passage from old to new is not accomplished by
mere addition to what was known. The corpus of accepted knowledge after
revolutionary change is incompatible with that accepted before the revolution;
this means that both of them may not be held as true simultaneously.
Therefore, essential components of previously accepted knowledge must be
rejected when revolutionary change takes place. In his first version, Kuhn
went so far as to claim that pre- and post-revolutionary theories are
incommensurable.

The boldest position concerning normal and revolutionary change is formu-
lated with the following claims:

1.1. There exist such things as purely normal and purely revolutionary
change in science.

1.2. The history of science consists of long periods of normal science
sporadically interrupted by revolutionary change.

1.3. The language used in a field of science changes so radically during
revolutions in that field, that the old language and the new language
are not intertranslatable.?

?According to Philip Kitcher, this formulation describes Kuhn’s own view. Cf. P. Kitcher,
“Theories, Theorists, and Theoretical Change’, Philosophical Review 8 (1979), 519-547, see p. 520.
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1.4. A scientific revolution is ‘a relatively sudden and unstructured event
like a Gestalt switch’.? It is a holistic process, which cannot ‘be made
piece-meal, one step at a time’.*

1.5. The distinction between revolutionary and normal change is not tanta-
mount to that between ‘major breakthrough’ and ‘minor discovery’.

Claim (1.5) does not explicitly appear in Kuhn’s writings; I have introduced
it here, however, to stress the fact that the term ‘revolutionary change’ should
not be taken to imply a value judgement. If there was nothing in the Kuhnian
agenda beyond labels for good and bad science, it would offer no new
perspectives for historians and philosophers of science. In order for the
definition of revolutionary science to be interesting, and in fact meaningful, it
must allow for the existence of major breakthroughs as part of normal change.

2. Paradigms

This vague term (and its several synonyms) has been used to denote whole
theories, exemplary instances of scientific achievement in the past, models,
metaphysical conceptions, choice of problems and techniques for analysing
them, and many other things. If ‘paradigm’ is synonymous with ‘theory’, then
there is no need to discuss the former concept separately. Paradigms become
meaningful when considered as either single ideas or whole conceptual systems,
different from particular scientific theories, which, however, must be referred
to when explaining the development of science. Definitions of ‘paradigms’ may
allow for either their conscious adoption by scientists or only their discovery
by the historian in hindsight. Yet in any case paradigms should have their own
peculiar behavior in history, which is different from (and, by preference, has
conceptual priority over) that of theories. Otherwise paradigms are redundant
as an analytical tool for the historian and the philosopher of science. Within
this framework, several more elaborate definitions of ‘paradigm’ may be
formulated. Regarding any such definition, the uncompromising Kuhnian
version holds that:

2.1. Paradigms, not theories (and of course, not individual discoveries), are
the basic units of scientific achievement and change.

2.2. A scientist cannot, while under the sway of one paradigm, seriously
entertain a rival paradigm.’

*T. S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago Press,
1962), p. 121.

‘T. S. Kuhn, “‘What Are Scientific Revolutions?’, in L. Kriiger et al. (eds), The Probabilistic
Revolution (Cambridge, Mass.: MIT Press, 1988), pp. 7-22, see p. 19.

*This formulation is taken from J. W. N. Watkins, ‘Against Normal Science’, in I. Lakatos and
A. Musgrave (eds), Criticism and the Growth of Knowledge (Cambridge: Cambridge University
Press, 1970), pp. 25-38, see p. 34.



Kuhn’s account has been often criticized as involving a vicious circle, since it
allegedly defines a scientific community as any group sharing a paradigm, and
a paradigm as that thing shared by a scientific community. Whether or not that
is the case in Kuhn’s writings, the two issues are separate in the Kuhnian
agenda. One can claim a role for paradigms, more or less committed to (2.1)
and (2.2), without accounting for how a paradigm is chosen. In particular, one
can claim that the community either plays or does not play a role in
determining that decision.®

3. Rationality of Science

Positivistic accounts of science take the rationality of science for granted.
Non-positivistic accounts face the issue of rationality. Popper addressed this
issue by claiming that the rationality of science lies in its commitment to
critical debate. In Kuhn’s writings the issue of rationality arises in connection
with paradigms and with theory-choice; one of the sources of controversy
about Kuhn’s early version was its implication that the acceptance of a new
paradigm is not simply a matter of applying rules. But this issue, like the
former two, is in fact a separate one that can be considered on its own. The
issue of rationality manifests itself in the Kuhnian agenda as varying degrees of
commitment to the following two claims:

3.1. Rational discussion is possible only after agreeing on fundamentals,
and this agreement is just a matter of convention.’

3.2. Many among the scientist’s choices do not obey universally valid rules;
rather, these choices admit only sociological and psychological
explanations.

4. The Scientific Community

The traditional task of the sociology of science since Merton had been to
account for the social conditions under which a community of scientists could
effectively develop. Sociologists had implicitly been accepting a ‘division of
labor’ with historians and philosophers of science. Sociologists would study
the non-logical behavior of the scientific community, while historians and
philosophers would study the content and internal logic of the scientists’ ideas;

¢It is worth pointing out that in characterizing scientific revolutions in 1988 (cf. Kuhn, op. cit.,
note 4), Kuhn did not even mention the word ‘paradigm’. In doing so, he finally dropped this
problematic issue from his own version of the Kuhnian agenda.

