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‘Recent studies in the philosophy of mathematics have increasingly stressed the social
niennial, and historical dilt}ellsions of mathe.matic.al practice. Although this new emphasis has
on. DC: fathered 11_1terest1ng new'per.spectwes, it .has also blurred the distinction between

’ : mathematics and other scientific fields. This distinction can be clarified by examining

the special interaction of the body and images of mathematics.

Science, Mathematics has an objective, ever-expanding hard core, the growth of which is

ernhard, conditioned by socially and historically determined images of mathematics. Mathe-
matics also has reflexive capacities unlike those of any other exact science. In no

Kohlen- oj{hf?r 'exact science can the standard methodologicql framework used within the

. discipline also be used to study the nature of the discipline itself.

122-27. Although it has always been present in mathematical research, refiexive thinking
has become increasingly central to mathematics over the past century. Many of the

enter for images of the discipline have been dictated by the increase in reflexive thinking which

edicine has also determined a great portion of the contemporary philosophy and historiog-

srusalem raphy of mathematics.

1. Introduction

Throughout history, mathematics has been seen as the paradigm of certainty and
precision. Even after the Einsteinian revolution brought about deep changes in the
general conception of science, mathematics mantained its privileged position as a
body of unquestioned truth. The epistemological problems arising from the de-
velopment of non-Euclidean geometry and the paradoxes of set theory were over-
come without compromising the general agreement that mathematics represents a .
body of certain knowledge. In contradistinction to the philosophy of science in
general, philosophy of mathematics did not consider error and uncertainty as a
problem that required its attention. On the contrary, since the turn of the century the
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main task of the philosophy of mathematics became the justification of certainty in
mathematics through the search for an adequate axiomatic foundation.

It was only in the 1960s, starting perhaps with Lakatos’ work, that the first cracks of
uncertainty in the wall of mathematical truth began to be philosophically recognized.
The idea that every mathematical proof may be absolutely formalized, following the
model of Russell and Whitehead’s Principia (1910-1913), had long since been
completely abandoned at the practical level. Today it is being abandoned at the
theoretical level as well. Recent trends in the philosophy of mathematics assert that
mathematical research should be studied as a human activity and not as a transcen-
dent system of abstract ideas. When viewed as a human endeavor, mathematics
throughout history has also comprised error and uncertainty.

Likewise, historical and philosophical research about mathematics has increas-
ingly paid attention to the social dimension of the mathematical enterprise. Until the
early 1970s, mathematics was generally considered to be a system of “disembodied
ideas” or of ideas contained in the mind of a single “ideal” mathematician. New
trends in the philosophy of mathematics underline the decisive role of communi-
cation among contemporary mathematicians, on the one hand, and of knowledge
transfer from one generation of researchers to the following one, on the other. Thus
these new trends reflect similar trends in the philosophy of science in general.

Lately, the term “foundationalist” has been used to identify philosophical systems
that regard mathematics as a system of ideal, absolutely certain knowledge. “Foun-
dationalism” is the search for a convenient axiomatic characterization of mathemat-
ical knowledge. Those who, in contradistinction to the “foundationalists,” are eager
to consider the sociohistorical dimension of mathematical knowledge, and stress the
central role played by error and uncertainty within that dimension, have been said to
uphold a *“quasi-empirical” approach to the philosophy of mathematics.! In what
follows, I shall adopt those labels.

As a result of the efforts by many authors to bridge the gap that existed until the
1970s between the philosophy of mathematics and the philosophy of science in
general, the quasi-empirical trend has been highly emphasized during the past
decade. This emphasis has sometimes led, in my opinion, to overstated conclusions.
The willingness to take into account the sociohistorical dimension of mathematical
knowledge and the role of uncertainty in its development does not necessitate
blurring the distinction between mathematics and other systems of knowledge,
including scientific knowledge. In what follows, I present what I take to be a more
balanced picture of mathematics.

