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Alan Turing has often been praised as the foremost figure
in the historical process that led to the rise of the modern
electronic computer. Particular attention has been devoted
to the purported connection between a Universal Turing Ma-
chine (UTM) as introduced in Turing’s article of 1936 [27]
and the design and implementation in the mid-1940s of the
first stored-program computers (with particular emphasis on
the respective proposals both of von Neumann for the ED-
VAC [30] and of Turing himself for the ACE [26]).

In some recent accounts, von Neumann’s and Turing’s pro-
posals (and the machines built on them) are unambiguously
described as direct implementations of a UTM as defined
in 1936. Most noticeable in this regard are the writings of
Jack Copeland and his collaborators, as stated in the follow-
ing example:

What Turing described in 1936 was not an ab-
stract mathematical notion but a solid three-di-
mensional machine (containing, as he said, wheels,
levers, and paper tape); and the cardinal prob-
lem in electronic computing’s pioneering years,
taken on by both ‘Proposed Electronic Calcula-
tor’ and the ‘First Draft”, was just this: How
best to build a practical electronic form of the
universal Turing machine? [9, p. 73]

Similar is the following statement by Andrew Hodges:

[The] essential point of the stored-program com-
puter is that it is built to implement a logical
idea, Turing’s idea: the Universal Turing ma-
chine of 1936. [18]

This statement is of particular interest because, in his
authoritative biography of Turing, Hodges typically follows a
much more nuanced and careful approach to this entire issue.
For instance, when referring to a mocking 1936 comment
by David Champernowne, a friend of Turing, to the effect
that the universal machine would require the Albert Hall
to house its construction, Hodges commented that this “was
fair comment on Alan’s design in Computable Numbers for
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if he had any thoughts of making it a practical proposition
they did not show in the paper.” [21, p. 139] Or, even more
cautiously, in the following quotation:

Did [Turing] think in terms of constructing a
universal machine at this stage? There is not
a shred of direct evidence, nor was the design
as described in his paper in any way influenced
by practical considerations. . . . My own belief
is that the ‘interest’ [in building an actual ma-
chine] may have been at the back of his mind all
the time after 1936, and quite possibly motivated
some of his eagerness to learn about engineering
techniques. But as he never said or wrote any-
thing to this effect, the question must be left to
tantalize the imagination. [21, p. 685–686]

Discussions of this issue tend to be based on retrospective
accounts, and sometimes even on hersay. The most-often
quoted one comes from Max Newmann. Newmann had been
Turing’s teacher and mentor back in the early Cambridge
days and, later on, became a leading figure in the rise of the
modern electronic computer, sometimes collaborating with
Turing. In an obituary published in 1954, he wrote:

The description that [Turing] gave of a ‘universal’
computing machine was entirely theoretical in
purpose, but Turing’s strong interest in all kinds
of practical experiment made him even then in-
terested in the possibility of actually constructing
a machine on these lines. [6, pp. 15-16]

This and other similar testimonies have been repeatedly
cited as solid historical evidence but they are invariably
vague and unsuported.1 Similar is the case with the anec-
dotes about the purported early influence of Turing’s paper
on von Neumann (See, e.g., [21, p. 184, p. 382]).

The present article is intended as a further contribution to
the historical ongoing debates about the actual role of Tur-
ing in the history of the modern electronic computer and, in
particular, about the putative connection between the UTM
and the stored-program computer. I contend that in order to
attain a complete and balanced historical picture one must
explicitly abandon the idea of a straightforward (let alone
necessary) transition from the mathematical idea of 1936 to
the physical machine (or even the design of that machine) in

1Newman repeated this claim again in an often cited oral
interview of 1976, but curiously, in 1955 he wrote a memoir
on Turing for the Royal Society where this point was not
mentioned at all. See [21, p. 686].



1945. More specifically, by exploring the details of Turing’s
pre-war involvement with various fields of mathematics both
at Cambridge and Princeton, and with the actual construc-
tion of two calculating machines, I claim that to the extent
that early stored-program computers of the mid-forties can
be seen as physically embodying ideas discussed in ’Com-
putable Numbers’, this is mostly a result of hindsight and it
says little about Turing’s ideas before the war.