"This has been one of the central targets of Popper’s criticism of Kuhn, Cf. K. Popper, ‘Normal
Science and its Dangers’, in Lakatos and Musgrave, op. cit., note 5, pp. 51-58, see p. 56: “The
relativistic thesis that the framework cannot be critically discussed can be rationally
discussed . .. The Myth of Framework is, in our time, the central bulwark of irrationality. ... It
simply exaggerates a difficulty into an impossibility.’



the former undertaking was considered to be irrelevant to the latter.® Kuhn
made a sensible contribution to the sociology of science by suggesting that
there may indeed be a relevance. As on other issues, Kuhn originally adopted
an extreme view on this, so contributing to make his book controversial. Later
on, once more under the pressure of criticism, he weakened his position.’

The uncompromising view of the scientific community’s structure and
behavior as an instrumental factor in shaping the content and logic of science
is expressed in the following three claims:

4.1. A distinctive sociological characterization of scientific communities can
be given, which is exclusive, i.e. it is valid for no other kind of
professional community.

4.2. The sociological study of this kind of community is epistemologically
relevant to the understanding of the cognitive contents of science. In
particular: the ultimate locus of science’s rational authority is the
scientific community.'?

4.3. The scientific community which is relevant for epistemological analysis
is that of the practitioners of an entire discipline (physics, biology, etc.),
rather than of sub-disciplines (molecular biology, evolution, marine
zoology, etc.).

Claim (4.1) does not explicitly appear in Kuhn’s writing, yet it is necessary in
order to confer a clearer meaning on (4.2)."" Notice also that one can claim
that the community influences the contents of science through paradigms, but
there are also many other possible claims; thus, paradigms and the scientific
community are two separate issues in the Kuhnian agenda.

In responding to his critics, Kuhn claimed that his definition of ‘scientific
communities’ allowed equally for big and for very small communities,
including even ‘fewer than twenty-five persons’.'> Obviously this is a weakened
form of his initial claim; thus, for instance, one of the features of science as a
cognitive system, which a social account of science is bound to explain, is the
relatively high degree of agreement found, as a rule, among the members of the

This is illuminatingly described in M. D. King, ‘Reason, Tradition, and the Progressiveness of
Science’, in Gutting, op. cit., note 1, pp. 97-98.

*The transformation of Kuhn’s views on this issue is explained (and lamented) in King, op. cit.,
note 8, pp. 107-115.

'°This last formulation is taken from Gutting, op. cit., note 1, p. 11. Gutting believes this phrase
to encompass the ‘real significance of Kuhn’s work’.

"Kuhn’s work was actually criticized as containing a circular argument on this point. It
allegedly defined a scientific community as a group of practitioners sharing a paradigm, and a
paradigm as that thing shared by a scientific community. See A. Musgrave, ‘Kuhn’s Second
Thoughts’, in Gutting, op. cit., note 1, pp. 39-53, see p. 40.

2T, S. Kuhn, ‘Second Thoughts on Paradigms’, in F. Suppe (ed.), The Structure of Scientific
Theories (Urbana: University of Illinois Press, 1974), pp. 459482, see p. 464.



community. Naturally the smaller the community covered by this explanation,
the weaker the power of the claim. This is the reason for including (4.3).

The Kuhnian agenda, then, provides four axes of reference in describing the
history of science. A radical version of Kuhn’s theory is obtained by adopting
the above-introduced formulations with full commitment. Analysing the
history of science in such terms, were it to prove itself adequate, would be
bound to provide many new insights to the historian. In all likelihood,
however, most of the above claims will prove-historically inadequate unless
one relinquishes the extreme formulation in favor of a more moderate one. The
more one has to abandon the extreme formulations, in order to make them fit
historical facts, the less the interest offered by the theory as an analytical tool.
Given a particular account of scientific change, that touches upon the Kuhnian
issues, we may now assess its fruitfulness; we may, that is, assess whether by
looking at the history of science through this account, meaningful insights are
to be expected that would not be otherwise attained, or whether, on the
contrary, that account offers no more than a system for labelling — as ‘impor-
tant’ or ‘routine’ — the various stages in the development of the discipline in
question.

The above analysis of Kuhn’s theory, then, allows a clearer understanding of
both its positive and negative assertions, and consequently, the possibility of a
more balanced evaluation of its actual contribution to historians and philoso-
phers of science.

2. Arguing for Revolutions in Mathematics: A Case Study
An articulated attempt to analyse the history of mathematics in Kuhnian
terms was advanced by Joseph Dauben.” In an article of 1984 he provided his
own definition of revolution in science, in order to claim that, under this
definition, both the discovery of incommensurable quantities in ancient Greece

"*See J. Dauben, ‘Conceptual Revolutions and the History of Mathematics’, in E. Mendelsohn
(ed.), Transformation and Tradition in the Sciences (Cambridge: Cambridge University Press,
1984), pp. 81-103. Dauben’s article was intended, amongst other things, to contest M. J. Crowe’s
denial of the existence of revolutions in mathematics. See M. J. Crowe, ‘Ten “‘laws” Concerning
Patterns of Change in the History of Mathematics’, Historia Mathematica 2 (1975), 161-166, see p.
165.

Additional attempts at a Kuhnian analysis appear in P. Kitcher, The Nature of Mathematical
Knowledge (New York: Oxford University Press, 1983), pp. 149 ff., and H. Mehrtens, ‘T. S. Kuhn’s
Theories and Mathematics: A Discussion Paper on the “New Historiography of Mathematics™’,
Historia Mathematica 3 (1976), 297-320. For a critique (slightly different from the one intended
here) of their points of view, see L. Corry, ‘Linearity and Reflexivity in the Growth of
Mathematical Knowledge’, Science in Context 3 (1989), 409440, see pp. 427-429.



and Cantor’s theory of sets were examples of revolutions.'* To be sure,
Dauben’s definition is not intended to be a reformulation, or an adaptation of
Kuhn’s definition; indeed it is likely that Dauben would reject any connection
between his analysis and Kuhn’s theory. Yet, as the preceding section has
suggested, the specific contribution of any attempt to talk of revolutionary as
opposed to normal change in science may be assessed by referring to the
Kuhnian agenda.