More specifically, my aim in this paper is to provide a framework for research into
the history of mathematics — a framework in which sociohistorical factors are relevant

! Ttake these labels from Tymoczko 1985, Tymoczko, in turn, adopted the term “quasi-empirical” from
Lakatos and Putnam. Philip Kitcher has analyzed in similar terms the diverging trends in the contempo-
rary philosophy of mathematics. He has stressed the aprioristic conception of mathematical knowledge
underlying the foundationalist trends. Kitcher uses the term “mathematical naturalism™ for the “quasi-
empirical” trend. See Kitcher 1988, esp. 294-98.
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but in which the special character of mathematics is preserved. I make no pretense of
answering all the questions that will arise from the description of this framework;
instead I will simply attempt to indicate the questions that must be answered clearly
in order to understand the growth of mathematical knowledge.

One further word of caution is needed. Although mathematics shares some
characteristics with nonscientific fields, I shall take for granted the difference be-
tween the exact sciences and other systems of knowledge, and I shall not further
describe or explain this difference. My main concern will be with those aspects in
which mathematics more closely resembles other exact sciences — namely, objectiv-
ity, the high degree of agreement concerning validity of results, the extensive use of
formally presented theories and arguments, and other related issues. I will therefore
refer mainly to the relationship between mathematics and physics. Having said that, I
proceed now to present my picture of the development of mathematics.

We may distinguish, broadly speaking, two sorts of questions concerning every
scientific discipline. The first sort are questions about the subject matter of the
discipline. The second sort are questions about the discipline qua discipline, or
second-order questions. It is the aim of a discipline to answer the questions of the first
sort, but usually not to answer questions of the second sort. These second-order
questions concern the methodology, philosophy, history, or sociology of the disci-
pline and are usually addressed by ancillary disciplines.

Some statements can easily be classified as either first-order or second-order.
However, for some statements related to a given discipline it may be harder to
establish whether they are answers to questions about the subject matter or about the
discipline qua discipline. Newton’s theory of motion clearly belongs to the first
category; it is a statement about how bodies move. The claim that Copernicus’
system is “simpler” than Ptolemy’s clearly belongs to the second one: it is a claim
about astronomy rather than a claim about the heavenly bodies. Godel’s theorems
are a deep result within a specific branch of mathematics; however, they may also be
taken to be a claim about mathematics qua discipline.

We can therefore tentatively consider two layers related to a scientific discipline,
and they can be described schematically as the “body of knowledge” and the “images
of knowledge.” In the body of knowledge are included all those statements related to
the subject matter of the given discipline, while the images of knowledge include all
claims about knowledge itself. This division is not sharp, and to be sure, it is
historically determined: we can usually classify a statement as belonging to one or the
other only at a given point in time.

The body of knowledge includes theories, “facts,” methods, and open problems.
The images of knowledge serve as guiding principles, or selectors; they pose and
resolve questions that arise from the body of knowledge, but are not part of and
- cannot be settled within the body of knowledge itself. For example, the images of
knowledge help to resolve such questions as the following: Which of the open
problems of the discipline most urgently demands attention? How should we decide
between competing theories? What is to be considered a relevant experiment? What
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procedures, individuals, or institutions have authority to adjudicate disagreements
within the discipline? What is to be taken as the legitimate methodology?

All these are second-order questions, or metaquestions; they consider diverse
aspects of the discipline qua discipline. It is evident that the answers to these
questions depend on the contents of the body of knowledge at a given stage of
development of the discipline. Moreover, changes in the body of knowledge may
alter these answers. But these answers are not exclusively determined by the body of
knowledge; they may be influenced by other, external factors as well. Thus, faced
with one and the same body of knowledge, two different scientists could hold
different images of knowledge. In turn, the images of knowledge play a decisive role
in directing research and further determining the development of the body of
knowledge.

The study of the interaction between these two layers — the body and the images of
knowledge — might provide a coherent explanation of the effect of sociohistorical
factors on the realm of pure ideas, while avoiding dubious “strong” explanations that
overemphasize the effects of these factors. Such explanations, which attribute the
content of theories to factors absolutely external to them, lead unavoidably (and
sometimes intentionally) to relativism.

The identification of two layers within mathematical knowledge may also lead to a
clear differentiation of mathematics from other scientific disciplines. Further, it may
clarify some issues in the philosophy of mathematics; it may, in particular, shed light
on the relationship between the philosophy of mathematics and the history of
mathematics.

