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This is an English version of the article that appeared in Storia della Scienza (2004), 

Roma, Istituto della Encyclopedia Italiana - Vol. VIII, 193-198. 

 

Origins of the Structural Approach to Algebra 

The structural approach to algebra was presented for the first time in its full-fledged 

conception in B.L. van der Waerden’s Moderne Algebra, published in 1930. Under 

this approach, several mathematical constructs (e.g., groups, rings, fields, 

hypercomplex systems, etc.) are seen as diverse manifestations of a single, general 

underlying notion: the notion of an algebraic structure. The aim of algebra, under this 

conception, is to investigate these constructs from a unified point of view, asking 

similar questions about all of them, and trying to answer these questions with the help 

of the same kinds of tools in all cases.  

Prior to the structural approach, algebra was conceived as a discipline dealing 

with the theory of polynomial forms and polynomial equations, including all available 

methods known to solve the latter. A thorough knowledge of the properties of the 

various systems of numbers (rational, real and complex) was assumed to provide the 

foundation for the elaboration of algebraic knowledge. Arithmetic was the foundation 

of algebra. Under the structural approach, the conceptual hierarchy is turned upside 

down, and all systems of numbers appear as no more than particular instances of 

algebraic structures or of combinations thereof: the rational numbers, for instance, are 

the ring of quotients of a rational domain, while the real numbers are an ordered, 

“real” field. Polynomials with real coefficients are studied as a certain kind of ring, 

whose properties derive from “structural” considerations. Certain properties of all 

these entities, which were formerly considered as a matter of course as part of 

algebraic research (e.g., continuity, density, order), are not of the concern of algebra 

anymore, and they are left to the study of other mathematical disciplines.  

Van der Waerden wrote his book under direct influence of Emmy Noether and 

Emil Artin, whose courses he had recently attended in Göttingen and Hamburg, 

respectively. Noether and Artin consolidated in their separate work in the 1920s the 

elements with which van der Waerden reconstructed algebra in his book. However, 

most of the concepts that in the latter’s presentation of algebra appear as different 
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manifestations of the underlying, general idea of an algebraic structure developed 

separately over the second half of the nineteenth century, still within the pre-structural 

image of algebra that dominated that period of time. Thus, although the structural 

approach to algebra does not exist as such before the 1920s, its roots are clearly 

manifest since the mid-1860s. The slow and complex process, whereby the separate 

definition and study of individual concepts eventually became instances of algebraic 

strucures, is more clearly manifest in two main contexts: the evolution of Galois 

theory and the theory of algebraic number fields.  

 

The publication of Galois’s works in 1846, by Joseph Liouville, opened new 

perspectives for dealing with the theory of polynomial equations. However, his ideas 

were in many respects so innovative that it took considerable time and effort to 

assimilate them properly into the existing body of knowledge, and in fact, they were 

incorporated into algebra in different ways.  

Richard Dedekind was among the first to attempt a systematic clarification of 

the theory, in a series of lectures taught at Göttingen in 1856-57. He followed closely 

both Galois’s original results and his approach, stressing the parallel relationship 

between the Galois group and its subgroups, on the one hand, and the field of 

rationals and its successive extensions by addition of roots, on the other hand. As the 

theories of groups and of fields evolved gradually into full blown mathematical 

domains, the principles behind Dedekind’s approach became the basis for the 

standardly accepted conception of Galois theory: following the work of Artin in the 

mid 1920s, the subject-matter of the theory became the interrelation between these 

two structures —in the spirit originally formulated by Dedekind— while the question 

of the solvability of equations by radicals turned into a particular application of it. 

Still, one can notice significant differences between Dedekind’s original conception 

and that implied by Artin’s work, especially concerning the different roles played by 

the various concepts involved.  

 In Dedekind’s treatment of Galois theory, the main subject matter is the 

interrelations between subfields of the system of complex numbers (“rational 

domains”), not of abstract fields. Groups, on the contrary, appear as no more than a 

tool —albeit a very effective and innovative one— that can be used to solve important 
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problems related to that system. Based on the work of Galois, Dedekind explained in 

a very clear, almost axiomatic (in the modern sense) way the nature of this tool and 

how its use is justified in this context. This kind of analysis is absent form his 

discussions of rational domains. Moreover, whenever he discussed rational domains, 

Dedekind focused on the properites of their elements, whereas concerning groups, 

what interested him were always the groups as such. Thus, in many respects, 

Dedekind’s groups and fields are mathematical entities belonging to different 

conceptual levels. 