Dauben’s definition of revolution relies on ideas formerly developed by I.
Bernard Cohen in his own work.!* In order to elucidate the meaning of
‘revolution’, Dauben suggests following Cohen’s examination of the meaning
that the term has been traditionally given (in the political context) since the
eighteenth century. Such an examination leads Dauben to pin down the
following characteristic features of revolutions:

a. A radical change or departure from traditional or acceptable modes of
thought.

b. A series of discontinuities of such magnitude as to constitute definite
breaks with the past. After such episodes, one might say that there is no
returning to an older order.

c. Revolutions have been those episodes of history in which the authority of
an older, accepted system has been undermined and a new, better
authority appears in its stead.'

According to this definition, Dauben claims, revolutions have occurred in
mathematics. Of course, the peculiar nature of mathematics is not overlooked
by Dauben, who sees no reason ‘to expect that a purely logico-deductive
discipline like mathematics should undergo the same sort of transformations,

or revolutions, as the natural science’, and in particular, that it should comply

to the framework of ‘Professor Kuhn’s model of anomaly—crisis—revolution’."

Therefore some qualifications must be added when talking of revolutions in
mathematics:

d. [In mathematics] it is not always the case that an older order is refuted or
turned down.

“In a symposium on ‘Structures in Mathematical Theories’ held in San Sebastian, Spain, in
September 1990, Dauben addressed once more the issue and provided three additional examples of
revolutions: Leibniz's and Newton’s invention of the calculus, Cauchy’s &6 calculus, and
Abraham Robinson’s non-standard analysis.

5Dauben gives reference to I. B. Cohen, ‘The Eighteenth-Century Origins of the Concept of
Scientific Revolutions’, Journal of the History of Ideas 37 (1976), 257-288, and 1. B. Cohen, The
Newtonian Revolution, with Hlustrations of the Transformations of Scientific Ideas (Cambridge:
Cambridge University Press, 1976). For a recent reformulation of these ideas, see 1. B. Cohen,
‘Scientific Revolutions, Revolutions in Science, and a Probabilistic Revolution 1800-1930°, in
Kriiger et al., op. cit., note 4, pp. 23-44.

°Cf. Dauben, op. cit., note 13, p. 83.

"Ibid., p. 82.



e. It is often clear that new ideas would never have been permitted within a
strictly construed interpretation of the old mathematics, even if the new
mathematics finds it possible to accommodate the old discoveries in a
compatible or consistent fashion.

f. Often, many of the theorems and discoveries of the older mathematics are
relegated to a significantly lesser position as a result of a conceptual
revolution that brings an entirely new theory or mathematical discipline
to the fore.'

As was claimed above, it is not so important whether a definition of ‘scientific
revolution’ does or does not fit ‘Kuhn’s model’ (if there is such a thing); what
matters is whether a particular definition leads to new insights in studying the
history of mathematics. Thus, the Kuhnian agenda described above provides
useful parameters for evaluating the relative interest of Dauben’s particular
definition.

Notice first of all, that Dauben’s explicit definition does not deal at all with
questions related to issues (2), (3) and (4) above. Dauben’s description of
revolutions and his claim that they do appear in the history of mathematics
imply accepting some version of (1.1) and (1.2): he claims that in the history of
mathematics there have been certain events of special significance, which may
be clearly separated from day-to-day progress in mathematical research. In
addition, Dauben’s statement (¢) could perhaps be taken as a weakened
version of (1.3). Of course, Dauben’s (d) weakens his commitment both to (1.3)
and to the differentiation between normal and revolutionary science.

Beyond Dauben’s explicit claims, one finds implicit reference to other issues
of the Kuhnian agenda in his analysis of the two examples chosen as represen-
tative of revolutions in mathematics. For instance, among the main revolu-
tionary influences of the discovery of incommensurable quantities, Dauben
mentions the eventual admission of the irrational numbers, in the following
terms:

The transformation in conceptualization from irrational magnitudes to irrational
numbers represented a revolution of its own in the number concept, although this
was not a transformation accomplished by the Greeks. Nor was it an upheaval of a
few years, as are most political revolutions, but a basic, fundamental change. Even if
the evolution was relatively slow, this does not alter the ultimate effect of the
transformation. The old concept of number, although the word was retained, was
gone, and in its place, numbers included irrationals as well."”

This quotation, as well as other similar passages in the article, illustrates the
problematic aspects of Dauben’s revolutions as a category for historical
analysis. Dauben’s uncommitted stand on (1.4) raises questions like: what is so

#Ibid., p. 84.
SIbid., pp. 88-89.
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peculiar about this long episode in the history of mathematics, that justifies its
separation from other, no less important ones? Which of the basic concepts of
mathematics changed less significantly during the last two thousand years of
mathematical history?®

Of all the issues of the Kuhnian agenda, one can only find in Dauben’s
definition the separation of revolutionary from normal change in mathematics,
and even this is not clearly formulated. Dauben’s characterization, moreover,
does not explicitly provide the means to identify, from among other contribu-
tions to mathematics, those which are truly revolutionary; the particular
examples chosen by Dauben make things even more confused. Dauben claims
that after the discovery of incommensurables, two things became unacceptable:
‘(1) the Pythagorean interpretation of ratio, and (2) the proofs they had given
concerning commensurable magnitudes came into play [sic!].” Moreover, he
adds, ‘new proofs replaced old ones’.”’ Dauben justifies his claim by referring
to proofs that appear in Book V of Euclid’s Elements, and which generalize
proofs of Books II and VIL. Thus Dauben’s claim does not mean, as it might
appear at first sight, that old proofs were rejected as erroneous; rather, it just
means that improved, more general versions of older proofs were advanced,
and the former ‘replaced’ the latter. Dauben recognizes that this is the case,
but, he claims:

To say that mathematics grows by successive accumulation of knowledge, rather
than by the displacement of discredited theory by new theory, is not the same as to
deny revolutionary advance.?