The centrality of second-order thinking and the terms “body of knowledge” and
“images of knowledge” are taken from the work of Yehuda Elkana (see esp. Elkana
1981). These concepts arose in the framework of an ambitious program aimed at an
anthropologic characterization of scientific knowledge as a cultural system. Accord-
ing to Elkana, scientific knowledge does not grow in a linear process of progressive
accumulation, its growth is explained in terms of its body and images:

Knowledge grows dialectically by way of ongoing critical dialogue — between
competing metaphysics and theories in the body of knowledge; between
competing images of knowledge; between competing normative tenets. (Elkana
1982, 210)

The concept of images of knowledge plays a very central role in this scheme.
According to Elkana, Western culture is characterized and distinguished from all
other cultures by the special nature and status that second-order thinking assumes
within it. This is not to say that second-order thinking appears in no other culture; but
only in Western culture is there ‘‘a conscious attempt to apply sysfernatically a corpus
of thought about thinking to a body of knowledge™ (Elkana 1986, 41; italics in the
original).

A proper understanding of the various dimensions of scientific knowledge and, in
particular, of its historical development can be attained, then, only if the body of
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knowledge is considered through, and in conjunction with, the images of knowledge.
If we look at science as a written text the essence of which we want to grasp, then we
can say that the body of knowledge stands, as it were, as the text proper, whereas the
images of knowledge stand as the context, in the broadest sense of the word. A
complete understanding and a proper historical interpretation may be obtained only
through a correct contextual reading of the text — that is to say, through a correct
interpretation of the images of knowledge.

Elkana does not specifically deal with mathematics, but 1 hope to show in this
paper that his ideas can provide an especially useful conceptual framework for a
discussion of that particular discipline. Moreover, a clarification of the role of
second-order thinking in the development of mathematics may, in turn, provide an
appropriate framework for a closer inspection of its role in science in general; this
topic, however, will not be dealt with here.

2. Reflexivity in Mathematics

What sets mathematics apart from all other exact sciences is the nature of its subject
matter and the fact that mathematics becomes its own subject matter. Furthermore,
these two aspects are closely interconnected. Distinctive about the subject matter of
mathematics is that the question of what constitutes it is an unsettled one. Distinctive
about its being its own subject of study is that mathematics is the only exact science in
which statements about the discipline may still be inside the discipline. I shall call this
capacity of mathematics to study itself mathematically the “reflexive character of
mathematics.” True, there are other systems of knowledge — such as philosophy,
history, and art — that to some extent share this reflexive ability. However, as
indicated above, the kind of knowledge attained in mathematics is from the outset
different from that of those fields, and we can therefore properly speak of a singular
reflexive character of mathematics.

In his exposition of the body of knowledge/images of knowledge scheme (here-
after referred to as the body/images scheme), Elkana singles out the conscious
systematic resort to second-order thinking as the hallmark of Western culture and, in
particular, of science. This resort to reflexive thinking has a historical point of
departure in ancient Greece, and its origins may be found in the disciplines of
rhetoric and geometry rather than in the physical sciences (see esp. Elkana 1986,
42-53). Thus the Greeks introduced geometrical proof and Elkana sees in geomet-
rical proof an instance of second-order thinking par excellence. This last point,
however, should be elaborated upon because for mathematics at least the picture 1s
somewhat more complicated than it first appears.

The idea that mathematical knowledge is validated only through proof is indeed
second-order thinking, since it is a claim about knowledge and about what kind of
assertions can be considered knowledge. The proof itself, however, is part of the
body of knowledge. As a matter of fact, it constitutes the body of mathematics par




414 LEO CORRY

excellence. The novelty of Greek mathematics lies precisely in its new “‘image” of
what is to be counted as real mathematical knowledge — namely, theorems wirh
proofs. Thisis a knowledge-producing image, since it stimulates the discovery of new
theorems (with proofs), as well as proper proofs of “known mathematical facts.”
Proofs are not meant to act merely as justification for the discovery of “facts”; they
are themselves the “facts” to be discovered.