The purported connection that I call into question in-
volves, in the first place, a technical claim, namely that the
UTM as defined in 1936 comprises a representative math-
ematical model of the stored-program electronic computers
of the late forties. Turing in 1947, for example, stated that
digital computing machines such as the ACE “are in fact
practical versions of the universal machine.” [6, p. 383] But
the full validity of this technical claim is debatable in vari-
ous ways. For one thing, a stored program machine is only
one way to construct a practical realization of a UTM. For
another thing, even when the connection was mentioned in
relation with the new machines, reference was to re-cast ver-
sions of Turing ideas rather than to the original ones. [12]

Notoriously, neither von Neumann nor Turing himself even
suggested this connection back in 1945, in their original pro-
posals. In a brief note apparently drafted in 1945 while
working on his proposal, Turing implicitly clarified that the
original context of the ideas of 1936 could not allow for think-
ing about a physical calculator as now proposed on the basis
of electronic components. He did not mention the issue of
instructions stored as data, which might be seen, at least
retrospectively, as connecting the current design with the
idea of a UTM. Rather, Turing referred only to the issue of
accessing the data in reasonable time:

In ‘Computable numbers’ it was assumed that all
the stored material was arranged linearly, so that
in effect the accessibility time was directly pro-
portional to the amount of material stored, being
essentially the digit time multiplied by the num-
ber of digits stored. This was the essential reason
why the arrangement in ’Computable numbers’
could not be taken over as it stood to give a prac-
tical form of machine. [7, p. 456]

But beyond the questionable parallel between a UTM and
a stored-program machine, there are more purely historical
questions that require clarifications. Of particular interest
is the actual, direct influence of Turing’s paper on von Neu-
mann at the time when the latter wrote his famous “First
Draft”. Some authors have recently approached this issue
and have shown (convincingly in my opinion) that, to the
extent that von Neumann (or even Turing himself) actually
took inspiration from Turing’s 1936 paper when engaged in
the design of a stored-program computer, these ideas pro-
vided at most additional input (arguably not the decisive
one) that was incorporated to a broader, complex array of
(mostly engineering and only partly mathematical) consid-
erations (see, e.g.,[12, 15, 16]).2 To what has been said in
works such as these, I will only add some specific remarks
in this article. But I think that my analysis, by focusing on
the earlier part of the story, naturally connects to the views
expressed therein, and gives them further credence.

2It should be remarked that the term ‘stored-program’ was
introduced in 1949 by IBM engineers working at Poughkeep-
sie. See [11]

Considerations of space require that my analysis be brief
and at times schematic. I do not explore the important is-
sue of contemporary developments in different national set-
tings. [3, pp. 379–524] I limit myself to Turing’s work before
being recruited to Bletchley Park, and I do so by relying on
a variety of already published, mostly well-known, primary
sources. I argue that the ‘machines’ that Turing discussed at
the time were purely mathematical constructs. They were
not conceived as possible blueprints for building physical
calculators. Moreover, I claim the very idea of a modern
computer in the sense of either von Neumann’s “First Draft”
or of Turing’s “Proposed Electronic Calculator” was in 1936
not only beyond the scope of Turing’s capabilities, but also
of his concerns. This is true in the obvious (yet crucial) sense
that the specific electronic technology that would allow their
construction was then beyond Turing’s horizon, but it is also
true in the less obvious sense of the question what should
an automatic calculating device be in the first place.

Turing did become involved during this time in the con-
struction of two actual devices and in both cases the idea of
a UTM was of no use, provided no inspiration and was not
even remotely mentioned or hinted at. Neither did Turing
suggest that the right approach to building a real computing
machine would be along the lines of the UTM, and that he
would not pursue this direction just for reasons related to
technical limitations or to lack of time.

1. TURING’S COMPUTERS
Let us start with the 1936 paper itself. Beyond a su-

perficial appearance, there is nothing in the original text of
Computable Numbers that may indicate that Turing was re-
ferring to, or had in mind, actual physical devices as part of
his analysis. The ‘computers’ that he referred to in the arti-
cle are humans who calculate. The aim was to “construct a
machine to do the work of this computer”, and this is what
his famous ‘machines’ are meant to do. Clearly, ‘construct’
was not intended in this text as ‘physically construct’, just
as it was not intended there when Turing speaks about ‘con-
structing’ a proof “by the methods of Hilbert and Bernays”,
or ‘constructing’ a number β about which he asks whether
or not it is ‘computable’.