 But Dedekind’s conception of Galois theory was quite idiosyncratic, and in 

fact it had no immediate influence on teaching and research. The conceptions 

typically reflected in textbooks of the period are even more distant from the idea of an 

algebraic structure than his. In his Cours d'algèbre supérieure, for instance, Joseph A. 

Serret did not change the conception of algebra as the discipline of polynomial 

equations and polynomial forms, even when, in the last of its three editions (1866), it 

became the first university textbook to publish an exposition of Galois theory. 

Serret’s book presented this theory as an auxiliary tool for actually determining the 

roots of a given equation. He did not discuss the concept of group on its own, and he 

formulated the main theorems of Galois theory in the traditional language of 

solvability theory, going back to the works of Lagrange and Abel.  

 Somewhat different was the approach followed by Jordan in his Traité des 

substitutions et des équations algébriques, the first textbook that deliberately and 

explicitly connected the theory of equations and the theory of permutations. Jordan, 

for instance, introduced the important concept of composition series. He had 

originally defined it in an article published in 1869 (though not in terms of groups of 

permutations, but rather in terms of algebraic equations alone), and in the Traité the 

concept already appears as a purely group-theoretical one. However, lacking the 

concept of quotient group, Jordan focused on the quotients of the orders of two 

successive groups in a composition series. He proved that the number and values of 

these quotients (except perhaps for their order) are an invariant of the group. The task 

of providing the broader, more abstract setting for the theorem had to be postponed 

almost twenty years until Otto Hölder completed in 1899 the second part of the proof 

of the theorem named today after both mathematicians. The different treatments of the 
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concept of group by Serret, Jordan and Hölder illustrate the kind of processes 

undergone in the last third of the past century by ideas that eventually came to be 

related to structural algebra.  

 Towards the end of the century Heinrich Weber published his Lehrbuch der 

Algebra, which soon became the standard text of the field. It included most of the 

recent advances in algebra missing from its predecessors, and yet it preserved the 

main traits of the classical nineteenth-century image of algebra as the science of 

polynomial equations and polynomial forms. 

 Weber had published in 1893 an important article containing an exposition of 

the theory of Galois in the most general terms known to that date, deeply influenced 

by Dedekind’s point of view, and including a joint definition of groups and fields, 

both in completely abstract terms. In many respects, Weber’s article represents the 

first truly modern published presentation of Galois theory. In particular, it introduced 

all the elements needed to establish the isomorphism between the group of 

permutations of the roots of the equation and the group of automorphisms of the 

splitting field that leave the elements of the base field invariant. This presentation of 

Weber suggests —in a natural way— the convenience of adopting an abstract 

formulation of the central concepts of group and field. Moreover, it stresses the 

importance of the interplay between structural properties of both entities. It therefore 

implied an important move towards the understanding of the idea of an algebraic 

structure, and towards the adoption of the structural approach.  

 The innovative approach adopted by Weber in this paper, however, had 

minimal direct influence on the algebraic research of other, contemporary 

mathematicians, and, more strikingly perhaps, it did not even influence the 

perspective adopted in Weber’s own textbook, published soon thereafter. As late as 

1924, a new textbook of algebra was published by Robert Fricke under the explicit 

influence of Weber’s textbook, in which even the “new abstract approach” of Weber’s 

article is totally absent. 

The bulk of the first volume of Weber’s Lehrbuch discusses the problem of 

finding the roots of polynomial equations, assuming a thorough knowledge of the 

properties of the different systems of numbers. The concept of root of an equation is 

discussed in terms that later became foreign to the structural approach to algebra: 
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limits, continuity, ε−δ arguments etc. Likewise, we find a discussion of the theorem 

of Sturm, concerning the quantity of real roots of a given polynomial equation that lie 

between two given real numbers. This theorem is related to the use of derivatives and 

other analytical tools, and so are interpolation techniques and Newton’s 

approximation method, which Weber treated in detail.  

 Galois theory is introduced in Weber’s book only after having discussed, in 

nearly five hundred pages, other techniques associated with the resolution of 

polynomial equations. Even then, the fields are mostly seen as sets of complex 

numbers closed under the four operations, and only groups of substitutions are 

defined in the first place. The focus of interest does not lie in the study of the 

properties of the group of permutations as such, but only insofar as it sheds light on 

the classical theory of equations. A definition of group in terms similar to those of 

Weber’s article of 1893 appears only in the second volume of the Lehrbuch, followed 

by an elementary, though rather comprehensive, discussion of the results of the theory 

as known to that date.  