But what, then, characterizes revolutionary advances? The answer would seem
to be found in Dauben’s second example of revolutionary change. In fact,
Dauben claims that Cantor’s work:

... did not displace, but it did augment the capacity of previous theory in a way that
was revolutionary — that otherwise would have been impossible. It was revolu-
tionary in breaking the bonds and limitations of earlier analysis, just as imaginary
and complex numbers carried mathematics to new levels of generality and made
solutions possible that otherwise would have been impossible to formulate.?

If this is what characterizes revolutionary, as opposed to normal change, then
one may ask: does the formulation of any new theory enabling wider perspec-
tives, providing more general formulations or leading to unexpected solutions

Mncidentally, I. B. Cohen himself stressed the need to answer these kinds of questions clearly,
when defining scientific revolutions. Cf. ‘Scientific Revolutions, Revolutions in Science, and a
Probabilistic Revolution 1800-1930’, in Kriiger et al., op. cit., note 4, pp. 2344, see p. 23: ‘One of
the problems in discussing any revolutionary set of changes in scientific thought or practice is the
somewhat subjective decision whether the extent of the time scale implies that the process of
change was a revolution or an evolution.’

?Dauben, op. cit., p. 88.

2]bid., p. 93.

BIbid., p. 93. Italics in the original.



of hitherto unsolved problems constitute revolutionary change? If this is the
case, one is led to conclude that, for Dauben, ‘revolutionary change’ is
tantamount to ‘major breakthrough’.* Though, undoubtedly, evaluating the
relative significance of various contributions to the development of the disci-
pline is among the important tasks of the historian of mathematics, one
wonders whether such an undertaking necessitates, or even justifies, the
introduction of an additional, superfluous concept of ‘revolution’. In any case,
the concept of revolution advanced by Dauben neither takes any of the risks
implied by some degree of commitment to the Kuhnian agenda nor envisages
enjoying any of its expected gains.

There is in fact one single issue that, although not explicitly mentioned by
Dauben, may be read between the lines of his argument and confers some
degree of interest upon his analysis. It is connected to (4.3) (although without
avowing any epistemological role for the scientific community). Dauben seems
to imply that the two examples considered in his article influenced the
subsequent development of the whole discipline of mathematics, rather than of
the more limited, specific context within which they arose. Thus, in his
discussion on the discovery of incommensurability Dauben claims that:

Wholly apart from the slower, more subtle transformation of the number concept,
however, was the dramatic, much quicker transformation of the character of Greek
mathematics itself. .. Greek mathematics was directly transformed into something
more powerful, more general, more complete.”

Although the last sentence implies, once more, that for Dauben the term
‘revolutionary change’ implies, above all, a value judgment, his assessment also
includes the independent claim of the overall influence of the discovery.
Likewise, regarding Cantor’s theory, Dauben points out as its revolutionary
symptoms:

... the extensive revision due to transfinite set theory of large parts of mathematics,
involving the rewriting of textbooks and precipitating debates over foundations.”

‘Overall influence on the discipline’: although every development that fits this
criterion is perhaps also a ‘major breakthrough’, the opposite is certainly not
the case. There are many major breakthroughs whose influence remain
confined to a context more restricted than the whole of the discipline. This
would seem to be the only acceptable and meaningful criterion, arising from
Dauben’s acount, for considering an instance of change as revolutionary,

%The three additional examples of revolutions in mathematics advanced by Dauben in his San
Sebastian talk (note 14, above) give further credence to my conclusion here.

“Dauben, op. cit., note 13, p. 88.

%Jbid., p. 93



without having to include under it every instance of ‘remarkable break-
throughs’. Of course, the question remains open whether Dauben’s two
examples conform to this criterion, but that is a different question which will
not be discussed here.”

3. The Body of Mathematics and Images of Mathematics

Can one nevertheless find a bold and meaningful definition of ‘revolution’
(that is, one that takes into account as many issues of the Kuhnian agenda as
possible), allowing for revolutions in mathematics, and leading to new, signifi-
cant historical insights? In order to discuss this question I must start with some
general considerations on the history of mathematics.

Any scientific discipline raises two sorts of questions: (1) substantive ques-
tions of the discipline, and (2) questions about the discipline qua discipline, or
meta-questions. One can accordingly distinguish two layers related to any
scientific field: the ‘body’ of knowledge (answers to the first kind of questions)
and ‘images’ of knowledge (answers to the second kind of questions). The body
of knowledge includes theories, ‘facts’, methods and open problems. The
images of knowledge play the role of ‘selectors’ for the body of knowledge, by
answering meta-questions such as: which of the open problems of the discipline
most urgently demands attention? How should one decide between competing
theories? What is to be considered a relevant experiment? What procedures,
individuals or institutions have authority to adjudicate disagreements within
the discipline? etc. It is clear that answers to this kind of question are dictated
not only by the substantive content of the body of knowledge alone, but also
by additional, external factors.