The non-physical spirit of Turing’s conception of the ‘ma-
chines’ is highlighted by specific comments that do involve
what could be taken on first sight to mean physical com-
ponents such as ink or a square in the (infinite) paper rib-
bon, but which are actually treated as truly abstract enti-
ties. Thus, for instance, when he explains the assumption
that the number of symbols which may be printed is finite.
The reason for this assumption is that otherwise we would
have “symbols that differ from each other to an arbitrarily
small extent”. A footnote explaining this comment leaves no
doubt that, in spite of the wording, Turing is thinking here
not as an engineer, but purely as a mathematician analyz-
ing the situation with conceptual tools taken from measure
theory and topology:

If we regard a symbol as literally printed on a
square we may suppose that the square is 0 ≤
x ≤ 1, 0 ≤ y ≤ 1. The symbol is defined as a
set of points in this square, viz. the set occu-
pied by printer’s ink. If these sets are restricted
to be measurable, we can define the “distance”
between two symbols as the cost of transforming



one symbol into the other if the cost of moving
unit area of printer’s ink unit distance is unity,
and there is an infinite supply of ink at x = 2,
y = 0. With this topology, the symbols form a
conditionally compact space. [27, p. 249]

Some time around May of 1936 Turing prepared a two-
page French summary of Computable Numbers. This time
he did not mention the human computers, and he directly
stated that a number may be called ‘computable’ if its dec-
imals can be written by a machine. In describing what he
meant by a machine, he explicitly characterized the various
configurations of which the machine is ‘susceptible’ as dif-
ferent arrangements of “the levers, the wheels, etc.”3 But
even when he used this suggestive wording, it is clear that
he was speaking figuratively, and that the machines in ques-
tion were to his mind purely mathematical entities. We can
see this from what he writes further:

• A real ‘computing machine’ should be able to write as
many digits as one wishes,

• a machine M is called ‘malicious’ (méchant) [what in
English he called ‘circular’] if there is a number N such
that M will never write N digits,

• an application of Cantor’s diagonal argument proves
that there exists no machine that, if provided with a
description of an arbitrary machine M, can decide if M
is malicious.

It would make little sense to state that by appealing to this
abstract argument, used to tackle situations where infinite
sets are involved, Turing intended to say something about
an actual physical device.

We can take the analysis one step forward by considering
Turing’s ideas in the context of the well-known contempo-
rary debates of the mid-1930s. They involved other logicians
who came up with their own attempts to provide rigorous
mathematical formulations of ideas related to the general no-
tion of ‘effective computability’ or ‘mechanical procedure’.
Gödel, Church, Kleene, Bernays, and Post are among the
most prominent names associated with this ‘period of con-
fluence’. Their motivations, the specific problems they were
addressing, and the approach they followed, were slightly
different in each case, and for lack of space I cannot delve
into them in any detail (see, e.g., [13, 22]). For all of them,
the search for mathematically precise concepts, correspond-
ing to what were then informal ideas, only vaguely under-
stood, was crucial.

Turing was the first to introduce into this kind of dis-
course the word ‘machine’. The more specific term ‘Turing
Machine’ was coined by Church in a famous review writ-
ten in 1937. Church, as is well known, had completed at
roughly the same time—but following a rather different ap-
proach—his own contribution to solving Hilbert’s Entschei-
dungsproblem, which was at the focus of Turing’s paper. Af-
ter becoming aware of this, Turing sent his paper for publi-
cation in August 1936, with an appendix proving the equiv-
alence of both approaches and of the ensuing results. In the
review, Church described the ‘Turing Machines’ as follows:
3http://www.turingarchive.org/browse.php/K/4. In the
above quotation of [9], Copeland and Sommaruga refer to
this French summary as evidence for their statement about
a “three-dimensional machine”.

[Turing] proposes as a criterion that an infinite
sequence of digits 0 and 1 be “computable” that
it shall be possible to devise a computing ma-
chine, occupying a finite space and with working
parts of finite size, which will write down the se-
quence to any desired number of terms if allowed
to run for a sufficiently long time. As a matter of
convenience, certain further restrictions are im-
posed on the character of the machine, but these
are of such a nature as obviously to cause no loss
of generality—in particular, a human calculator,
provided with pencil and paper and explicit in-
structions, can be regarded as a kind of Turing
machine. [4]

Notice that Church used the term ’computing machine’ to
mean any calculating machine of finite size, rather than the
specific kind of ‘machines’ introduced by Turing. The latter
are then characterized by further restrictions, and Turing’s
human calculator becomes here a particular example of the
Turing machine. This goes just the opposite way from the
direction Turing followed in his original formulation. More-
over, as Hodges [20, p. 246] has indicated, Turing had not
referred to machines of finite size as Church did here, and he
certainly did not define computability in terms of the alleged
power of finite machines. Such machines would eventually
repeat themselves, and Turing had attempted precisely to
show how a machine with finite specifications would not be
constrained to do so. The finiteness of Turing’s machines
concerned only the number of configurations, but the tape,
for instance, could not be limited. So, we see that Church’s
account somewhat obscured rather than clarified Turing’s
powerful, original point of view.