Thus, early in the time of the Greeks a central image of mathematics was estab-
lished that has not changed until now. This image establishes that it is proofs that
legitimate, or even constitute, true mathematical assertions. But how do we know
what a “legitimate proof” is? The criteria for telling legitimate from nonlegitimate
proofs are in themselves images of mathematics and are therefore historically deter-
mined. 1 shall return to this point.

The development of mathematical knowledge since the Greeks included — like the
development of any other field of knowledge — a series of changing images of
mathematics. But at variance with other scientific fields, mathematics provided the
possibility of producing and confronting claims about the discipline within the
discipline itself. Thus a considerable amount of reflexive thinking has always been
part and parcel of mathematical research. The last two centuries have seen an
unprecedented growth of this reflexive activity; the awareness of this growth has, in
turn, produced many new images of knowledge.

The very idea that this reflexive activity can be conducted within mathematics is
itself an image of knowledge. Important parts of contemporary mathematical
research (e.g., everything that is usually included under “metamathematics”)
developed under the spell of this image; and the success attained by that kind of
research has, in turn, led some people to adopt another image of knowledge —
namely, that claims about mathematics are significant only insofar as they are
formulated in strictly mathematical terms and justified by mathematical arguments.
This last image is not presently part of the body of mathematics, but it might
eventually become so in some unforeseen way.

The above discussion leads to a more precise differentiation between reflexive
knowledge and images of knowledge, in mathematics. I shall take reflexive knowl-
edge to be all thinking about mathematics that is carried out strictly inside mathemat-
ics — that is, all parts of the body of mathematical knowledge whose subject matter is
an aspect of mathematics qua discipline. This includes Godel numbering and Godel's
theorems, proof theory, postulational analysis and so on. By “images of knowledge”
I intend all claims about mathematics that at a given historical point are not an
integral part of the mathematical body of knowledge. This includes the philosophy
and history of mathematics; it includes “‘comprehensive” research programs such as
Klein’s Erlangen program or Hilbert's list of problems of 1900 (the problems
themselves are, of course. part of the body of knowledge; to claim that a certain list
comprises the most important problems in mathematics to be solved in years to come
is a claim about the discipline); it includes established beliefs about mathematics that
are accepted on the basis, say, of the authority of great mathematicians; and it
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includes the degree of importance that is ascribed to the authority of great mathema-
ticians in establishing the relative importance of theories and problems.

So stated, the distinction between the mathematical body of knowledge *“*proper”
and reflexive mathematical knowledge may be rather blurred; in fact, as claimed
earlier, a considerable part of mathematics deals with mathematical thinking. To ask
whether there is a part of the body of mathematical knowledge that is not reflexive (in
the present sense of the word) is, then, tantamount to asking whether there is some
subject matter to mathematics other than mathematics itself. We can skip that
question for our purposes. It is enough in this context to realize that some claims
about mathematics qua discipline are indeed stated mathematically within the body
of knowledge and some others belong more specifically to what we have called
images of knowledge. It may be the case, and it has certainly been the case in history,
that some images of knowledge are directly transformed into reflexive thinking and
hence enter the body of knowledge of mathematics. For instance, Russell’s theory of
types is a reflexive theory that tackles Russell’s logicist thesis, which is an image of
knowledge. The requirement of confronting a philosophical claim about mathemat-
ics with a mathematical system designed to test it mathematically is itself an image of
knowledge; as a matter of fact, it is a rather recent image of knowledge, one to which
mathematicians and philosophers were not committed in the past. For instance, no
mathematical theory was specifically developed to prove or disprove Kant’s claim
that the truths of geometry are synthetic a priori.

Letusreturn briefly to my earlier characterization of mathematics, which may now
be stated more clearly. Systematic reflexive knowledge of the kind mentioned above
is possible only in mathematics. Physics, the discipline, cannot be the subject matter
of physical research because physics deals exclusively with certain aspects of the
outside world that, up to this day, do not include scientific theories, or ideas in
general, as such. While there may still be disagreement as to what constitutes the
subject matter of mathematics, it is certain that some aspects of mathematics itself
are part of it.