It may sometimes be hard to distinguish between pure body of knowledge
and pure images of knowledge. Newton’s theory of motion clearly belongs to
the body of physics; it is a statement about how bodies move. The claim that
Einstein’s theory is ‘simpler’ than Newton’s clearly belongs to the images of
scientific knowledge; it is a claim about physical theories rather than a claim
about the physical objects. Godel’s theorems, on the other hand, belong to the
body of mathematics; they are results otained within a specific branch of the
discipline. They may also be taken to be, however, a claim about (an intrinsic
limitation, in this case) of mathematics, the discipline.

Science as a system of knowledge is composed of the two layers, body and
images of science, which organically interact and do not have separate exist-
ence. The separation mentioned here is an analytical one, which the historian
of science may identify in hindsight. The study of the interaction between these

YFrom the other three examples advanced by Dauben, non-standard analysis certainly does not
fit the criterion.
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two layers may provide significant insights for understanding the growth of
scientific knowledge in general; in particular, the peculiar fashion in which the
body and the images of mathematical knowledge interact may shed new light
upon historical and philosophical inquiries of mathematics, and upon the
differences between mathematics and other scientific disciplines.” As will be
seen below, the body/images scheme may help us understand the issue of
revolutions in mathematics, and it is therefore convenient to briefly elaborate
on this point here.

Facts and theories are continually added to and deleted from the body of
scientific knowledge. However, in contrast to other scientific disciplines, claims
that entered the body of mathematics through proof are seldom, if ever,
rejected. New theorems and new proofs of old theorems do not falsify old
theorems and proofs. Still, the process of mathematical change is not one of
plain linear accumulation. Discovering a new theorem, proof or concept is but
one of the ways in which mathematical knowledge changes. Yet in the event of
one such discovery, it is the images of knowledge (which are determined by the
content of the body of knowledge, but also by social and philosophical
considerations, by the interaction of mathematics with other sciences, and so
on) that determines the way in which the new item will be integrated into the
existing picture of knowledge, whether it will be considered an important
contribution or whether it will be ignored. Eventual changes in the images of
knowledge may later transform the relative status of existing pieces of accepted
knowledge; theories, techniques, or sets of problems, that the dominant images
of knowledge render uninteresting or devoid of scientific relevance, may
eventually, under a different system of images of mathematics, come to be the
focus of attention of the mathematical community, or at least a specific part of
that community.” Thus, change proceeds not only quantitatively, by addition
of new results or concepts. These additions are, of course, fundamental to the
growth of mathematics, but real change occurs only insofar as the quantitative
growth is accompanied by a qualitative new appreciation of the body of
knowledge.

I said above that claims that entered the body of mathematics through proof
are seldom if ever rejected. Seldom, rather than never, since there have been
several cases in which proofs that had been accepted as correct were later

3A comprehensive discussion of the body/images scheme for scientific knowledge in general
appears in Y. Elkana, ‘A Programmatic Attempt at an Anthropology of Knowledge’, in E.
Mendelsohn and Y. Elkana (eds), Sciences and Cultures, Sociology of the Sciences, vol. 5
(Dordrecht, Boston and London: Reidel, 1981), pp. 1-170. For a detailed discussion of the scheme
as a useful tool for studying the history of mathematics, see Corry op. cit., note 13.

®For an illuminating example of how changes in the images of knowledge may bring about a
reassessment of an existing body of knowledge see H. M. Edwards, ‘An Appreciation of
Kronecker’, The Mathematical Intelligencer 9 (1987), 28-35, pp. 33-35. Of course, Edwards’
account is not explicitly couched in terms of the body/images scheme.
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then obviously there can be nothing like pure revolutionary science in mathe-
matics. (1.1), (1.2) and (1.3) are meaningless regarding the body of mathema-
tics. Existing images of mathematics, on the other hand, may indeed be
rejected when adopting new ones. Thus, a problem which is considered the
most urgent open problem of a particular mathematical branch during a
certain period of time, and which influences the whole of research in that
branch to be directed towards its solution, may be totally forgotten after a
while, either because it was solved or because new, more attractive and
challenging problems appeared in its stead, thus creating a new focus of
attention for the relevant community. The example of Fermat’s last theorem
springs to mind.

The very fact that change in the images of knowledge includes processes of
rejection clears the way, in principle, for the existence of revolutionary change
therein; yet one may still argue whether or not such revolutionary processes do
indeed happen in the history of mathematics. I will claim below that certain
changes in the images of mathematics have been, to a considerable degree,
revolutionary; nevertheless, I doubt whether the case may be made for an
extreme version of (1.1), (1.2) and (1.3), regarding the images of mathematical
knowledge. Be that as it may, this is a point of historical fact and not of logical
possibility. As for (1.5), since all change in the body of knowledge is normal
change, it follows, obviously, that there is significant change which is not
revolutionary. If one admits the possibility of revolutionary change in the
images of knowledge, then it is likely that some instances of it do not constitute
major breakthroughs. Finally, if one admits the possibility of revolutionary
change in the images of knowledge, one may defend, based on historical
evidence, (1.4) with varying degrees of commitment.

4. Revolutions in the Images of Mathematics

In the preceding section I claimed that there is a universally accepted
standard to determine whether an item should or should not be added to the
body of knowledge, namely its endorsement by deductive proof. That this is
the case, is in itself an image of knowledge; in fact, this is the seminal,
constitutive image of mathematical knowledge as we know it ever since the
ancient Greeks. But being an image of knowledge, it is the outcome of a
particular, contingent historical process, rather than a necessary feature of
knowledge as such. In fact, before the adoption of deductive proof as the
touchstone of mathematical truth, various cultures became acquainted with
considerable amounts of arithmetical and geometrical ‘facts’. It might be
claimed that this should not be considered ‘true mathematical knowledge’
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before its endorsement by deductive proof, but obviously this assertion would
beg the question of why is it that mathematical knowledge is knowledge
endorsed by deductive proof. The accumulation of ‘known mathematical
facts’, the realization of the very possibility of justifying this knowledge by
deductive proof, the discovery of particular proofs, the achievement of new
mathematical knowledge through proof — all these are different faces of one
and the same process of transformation. This was the first great transforma-
tion of the images of mathematical knowledge that affected the whole of the
discipline: the ‘deductive transformation’. Why and how did this transforma-
tion come about? This is a question for historical research, and it might be
illuminating to consider it with reference to the Kuhnian agenda.