Turing, however, never seems to have explicitly reacted
negatively to Church’s characterization. Neither did he re-
act to similar remarks by Gödel, who characterized Turing’s
work in the 1930s as a general analysis of arbitrary ma-
chines.[22] It is likely that Turing did not consider such ac-
counts of his ideas as totally unreasonable. But, as Hodges
further suggested [20, p. 247], it is likely that the partici-
pants in this discourse about computability were using the
word ‘machine’ in a loose manner and without qualifications
to signify ‘mechanical processes’ in general. The machines
and the mechanical procedures they referred to were con-
ceived as part of the metamathematical attempt to provide
the rigorous mathematical characterization of the informal
idea of computing rather than suggesting, in any way, some
practical indication on how to build a physical machine.

Yet another contemporary account emphasizes from a dif-
ferent direction the purely mathematical character of Tur-
ing’s view of his machines. This one is by Alister Watson.
Watson was, like Turing, fellow at King’s College, and he was
also the person who introduced Turing to Wittgenstein in
the summer of 1937. What interests us here is Watson’s de-
scription of Turing’s machines in an article written in 1938.

Turing’s theory of computable numbers is essen-
tially that of mathematical expressions, but he
has put it in a rather striking way in terms of
machines, which would calculate decimals in ac-
cordance with rules which correspond to different
mathematical expressions for sequences of this
kind. He shows how each such machine can be
given a number, different for each machine, and



so concludes that the machines and therefore the
numbers calculated by them form an enumerable
set Although we can give every machine a num-
ber, it is impossible to give a mechanical method
by which we can ascertain whether any particular
machine is really [circle-free] . . . [31, pp. 448-449]

2. TURING’S THESIS
Invited to take his PhD under the direction of Church,

Turing worked at the Institute for Advanced Study in Prince-
ton from September 1936 to July 1938. His dissertation pro-
vides further insight into the relationship between his ‘ma-
chines’ and any thoughts he may have had about building
an actual physical calculator.

A main innovation of the thesis is the idea of an ‘oracle’,
that “cannot be a machine” and which, by definition, in-
volves “some unspecified means of solving number theoretic
problems”. With the help of the oracle, Turing said, “we
could form a new kind of machine (call them o-machines),
having as one of its fundamental processes that of solving a
given number theoretic problem.”

Turing used here the term “number theoretic problem”
with a precise meaning, namely, problems involving state-
ments of the form “for all . . . , there exists . . . ”. Turing pro-
posed the metamathematical task of establishing the com-
pleteness of this kind of problems. The twin prime conjec-
ture and the statement of Fermat’s last theorem fall within
the scope of such problems. But of special importance for
Turing was the fact that the Riemann Hypothesis was also
a number theoretic problem in his sense. As Solomon Fefer-
man has indicated, [14, p. 6] it is not really clear why Tur-
ing concentrated here specifically on this kind of statements
rather than considering arithmetical statements in general.
After all there are other important problems, such as the
finiteness of the number of solutions of a diophantine equa-
tion or the statement of Waring’s problem, that do not fit
into this definition.

At this stage Turing was already involved in the design
of two actual calculating devices, as we will see below. And
yet, even more than in Computable Numbers, there is noth-
ing in the way that ‘machines’ are referred to in Turing’s
thesis that may be taken to suggest the idea of building an
actual device. Much less does the text suggest that a UTM
should be taken as the most appropriate basis for building
some kind of ‘general purpose’, or ‘stored-program’ calcula-
tor. On the other hand, since the ‘oracle’, by its very nature,
cannot be a machine in the restricted sense of the Turing
machine, it brings to the fore the idea of various possible
ways to conceive appropriate models of addressing different
mathematical situations. So, in exploring the capabilities
of the o-machines, Turing actually meant to explore aspects
of mathematical proof and of calculation that would not be
covered by the machine as defined in 1936.

3. TURING’S PRINCETON
Turing’s encounter with von Neumann at Princeton is one

of the topics that arises repeatedly in texts that argue for the
connection between a UTM and the stored-program com-
puter. A most explicit example of this appears in the follow-
ing passage, cited from a text of Jack Copeland and Diane
Proudfoot:

John von Neumann shared Turing’s dream of build-

ing a universal stored-program computing ma-
chine. Von Neumann had learned of the univer-
sal Turing machine before the war—he and Tur-
ing came to know each other during 1936–1938,
when both were at Princeton University. [8]

Indeed the range of the mutual mathematical interests of
these two bright men was very broad. Von Neumann in the
1920s had been a leading figure in the Hilbert circle and
Hilbert’s collaborator in matters related to the foundations
of mathematics. In 1933 he became professor of mathemat-
ics at the IAS. Turing met him in the summer of 1935 in
Cambridge, when von Neumann lectured there on ‘almost
periodic functions’. This was a topic of interest to Turing
at the time and he most certainly attended the course.