 In 1908 Weber published the third volume of the Lehrbuch, which was, in 

fact, a second edition of his book on elliptic functions and algebraic numbers, first 

published in 1891. Under the typical images of algebra of the turn of the century this 

domain found a natural place in a textbook of algebra. It thus provides a good 

example of how the eventual prevalence of the structural approach to algebra implied 

a redefinition of the borders of the domain: in Moderne Algebra, and in other 

textbooks modeled after it, one finds no treatment of elliptic functions and of their 

relations to problems of algebraic number theory.  

 By the end of the century, group theory was the paradigm of an abstractly 

developed theory. It was, perhaps, the only discipline in contemporary mathematical 

research that may be really qualified as “structural.” Research on groups had 

increasingly focused on questions that we recognize today as structural, and, at the 

same time, the possibility of defining the concept abstractly had been increasingly 

acknowledged. More importantly, the idea that two isomorphic groups are in essence 

one and the same mathematical construct had been increasingly absorbed. Weber’s 

1893 article exemplifies clearly this situation. Yet, in Weber’s Lehrbuch, group 

theory plays a role which, at most, may be described as ambiguous regarding the 
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overall picture of algebra. For, although in the second volume, the theory of groups is 

indeed presented as a mathematical domain of intrinsic interest for research, and 

many techniques and problems are presented in an up-to-date, structurally-oriented 

fashion, the theory appears in the first volume, like for Dedekind, as no more than a 

tool of the theory of equations (albeit, it is now clear, a central one). Weber’s 

textbook, and much more so his 1893 article, bring to the fore the interplay between 

groups and fields abstractly considered more than any former, similar work. However, 

in spite of this, the classical conceptual hierarchy that viewed algebra as based on the 

given properties of the number systems was not changed, or even questioned, in either 

of these two works. 

 Weber’s Lehrbuch became the standard German textbook on algebra and 

underwent several reprints. Its influence can be easily detected through the 

widespread adoption of a large portion of the terminology introduced in it. Thus, the 

image of algebra conveyed by Weber’s book was to dominate the algebraic scene for 

almost thirty years, until van der Waerden’s presentation of the new, structural image 

of algebra. But obviously, influential as the latter was on the further development of 

algebra, it did not immediately obliterate Weber’s influence, which can still be traced 

to around 1930 and perhaps even beyond.  

 

Dedekind’s work also provides the best perspective to examine the role of concepts 

such as fields, modules and ideals, in the framework of the theory of algebraic 

number fields. Working separately and following different approaches, both Dedekind 

and Kronecker attempted in their respective works after 1865 to develop a complete 

theory of unique factorization in algebraic number fields, elaborating on ideas initially 

introduced by Kummer. Roughly speaking, Kronecker’s approach may be described 

as more algorithmic-oriented, whereas Dedekind’s can be characterized as more 

conceptual. Dedekind introduced concepts such as ideals, fields, and modules, and 

strongly relied on their use in order to provide a solid basis for his theory. In this 

sense, his work does put forward what, retrospectively, can be seen as a marked 

structural spirit. However, a close examination of the way in which all these concepts 

appear in his work reveals that, like in the case of Galois theory, they are used with 

very different conceptions in mind.  
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 Fields provide the basic conceptual framework for the study of algebraic 

integers in Dedekind’s work, while modules and ideals are tools for investigating the 

properties of the factorization of those integers. Dedekind’s modules and ideals are 

not “algebraic structures” similar to yet another “structure”, fields. They are not 

“almost-fields”, failing to satisfy one of the postulates that define the latter. While the 

numbers belonging to the fields remain themselves the focus of Dedekind’s interest, 

the properties of the numbers that constitute the modules and ideals are never 

investigated; what interests in this case are the properties of the collections of 

numbers. Therefore, the study of modules and ideals depends on operations such as 

intersection, union and inclusion, and not on the operational relations among the 

numbers contained in them.  

Ideals never appear in Dedekind’s work as a special kind of substructure of 

the more general algebraic structure of a ring. He defined Ordnungen, which are 

formally equivalent to rings, but these Ordnungen do not provide a general 

framework for the study of ideals like rings do in the structural conception of algebra. 