Notice, first of all, that the acceptance of deductive proof as the decisive
criterion of mathematical truth implies the rejection of other, formerly
accepted criteria: even the longest list of instances of a recurring mathematical
situation will not suffice any more to ascertain the truth of a particular
mathematical claim; what is needed from now on is a deductive argument. In
this sense, the deductive transformation was certainly a revolutionary change
of images of knowledge; it was not the simple addition of a further criterion of
truth to the existing ones, but it implied that a hitherto meaningful image of
knowledge had to be rejected. At the same time, however, this revolutionary
change in images of knowledge did not necessarily bring about rejection of the
existing body of knowledge. The revolution concerned the criteria of true
mathematical knowledge, and not the specific content of that knowledge.

The influence of this particular change of images of knowledge on the future
course of events was all-pervasive; one cannot now think of mathematics
without thinking of proof as the one criterion of truth. Clearly the deductive
transformation was much more decisive in the history of mathematics than any
of Dauben’s examples, or any other major breakthrough in the body of
knowledge than one can think of. At the same time, however, the deductive
transformation is indeed a good exmple of a ‘revolutionary change’ which is
not itself a ‘major breakthrough’ in the sense of the invention of the calculus,
the discovery of incommensurables or any other particular innovation in the
body of knowledge. Of course, the adoption of this new image of mathematical
knowledge did in the long run bring about many innovations in the body of
knowledge, but it in no sense implied the rejection of previously accepted items
of that body of knowledge. Yet, within this framework of ideas, there is still
room for debate among historians, whether (1.3) and (1.4) hold for this
particular example of transformation.

One can regard the ‘deductive transformation’ in terms of ‘paradigm-shift’
(in the sense discussed above). In fact, it was not in itself discovery of a new
particular mathematical fact, argument or theory, yet it played an instrumental
role in conditioning their subsequent discovery. Thus, there is room for



historical debate, in the case of the deductive transformation regarding (2.1)
and (2.2).

Interesting questions arise when considering the issue of rationality (3.1-3.2)
in reference to the deductive transformation. For instance, it is obvious that
having chosen deductive proof as the criterion of truth, criteria for rationality
in the body of mathematics have also been established. But can rationality
criteria be articulated for choices in the images of knowledge in general? More
specifically, can the historical act of adopting deductive proof as the criterion
of truth be justified with rational arguments? Notice that this is not a question
of principle but rather an historical issue. The question of principle could be
answered, for instance, with a Popperian argument: if a choice is subject to
critical debate, it is this debate that confers its rational character upon that
choice. The historical question, by contrast, is whether the choice was actually
done on rational, or rather on different (socially- or psychologically-condi-
tioned, etc.) grounds. I feel inclined to answer that choice was indeed actually
justified on rational grounds, but at the same time I think that a case may be
made for the opposite claim, and the debate must be decided on the grounds of
historical evidence. As was argued in the former section, in this debate one can
also consider the role of the mathematical or scientific community in bringing
about particular choices of images of knowledge, and more specifically, the
choice of deductive proof as the criterion of truth.

Can further cases of change in the images of mathematics be pointed out
throughout the history of the discipline, of similar scope and significance as the
deductive transformation? The answer seems to be clearly in the negative—so
far. In fact, standards of proof have changed throughout history, and these
changes have often been noticed and described in detail by historians of
mathematics, as well as by mathematicians themselves. Yet such changes have
affected limited aspects of the images of knowledge, and often only restricted
domains of mathematical knowledge; the hegemony of deductive proof itself as
the exclusive criterion for truth for the whole of mathematics has been so far
undisputed. Nevertheless, one would seem to perceive on the horizon the
possibility of an eventual challenge to this hegemony. Potential contenders,
perhaps not to succeed but at least to share a limited portion of the throne, are
probabilistic proofs and computer-aided proofs.

It is common knowledge that since the late nineteenth century probabilistic
parlance increasingly permeated many intellectual disciplines so as to become a
further legitimate way of justifying either individual claims or whole theories in
those domains. In particular, the adoption in physics of probabilistic argu-
ments and of whole theories that do not claim to more than a probabilistic
description of phenomena has been mentioned as a turning-point in the very
conception of science. It has seldom been noticed, however, that mathematics
is prominent among those disciplines that have steadfastly denied any foothold



to probabilistic arguments as a criterion of truth.* In fact, the development of
the theory of probabilities since the seventeenth century until its axiomatiza-
tion in the twentieth century by Kolmogoroff was parallel to that of many
other mathematical theories; the increasing mathematical refinement in the
treatment of probabilities may have had some degree of influence on the
gradual adoption of probabilistic arguments in the other sciences, but it in no
sense transformed the criteria of truth for mathematics, as it did for other
disciplines —so far. Mathematical claims are proven in the theory of prob-
ability as in any other mathematical branch, by deductive arguments, and the
mathematical claim ‘P(X) = p’ (i.e. that a certain event X has a probability p)
is adopted with the same degree of certainty as that of any mathematical claim.
On the contrary, however, knowing that P(4) = p, where 4 is any mathe-
matical claim and p is extremely close to 1, does not endow A4 with the status of
‘true’.