Given the later prominence of both Turing and von Neu-
mann in the story of the modern computer, it may seem nat-
ural to assume that their encounter in Princeton was a pe-
riod of intense intellectual interchange, particularly around
the possibility of building calculating machines. A closer
look at the evidence, however, tells a completely different
story of the encounter and of its relevance to our story. Take
for example this passage from Turing’s letter written in Oc-
tober 6, 1936, soon after his arrival in Princeton:

The mathematics department here comes fully
up to expectations. There is a great number
of the most distinguished mathematicians here.
J.v.Neumann, Weyl, Courant, Hardy, Einstein,
Lefschetz, as well as hosts of smaller fry. Unfor-
tunately there are not nearly so many logic peo-
ple here as last year. Church is here of course,
but Gödel, Kleene, Rosser and Bernays . . . have
left. I don’t think I mind very much missing any
of these except Gödel. [6, p. 127]

Turing did not include von Neumann among the “logic peo-
ple”, and with good reason. Right after becoming aware of
Gödel’s results in 1930, von Neumann definitely abandoned
his previous, very active and important involvement with
the foundations of mathematics. [1, pp. 8-16] The promi-
nent mathematicians listed in Turing’s letter showed little
interest in the newcomer from Cambridge and in his work
on logic. Von Neumann was no exception, nor was Hardy,
who was on visit at the IAS. In fact, it is fair to say that
Church was Turing’s only real interlocutor on logic while at
Princeton.

Both Turing and Church were far from the overly extro-
verted style of von Neumann and all evidence indicates that
there was no personal or friendly relationship with him. We
do know that Church’s few active attempts to make Turing’s
work better known in Princeton were not particularly suc-
cessful. Shortly before Computable Numbers was about to be
published, Church urged Turing to deliver a talk before the
distinguished local mathematical community. Obviously,
Turing was thrilled about the opportunity and thought it
might bring his work to greater attention. However, it all
ended up in disappointment, as we read in one of his letters:

There was rather bad attendance at the Maths
Club for my lecture on Dec.2. One should have a
reputation if one hopes to be listened to.[6, p.130]

Turing was also disappointed by the rather limited reac-
tion—besides Church’s review essay—aroused by the publi-
cation of his paper at the end of 1936. We know that only



two persons requested off-prints. Even Hermann Weyl, who
had been a most prominent member of Hilbert’s inner cir-
cle and was a main figure in the late-1920s debates around
the Hilbert program, made not a single remark about the
paper. Naturally, Turing was particularly disappointed by
Weyl’s lack of reaction [21, p. 158]. And it seems that he
did not even expect von Neumann to react in any way to
his paper. To be sure, besides the letter quoted above, von
Neumann is not mentioned in any of the letters that Turing
wrote from Princeton in 1936–37, to either his mother or to
his teacher, Philip Hall.

On April 1938, von Neumann approached his younger col-
league to offer him a job as assistant. Turing turned down
the offer. His fellowship at Cambridge had been just re-
newed, and he was not eager to remain in the USA anyway.
These may have been the main reasons for Turing’s decision.
But what about von Neumann’s motivations for approach-
ing Turing? Hodges [21, pp. 183–184] suggests, that by
this time von Neumann “was aware of Computable Num-
bers, even if he had not been a year earlier.” This is likely,
though there is no direct evidence for it. But what is more
than evident is that the offer had nothing to do with a direct
interest in Turing’s work on computability and logic, either
as developed in the now famous article of 1936 or as then
pursued in his PhD dissertation [28].

Indeed, back in June 1937, von Neumann had written a
letter of recommendation on behalf of Turing for the Proc-
ter Fellowship and there he indicated that Turing “had done
good work in branches of mathematics in which I am in-
terested, namely: theory of almost periodic functions and
theory of continuous groups.” Von Neumann, let me em-
phasize once again, had by then completely abandoned his
interest in logic and there is no indication that at the time
(and indeed anytime before he became involved in the war
effort) he had in any way started to think about comput-
ing machines or even about mathematical topics related to
massive calculations. [1, pp. 25-34]

If, as Copeland and Proudfoot emphasize, “von Neumann
had learned of the universal Turing machine before the war”,
there is no indication that he devoted special attention to
it. While obviously “he and Turing came to know each
other . . . at Princeton”, their interaction was rather limited
in scope and intensity. There is no indication that the two
devoted any time to discussing Turing’s ideas on the topic
and much less that they shared (or discussed) during these
years anything like a “dream of building a universal stored-
program computing machine”.