An ideal is not a distinguished subdomain of an Ordnung. Likewise, when dealing 

with modules, Dedekind never mentioned the basic fact that —from an abstract 

perspective— they are in fact groups of numbers. Neither did he apply to modules 

results formerly obtained for groups. 

. Dedekind also defined Dualgruppen, which are formally equivalent to lattices, 

yet differ from the latter in the way their essence and function are conceived. In 

defining Dualgruppen, Dedekind did not take an arbitrary set and endow it with an 

abstractly defined relation of order or with two abstractly defined operations, in order 

to check which theorems can be deduced for such a construct. Rather, he was 

motivated by the desire to improve the proofs of certain identities already known to 

hold for modules. He defined an “algebra of modules” and established abstract, 

logical interdependencies between specific properties of certain operations arising in 

it. He defined specific kinds of Dualgruppen (Idealgruppe and Modulgruppe) as 

collections whose inclusion properties, unions and intersections, satisfy certain 

identities (or “axioms”), and investigated under what conditions those identities are 

mutually equivalent. Finally, he studied the specific example of a certain 

mathematical entity, which had arisen in his previous work —the 28-element 
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Dualgruppe— and extended the previous analysis of the logical interdependence of 

the axioms to include now an additional one: the chain axiom. Although Dedekind did 

provide examples of how Dualgruppen appear in the algebra of logic, fields, etc., he 

did not establish any direct connection between them and the other “algebraic 

structures.” Dedekind’s Dualgruppen do not appear in is work as a further instance of 

one and the same species of mathematical entities like fields, groups, or ideals. 

 The true conceptual affinity of Dedekind’s ideals is not to other “algebraic 

structures” appearing in his work, but rather to two concepts introduced by him in a 

separate context: cuts and chains. Cuts, chains, and ideals are three concepts aiming at 

providing conceptual foundations for the systems of real, natural, and algebraic 

numbers, respectively. Each of these concepts is meant to allow for the proof of some 

basic results, from which the most important facts concerning the domains in question 

may be derived. The concept of cut is meant to elucidate the idea of continuity in the 

system of real numbers. The concept of chain is meant to elucidate the idea of the 

sequence of natural numbers. In the same vein, the concept of ideal was conceived to 

elucidate the most important problem concerning the domain of algebraic integers, 

namely, the question of unique factorization. Moreover, Dedekind’s treatment of 

these three concepts is similar in many ways, although they were published at 

different times. 

 

Like with Galois theory, Dedekind’s idiosyncratic work in this domain provides a 

limiting case and a litmus test for evaluating the degree of acceptance of “structural” 

or “abstract” ideas in late-nineteenth-century algebra. The prevalence in twentieth-

century algebra of the point of view initially introduced by Dedekind is in complete 

opposition to its contemporary acceptance. In the case of algebraic number theory, the 

watershed is very clealry recognizable: the publication in 1897 of Hilbert’s 

Zahlbericht. Although conceived as a summary of the results produced by Kummer, 

Dedekind and Kronecker in this domain, the Zahlbericht was not a survey in the usual 

sense of the term. Hilbert did produce an impressive and exhaustive systematization 

of the existing results of the discipline, but he also added many important results of 

his own. It became the standard reference text for mathematicians working in 

algebraic number theory, and since Hilbert basically adopted Dedekind’s approach as 
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the leading one, its publication turned out to be a decisive factor for the consequent 

dominance of Dedekind’s perspective over that of Kronecker within the discipline. 

 The approach underlying the Zahlbericht is similar to Dedekind’s also 

concerning the interrelation among the basic concepts and tools, and the same attitude 

is manifest in Hilbert’s article on the theory of fields of algebraic numbers, published 

in 1900 in the Encyclopädie der Mathematischen Wissenschaften. He defined rings, 

using this term for the first time, but he did so in a purely number-theoretic context: a 

ring in Hilbert’s sense is a system of algebraic integers of the given field, closed 

under the three mentioned operations. Hilbert defined an ideal of a ring as any system 

of algebraic integers belonging to the ring, such that any linear combination of them 

(with coefficients in the ring) belongs itself to the ideal. Hilbert quoted in this context 

several results from Dedekind’s theory of ideals, and he never described a ring as a 

group endowed with a second operation, or as a field whose division fails to satisfy a 

certain property. Neither did he present ideals of fields as a distinguished kind of ring. 