But if the development of the theory of probabilities and the adoption of
probabilistic arguments in other disciplines were not followed by a parallel
adoption of similar arguments as a criterion of mathematical truth, develop-
ments in logic and algorithmics might in the future lead to such an eventuality.
In fact, it has recently been proven that certain decidable statements exist,
whose proofs are much longer than a human or a machine can actually write
down. It has been proposed that the truth of such statements be proven up to a
very high degree of probability. The classic example of this is Michael Rabin’s
algorithm for proving primeness.** Rabin’s algorithm takes a number p, and
very effectively calculates the probability P that ‘p is not prime’. Rabin applied
his algorithm to big numbers and, in case that certain number p yielded P less
than one in a billion, he said that p is ‘prime for all practical purposes’.® A
claim of this kind in a mathematical text is, on the face of it, bound to raise
much controversy; in practice, however, although some colleagues replied to it,
Rabin’s result has not brought about much debate. I think this is due to the
fact that it concerns a relatively isolated result. It would be interesting to
speculate what would be the case if a much central result would turn out to be
provable only by means of probabilistic arguments. Be that as it may, the
existence of the proof indicates the actual possibility of advancing an alterna-
tive criterion for truth in mathematics.

Computer-assisted proofs became the focus of philosophical discussion after
the remarkable proof, by Apple and Haken, of a result that had been for long

¥t is remarkable that in the recently published Kriiger, op. cit., note 4, this fact is not even
mentioned or analysed.

M. Rabin, ‘Probabilistic Algorithms’, in J. F. Traub (ed.), Algorithms and Complexity: New
Directions and Recent Results (New York: Academic Press, 1976, pp. 21-40.

3Rabin’s article and its implications are discussed in G. B. Kolata, ‘Mathematical Proofs: The
Genesis of Reasonable Doubt’, Science 192 (1976), 989-990.



an open question: the four-colors theorem. This is not the place to discuss their
proof and the reactions it aroused in detail.’® Let it only be remarked that,
although the acceptance of such a proof as legitimate implies the transgression
of long-existing mathematical tabus, a sensible portion of the mathematical
community seems to have come to terms with it. Obviously everyone would be
more satisfied to have a normal, deductive proof of the theorem, yet the
theorem is considered, by and large, to have actually been proven.

Probabilistic and computer-assisted proofs are still marginal in mathematics,
and I believe that even if they become more common than they are now,
deductive arguments will alone remain in the foreseeable future the preferred
criterion for mathematical truth. Yet the very existence of alternative criteria,
and the very fact that mathematicians have seen the need to pronounce on the
issue, imply that the wall of mathematical consensus is not absolutely solid,
even on its foremost principle, and that further debates and changes in the
central images of mathematical knowledge are likely to appear in the future.
Of course the question remains open whether in the future we shall witness a
second revolutionary change in the images of knowledge, of the scope and
significance of the deductive transformation.

S. The Structural Revolution in Algebra

Finally, I want to briefly consider the rise of the structural trend in algebra,
in terms of the above-discussed concepts. This will illuminate, I believe, the
kind of insights we are bound to gain from an analysis of particular episodes in
the history of mathematics in terms of the Kuhnian agenda and the scheme
body/images of knowledge.

The essence of the structural approach to algebra is the recognition that
several concepts that had appeared in separate, though related mathematical
contexts are, in fact, individual varieties of one and the same species of
mathematical entity, namely, that of the ‘algebraic structures’. Mathematicians
found that a fruitful perspective emerged when they studied all these concepts
from a common perspective; that is, when they defined them in similar terms
(i.e. through an abstract axiomatic formulation), and then investigated them
by addressing similar questions, by using similar conceptual tools to solve
those questions (isomorphisms, quotient structures, extensions, etc.), and by
expecting similar answers to be given as the legitimate ones of the discipline.

The rise of the structural approach to algebra can thus be seen as the
adoption of a new image of mathematical knowledge, rather than as a major

%See T. Tymoczko, ‘The Four-Color Problem and its Philosophical Significance’, Journal of
Philosophy 76 (1979), 57-83, and M. Detlefsen and M. Lucker, ‘The Four-Color Problem and
Mathematical Proof’, Journal of Philosophy 17 (1980), 803-824.



breakthrough in the body of knowledge. Of course, this change took place
after a considerable amount of new concepts and results had been added to the
body of algebraic knowledge over the last few decades, yet it cannot be argued
that this growth necessarily implied a change of perspective like the particular
one that actually took place.

Traditional accounts of the rise of the structural trend in algebra have been
affected by two main characteristic forms of confusion. The first is having
identified this new trend exclusively with the widespread adoption of the
abstract formulation of concepts. On closer inspection of the historical facts, it
turns out that the mere technical ability to formulate such definitions did not
bring real change in the images of algebra until it was combined with the
identification of the various concepts (groups, fields, rings, etc.) as varieties of
the same species.’” The second form of confusion concerns the fact that several
formal definitions of ‘mathematical structure’ were advanced, and that the
development of the structural trend in algebra has often been told as the
development of one of the particular formal definitions.*® For lack of space, we
can not discuss these issues here; I thus limit myself to summarizing the above
claims by stressing the fact that the rise of the structural trend in algebra
implied, above all, a change in the images of mathematical knowledge.