4. TURING’S ANALOG MACHINE
Between the publication of Computable Numbers and the

recruitment to Bletchley, Turing was involved in the design
and possible construction of two different physical calcula-
tors. The first one, in the fall of 1937, was essentially an
electric multiplier. This was for Turing an early and rather
rudimentary (though no doubt original) foray into machine-
based cryptanalysis. On the mathematical side, it appealed
to a simple but theretofore not very well known noticed par-
allel between binary arithmetic and Boolean algebra. On
the physical side, it brought to bear the possibility of using,
as the basis for a computing device, electromagnetic relays
which had been in use for about hundred years in a different
context, since the early days of telegraphy.

In his account of this interesting episode, Hodges explains

it as an attempt on the side of Turing, to build a physical
embodiment of a specific ‘Turing machine’ —meant to deal
with a specific mathematical problem—with the network of
relay-operated switches acting as material counterparts of
the ‘configurations’:

The idea would be that when a number was pre-
sented to the machine, presumably by setting up
currents at a series of input terminals, the relays
would click open and closed, currents would pass
through, and emerge at output terminals, thus in
effect ‘writing’ the enciphered number.[21, p.177]

We have no evidence that Turing himself would have de-
scribed in these terms what he was doing here, or that in
his view, with the relay multiplier, “Turing machines’ were
coming to life”, as Hodges further remarks. But one way
or another, as Hodges himself has clearly stated elsewhere
[19, p. 5], “this offbeat amateur engineering was the closest
Turing came to developing his ideas of general computa-
tion in a practical direction.” This episode underscores, in
my view, the unlikeliness of seeing Turing’s 1936 UTM as
a blueprint for a counterpart physical device, that would
be general-purpose, digital, and, more importantly, stored-
program. An engineering project involving such ideas just
was well-beyond the horizon of what Turing had in mind at
this point.

But all of this becomes even more evident when we take
a close look at a second calculating device, which Turing
designed and started to build in 1939. This was a device
specifically conceived for calculating approximate values of
the Riemann zeta-function on its critical line. Hodges’ Tur-
ing website, that foremost repository of valuable information
for anyone interested in Turing’s life and work, displays the
application submitted by Turing to the Royal Society for a
grant support for building the device, as well as a blueprint
with some details about its technical design.4 This is not
the place, of course, to give any details about the math-
ematical significance of the Riemann Hypothesis (RH), of
Turing’s overall involvement with this problem, and of his
specific contribution to it. This can be found in [2, 17]. But
there are some specific points that are highly relevant to our
concerns here, and I proceed to discuss them now.

Turing’s interest in RH was sparked shortly after matricu-
lating at King’s College in 1931. There he attended a course
by Albert E. Ingham, who in 1932 published an important
text on the distribution of prime numbers. At King’s, Turing
also befriended Stanley Skewes, who in 1933 made a remark-
able contribution to research on RH. Very briefly stated,
Skewes calculated an upper bound for the smallest value of
x for which π(x) > Li(x). Here π(x) represents the number
of primes which are smaller than a given integer x, while
Li(x) is the value of the integral

∫ x

2
dx
lnx

. It is well known
that RH concerns the question of the nontrivial zeros of the
Riemann zeta-function ζ(s) and its relation to the estima-
tion of the value of the difference between the two above
functions. John E. Littlewood had proved in 1912, contrary
to the common belief at the time, that the difference π(x) -
Li(x) changes sign infinitely many times, both if RH is true
or if it is false. Skewes’ proof involved two different values
of the upper bound for the respective cases, and both values
were amazingly high. For instance, if RH is true, then he

4http://www.turing.org.uk/sources/zetamachine.html



proved that the smallest number x where this change of sign

happens is smaller than 101010
34

.
While at Princeton, and during his visit in Cambridge in

the summer of 1937, Turing actively pursued research re-
lated to RH. Among other things, he improved the value
of Skewes’ bound, and, more importantly, he improved the
existing methods for calculating zeros of ζ(s). Recently, Ed-
ward Ch. Titchmarsch had been involved with such calcu-
lations at Oxford and he was able to establish that the first
1041 nontrivial zeros of ζ(s) all satisfy RH.[24, 25]. Turing’s
plan of 1939 for building a calculating device is directly con-
nected to Titchmarsch’s work.

Titchmarsch’s calculations were based on approximation
formulas that required massive iterations of addition and
multiplication, as well as the use of cosine tables. For “plan-
ning and supervising the calculations, which were carried out
with Brunsviga, National, and Hollerith machines,” Titch-
marsch explicitly thanked J.L. Comrie.[25, p. 261] Comrie
had since 1929 been ‘Secretary of the British Mathemat-
ical Tables Committee’, and he was the driving force be-
hind a great amount of important projects of scientific table-
making conducted in the UK at the time. [10, pp. 242 ff.]