Hilbert’s ideals are always ideals in fields of numbers. Moreover, in spite of his 

earlier direct involvement with the theory of polynomials and his acquaintance with 

the main problems of this discipline, Hilbert never attempted to use ideals as an 

abstract tool allowing for a unified analysis of factorization in fields of numbers and 

in systems of polynomials. This step, crucial for the later unification of the two 

branches under the abstract theory of rings, was taken more than twenty years later by 

Emmy Noether. Obviously, the absence of such a step in Hilbert’s work is not so 

much a consequence of technical capabilities, as it is one of motivations: an indication 

of the nature of his images of algebra, to which the idea of algebraic structures as an 

organizing principle was foreign. 

 Hilbert’s ideas enormously influenced the course of mathematical research 

over the first half of the twentieth century. His work in number theory, as well as in 

the theory of invariants contained many elements that turned out to be fundamental 

for establishing the structural approach to algebra, but his own conception was 

different from that. Moreover, his direct influence on students and collaborators was 

not instrumental in bringing about an immediate shift towards the structural approach. 

One relevant parameter for evaluating this influence is manifest in the doctoral 

dissertations he supervised (no less than sixty-eight throughout his career). Only four 
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among them dealt with issues directly or indirectly related to Hilbert’s first domain of 

research: invariant theory. Not one of the dissertations deals with problems connected 

with the theory of factorization of polynomials, although at that same time important 

works were being published by other mathematicians —such as Emanuel Lasker and 

Francis S. Macaulay— which elaborated on Hilbert’s own ideas. Nor is there any 

dissertation dealing with topics that later came to be connected with modern algebra 

—such as abstract fields, or the theory of groups in any of its manifestations— and 

that knew at the time intense activity throughout the mathematical world. No less 

remarkable is the fact that, although five among the twenty-three problems that 

Hilbert included in his 1900 list can be considered in some sense as belonging to 

algebra in the nineteenth-century sense of the word, none of them deals with problems 

connected with more modern algebraic concerns, and in particular not with the theory 

of groups. 

 

The works that finally created the substrate on which the structural approach to 

algebra emerged (works by Ernst Steinitz, Emmy Noether, and Emil Artin, to mention 

only the most outstanding) were deeply influenced by mathematicians like Dedekind 

and Hilbert, and by their ideas as described here: these ideas contained many of the 

elements needed for constructing algebra under the structural apporach. But the 

overall conception of algebra within which Dedekind, Hilbert and their nineteenth-

century fellow algebraists produced their work was essentially different from the 

structural one, and we will have to wait until the next generation to see this approach 

definitely coming into mature existence.  

After the publication of Moderne Algebra the discipline of algebra grew and 

developed vigorously within the structural approach and throughout the twentieth 

century. Many important results were achieved that stressed the advantages of 

working under that approach. Entire sub-disciplines were reshaped under this new 

perspective. The most outstanding among them was perhaps algebraic geometry in the 

hands of Oscar Zariski and André Weil. Likewise, many additional structural 

textbooks were published thereafter that helped spreading the gospel further on. One 

of the most influential among them was Survey of Modern Algebra by Garret Birkhoff 

and Saunders Mac Lane, whose first edition appeared in 1941 and which became a 
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cornerstone in the education of generations of mathematicians both in the USA and 

outside it.  

The success of the structural approach in algebra explains to a large extent the 

adoption of closely related points of view in neighboring disciplines, such as topology 

and functional analysis. Strongly structurally-oriented views of mathematics as a 

whole underlie the highly influential work of the French group known as Bourbaki. 

This view was embodied in their multi-volume treatise Eléments de mathématique, 

whose first installment was published in 1939 and which continued to appear over the 

next decades, shaping to a large extent the way in which the discipline of mathematics 

was conceived in many countries around the world, at least between 1940 and 1970.  

Finally, the gradual adoption of a structural point of view in various mathematical 

disciplines raised the natural question whether it would be possible to develop a 

general, abstract (meta-)mathematical theory that would elucidate the very concept of 

a structure and in which one could derive general results valid for the various 

instances of structures arising in different mathematical contexts. The most successful 

and influential effort in this direction is the one associated with the creation of the 

theory of categories and functors. Such concepts were introduced by the first time in 

1942 in an article by Mac Lane and Samuel Eilenberg and soon thereafter the theory 

began its autonomous development. Although it by no means became a universal 

language for mathematics as some of its practitioners may have hoped for, it certainly 

came to provide a very flexible and general formulation that helped redefine certain 

important fields, notably algebraic topology and algebraic homology. 
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