A fully-fledged realization of the structural image of algebra first appeared
in print in van der Waerden’s Moderne Algebra.® Van der Waerden did not
explicitly say so, but his book represented a clear departure from any previous
image of algebra; it presented algebra as the mathematical discipline whose
aim is the definition of the various algebraic systems, and the elucidation of
their respective structures. By contrast, the classical image of algebra saw the
discipline as concerned with polynomial equations and the problems of their
solvability.** We can now see how the Kuhnian agenda is helpful in assessing
the historical significance of the publication of van der Waerden’s book and,
more generally, of the rise of the structural approach to algebra.

First one must ask whether the rise of the structural approach and the
publication of Moderne Algebra were instances of revolutionary change in the
images of algebraic knowledge. The dominant nineteenth-century image of
algebra, as said above, saw it as the discipline dealing with the resolution of
polynomial equations, and more generally, with the problem of their solvabi-
lity. Under the new image of algebra this problem was relegated to a particular
question within the particular sub-discipline of Galois theory, which itself was
subsidiary to other, broader sub-domains of algebra, such as group theory and
field theory. Thus, at the level of the body of algebra, there was no rejection of

See L. Corry, ‘Libros de Texto e Imagenes del Algebra en el Siglo XIX’, Liull 14 (1991), 7-30.
#¥See Corry, op. cit., note 13.

¥B. L. van der Waerden, Moderne Algebra (Berlin: Springer Verlag, 1930).

“This is described in greater detail in Corry, op. cit., note 13, pp. 23-28.



existing items, but under the new image the relative importance of those items
was reassessed. The change in images of knowledge consisted, in the case at
issue, not in having completely solved the problem of solvability of polynomial
equations within the framework of Galois theory, but in having come to
consider this latter theory as a theory dealing with the problem of extensions of
abstract fields and using the tools provided by group theory.*

There still seems to be room for historical debate concerning (1.1)—(1.5).
Regarding (1.1), I feel strongly inclined to claim that this was not a case of
pure revolutionary change in the images of knowledge, and that there are also
many elements of continuity; yet one can still argue for some version of (1.3)
regarding this event. One can still ask [(1.2)] whether the kind of change
represented by the rise of the structural approach to algebra occurs very often
in the history of mathematics, or whether on the contrary it is a rather sporadic
event. (1.4) poses an interesting question to be investigated by the historian of
mathematics. I think that the historical process that led to the conception
behind Moderne Algebra will appear, under closer inspection by historians, a
piecemeal one; at the same time, however, one finds testimonies of van der
Waerden himself and of several other mathematicians as having experienced a
Gestalt-switch experience when first meeting that conception — their indivi-
dual adoption of the new images of algebra was indeed ‘a sudden and
unstructured event’.** Finally, the rise of the structural trend was not a ‘major
breakthrough’, in the sense that the discovery of incommensurability or the
development of the calculus were. In particular, van der Waerden’s book
contained no new important theorem or proof that had not been published
before; still its influence was to be felt in many domains of mathematics
beyond algebra over the decades to come. Certainly algebra was not the same
discipline before and after the publication of Moderne Algebra.

As for the issue of paradigms, the structural approach may indeed be taken
as an illuminating example of paradigmatic achievement at the level of the
images of mathematics. It is not in itself a theory or a specific theorem, yet it
was instrumental in shaping the future course of development of the disciplines
which embraced it, and not only of algebra. Moreover its process of develop-
ment and consolidation was different from that of individual mathematical
theories; it was not shaped by the discovery of particular theorems or mathe-
matical concepts that lay at the base of it, nor was there a particular problem

“For a detailed account of the development of Galois theory and its influence on the rise of the
structural image of algebra, see L. Toti Rigatelli, La Mente Algebrica— Storia dello sviluppo della
Teoria di Galois nel XIX secolo (Varese: Bramante Editrice, 1989), pp. 125-148, and B. M.
Kiernan, ‘The Development of Galois Theory from Lagrange to Artin’, Archive for the History of
Exact Sciences 8 (1971), 40-154, see esp. pp. 135-144.

“(f., e.g., G. Birkhoff, ‘Current Trends in Algebra’, American Mathematical Monthly 80 (1973),
760-782, see p. 771, and J. Dieudonné, ‘The Work of Nicolas Bourbaki’, American Mathematical
Monthly 77 (1970), 134-145, see pp. 136-137.
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whose solution was its raison d’étre. Still, there is a room for debate concerning
(2.2) in this regard: can an algebraist work simultaneously under the sway of
both the structural and the classical image of algebra? In principle there seems
to be no logical reason why this could not be the case, yet it is also important
to consider what has actually been the case in history. This issue is open to
historical research.

The issue of rationality raises here further questions for historical research.
Were there rational grounds for the widespread adoption of the approach? If
so, can one deduce universally valid rules that apply to all choices of images of
knowledge in the history of mathematics? Or-must one rather explain this
change in sociological or psychological terms? This will also lead us to decide
whether or not issues (4.1)—(4.3) are relevant to the present discussion. Once
more, this must be answered by further historical research.

6. Conclusion

Scientific revolution may be defined and characterized in many different
ways. The concept becomes the more meaningful as a category of historic
research, the bolder it is in its implicit assumptions concerning the develop-
ment of scientific knowledge. The above account of the issues involved in the
Kuhnian agenda allows a relative evaluation of the merits of alternative
definitions of ‘scientific revolutions’.

Considered in those terms, one concludes that any meaningful definition of
‘scientific revolutions’ which allows separating ‘revolutions’ from ‘major
breakthroughs’ excludes the possibility that such revolutions take place in the
body of mathematical knowledge. On the other hand, however, revolutions
may indeed take place in the images of mathematics. The above accounts of
the role of proof in mathematics, and of the rise of the structural approach to
algebra, illustrate the potential contribution of studying specific events in the
history of mathematics from this perspective.