Astronomical tables were of particular importance among
such projects, and their preparation involved repetitive sum-
mations of circular functions with different frequencies for
plotting the positions of planets. Comrie’s recent introduc-
tion of Hollerith punch-card techniques to scientific table-
making [5] signified a remarkable innovation in the field.
As it happened, the calculations required in Titchmarsch’s
approach to calculating zeros of ζ(s) were quite similar to
these. Comrie was clearly the right person to provide the
necessary technical assistance.

Typically, Comrie did not actually perform any calcula-
tions himself. Rather, he had teams of ‘human computers’
(mainly women) to do that work. Each computer received
data to be worked out, and, with the help of “Brunsviga,
National, and Hollerith machines,” she would perform a spe-
cific task, clearly defined in advance according to the kind
of input presented to her. She would then deliver the re-
sult to another person in the team who also carried out a
respective task, well-defined in advance, again depending on
the kind of input at stake. Notice, then, that while Turing’s
‘machines’ of 1936 provided a mathematical model meant to
analyze the nature and scope of the calculations that indi-
vidual human computers could and did effectively perform,
they can also be taken to describe adequately (and perhaps
even better) the model of what coordinated teams of human
computers were actually doing in Turing’s time, when ad-
dressing heavy computational tasks that went beyond what
an individual could actually achieve.

Now, when Turing in 1939 undertook to perform relatively
massive calculations in one of his main mathematical topics
of interests other than logic, he was aware that precisely at
that time, one of Comrie’s teams had recently been involved
in the same task, aiding themselves with mechanical calcula-
tors. The conceptual similarity between Turing’s model and
Comrie’s activities could not have escaped Turing’s mind.
And yet, for his own calculations, he did not choose to follow
or improve the direction previously pursued by Titchmarsch.
Much less did he take a step further towards anything like
a UTM. Rather he went into the totally different direction
of designing an analog machine, specifically conceived for
supporting his work on what for him was such an important

mathematical task.
Turing’s design relied on a machine built some years ear-

lier for tide prediction at Liverpool. It performed trigono-
metrical summations based on a combination of pulley wheels,
each representing one of the gravitational effects that give
rise to tidal phenomena. A thin nickel tape connected the
various pulley wheels and ‘summed up’, as it were, their
separate movements. The tidal highs and lows were thereby
registered on a chart located at the bottom of the machine.

Turing thought that similar principles would be useful
for constructing an apparatus for calculating trigonometric
sums that were at the heart of his method for the zeros of
ζ(s). In some cases, he thought, the apparatus would not
be accurate enough and then it would be necessary to work
out the calculations manually. But he believed that such
cases would be extremely rare. He specifically stressed that
the apparatus would be so closely analog to the simulated
mathematical situation to the extent that he could not think
“of any application that would not be connected with” ζ(s)!
The project, at any rate, was never completed because of
the outbreak of war, and no parts of it have survived.

I find it quite interesting that when Hodges describes the
project on his website, he speaks about“a special machine to
calculate approximate values for the Riemann zeta-function
on its critical line.” This is not the only place where the term
‘special machine’, which was not used by Turing, is used in
this context (e.g., [2, p. 29],[17, p. 270]). I take it to be a
revealing, subtly misleading description of what Turing had
in mind in 1939, particularly because the project is often
mentioned in conjunction with Turing’s later efforts of 1950
to attack the same problem using now a ‘general-purpose’
electronic computer, the Manchester University Mark I.[29]

My point is that in 1939 Turing approached the actual
construction of an apparatus the way he did, not because—for
lack of time or resources—he was compelled to make do
with it. This was not a ‘special’, limited or rudimentary
version of what for him would be the real thing, namely, a
general-purpose, stored-program, digital and electronic com-
puter (presumably being a physical embodiment of a UTM).
Rather, it is that the latter alternative was not within the
horizon of possible or convenient approaches to be followed.
To the contrary, what the evidence shows is that at the
time, Turing considered the analog approach to be the most
intrinsically appropriate one for the task at hand.

As a matter of fact, the tremendous success of modern
digital computers has negatively affected the way in which
the history of analog computers in general has been told.
The case of Turing’s 1939 project is just one example of this,
though seldom mentioned in this context. Analog computers
were not only a natural choice in many situations before the
war, but even after the emergence of digital computing in
the post-war period they were not immediate displaced.[23]
And a most remarkable example of this is precisely the Liv-
erpool tide-predicting machine, which remained in use until
the 1960s before being superseded by electronic computers.

5. INTUITION AND TURING’S MACHINES
Turing left Cambridge in September 1939 for Bletchley

Park. Over the next few years, he would devote all of his
intellectual energies to war-related projects, while temporar-
ily setting aside mathematical research in his other fields of
interest. By 1945 he would have added important skills,
as well as familiarity with electronic valves and with ma-



chines of various kinds, to the already impressive arsenal of
knowledge he had brought with him at the time of his re-
cruitment. His activities after 1945—including of course all
of his involvement with electronic computers—were deeply
influenced by the years at Bletchley.

But over the first months after his recruitment, Turing
and Newman continued to correspond and to discuss issues
connected to their pre-war activity. This correspondence
bears witness to the way in which the two went on to speak
about ‘Turing machines’ at a time when Turing had already
gained actual experience not only with the two calculating
devices that he had been involved with, but also with what
he had now started to learn at Bletchley. Remarkably, they
stuck to the language of ‘machines’, not in the sense of phys-
ical devices, but rather as the relevant, purely mathematical
idea on the basis of which they would discuss issues related
with the foundations of arithmetic.

In a particularly interesting passage, under the heading
“Ingenuity and Intuition”, Turing replied to a previous letter
of Newman where the latter seems to have commented on
matters related to the Hilbert program:

I think you take a much more radically Hilber-
tian attitude about mathematics than I do. You
say ‘If all this whole formal outfit is not about
finding proofs which can be checked on a ma-
chine it’s difficult to know what it is about’. [D]o
you have in mind that there is (or should be or
could be, but has not been actually described
anywhere) some fixed machine . . . and that the
formal outfit is, as it were about this machine. If
you take this attitude . . . there is little more to be
said: we simply have to get used to the technique
of this machine and resign ourselves to the fact
that there are some problems to which we can
never get the answer. . . . If you think of various
machines I don’t see your difficulty. One imag-
ines different machines allowing different sets of
proofs, and by choosing a suitable machine one
can approximate ‘truth’ by ‘provability’ better
than with a less suitable machine, and can in a
sense approximate it as well as you please. The
choice of a machine involves intuition, . . . or as
[an] alternative one may go straight for the proof
and this again requires intuition.[6, p. 215]

The fact that still in 1940, when the classical debates on the
foundations of arithmetic had almost totally faded away,
Newman and Turing continued their interchanges on such
matters, is worthy of attention in itself. But no less inter-
esting is the subtle twist that Turing introduced into this dis-
cussion when he mentioned the possibility of having various
kinds of machines, according to different kinds of intuitions
which are relevant to different mathematical situations. The
UTM was not for Turing ‘universal’ in this important sense.

It seems that now—in those few opportunities when he
could think about the foundations of mathematics, and about
questions of ‘truth’, or ‘provability’—Turing also incorpo-
rated new directions such as he had explored in his PhD.
This included no doubt the oracle, but also, so it seems,
alternatives to the basic ‘machine’ defined in 1936.

6. CONCLUDING REMARKS

I conclude with a final, somewhat conjectural suggestion.
By its very nature, Turing’s oracle could not be a standard
Turing machine. ”Solving a given number theoretic prob-
lem” is one of “its fundamental processes”. And the Rie-
mann Hypothesis is one such problem. Now, it seems to me
that Turing’s construction of his analog machine and the
variety of machines he mentioned in the letter to Newman
shed interesting light, retrospectively, on that passing, some-
what unclear comment that Turing advanced in his thesis.
From the letter we learn that each mathematical situation
calls for the choice of a suitable machine and these choices
rely on the right intuition to do so in each case. The UTM
had been a highly successful, specific choice for dealing with
the Entscheidungsproblem, but that would not mean—even
in principle—that it would provide the model for a physi-
cal universal machine, suitable for all mathematical tasks.
If we may somehow think of these mathematical models as
suggesting blueprints for designing physical devices, then an
analog machine such as planned by Turing in 1939 would
come much closer than anything built along the lines of a
UTM to embodying specific, “fundamental processes” asso-
ciated with a particular number theoretic problem, in the
sense suggested in the PhD thesis.

When Turing in 1950 retook the task of calculating zeros
of ζ(s), the sea-changes that had affected the world of auto-
matic computation had rendered all those pre-war consider-
ations obsolete. The natural approach to follow for Turing
was now to write a specific program to run in a stored-
program machine. But the Mark I, as all other similar ma-
chines at the time, were not only stored-program. They were
also electronic, large-scale, high-speed, general-purpose and
digital. In 1939, all these crucial components of the ma-
chines that started to be built in the late 1940s were far
beyond the horizon.
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