Earlier I claimed — and this is central to the present discussion — that images of
knowledge and the body of knowledge cannot be neatly separated, and that they
constantly interact dynamically. I now claim that the nature of the interaction
between the two layers is different in mathematics from that in the other exact
sciences. Only in mathematics is there an intermediate layer, reflexive knowledge; in
no other instance may claims about a given discipline gua discipline be inspected with
the same methodological tools and through the same criteria as any other claim of
that discipline and, accordingly, be included in the body of knowledge or rejected
from it. The reason for this peculiar interaction is that while in all other exact sciences
the discipline and its subject matter are two separate entities of a completely different
nature (heat and laws of heat, for example), in mathematics the nature of the
discipline and the nature of its subject matter do not necessarily diverge (e.g.,
predicate calculus and inferential systems, categories of categories). The peculiar
presence of reflexive mathematical thinking implies, as we have seen, a different
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interrelation of layers. The process of interaction will be explained below in greater
detail.

There is another way in which mathematics differs from other exact sciences.
Several contemporary philosophers of science. in arguing against the formerly ac-
cepted positivist view, have discussed the interaction between metaphysical concep-
tions and scientific theories. All of them agree that this interaction represents an
important aspect of the rationality of science.’

Metaphysics is associated with every scientific claim about the world, because all
such claims entail, along with their properly scientific content, an underlying view
thatis not directly testable. However, since it is not absolutely clear that mathematics
deals in some way with the outside world, the necessary existence of such a meta-
physical core in mathematics may be questioned. 1 choose not to deal with the crucial
issue of the connection between mathematics and the outside world because it is
beyond the scope of this paper. It is interesting, however, to point out a common
image of contemporary mathematics, which sees in the modern axiomatic method an
escape from this question or from any other philosophical concern.?

It is enough for me to point out the existence of a considerable amount of reflexive
mathematical knowledge — namely a part of mathematics whose subject matter is -
mathematics and not the outside world — in order to assert the distinctiveness of the
body of mathematical knowledge when compared to that of other exact sciences.
This distinctiveness is particularly evident when the metaphysical underpinnings of
different sciences are considered; the validity of the arguments justifying the claim
that the sciences necessarily have a metaphysical core is debatable when it comes to
mathematics. It is true that in some stages of the history of mathematics, research
was carried on within a general philosophical outlook entailing a “scientific meta-
physical core.”™ Likewise, we can sensibly argue that contemporary mathematical
theories have metaphysical commitments. However, the fact that there is not always
a clear distinction between the mathematical body of knowledge and its subject
matter suggests that the arguments explaining the metaphysical commitments of
physical theories —arguments that are based on the distinction between theory and its
subject matter — will not apply to mathematics.

3. Linear and Nonlinear Progress in Mathematics

How science grows is a central issue in the philosophy of science of such authors as
Popper, Kuhn, Lakatos, and others. Their research has shed new light on the history

* See for example Agassi’s article “The Nature of Scientific Problems and Their Roots in Metaphysics.™
in Agassi 1975, 208-39; Bunge 1983, 200-207; Bunge 1985, 24-31; Elkana 1981; Lakatos 1970.

* This view, however, is not universally accepted and has met with harsh philosophical criticism. See for
example Kreisel 1971, especially pp. 190-91. Moreover. Lakatos has shown how misleading it may be to
use this contemporary belief as a guide while writing the history of mathematics. See Lakatos 1978,
2:43-60.

* Such was the case with Greek geometry and such was also the case with Cauchy’s conception of the
continuum, as has been convincingly shown by Lakatos (1978, 2:43-60).
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of science and has produced concepts that help us see the growth of science as a
process of constant change. This change is neither growth by sheer linear accumu-
lation nor a process each step of which is fully determined by its predecessors. It is
clear that the question of the growth of mathematical knowledge is connected with
the more general one of science; but it should also be clear that the special character
of mathematics suggests that the question be approached differently.

The aforementioned authors produced a deep transformation in the historiog-
raphy of science, but this transformation was rather slow to include mathematics.
Thus in the history of mathematics one still finds much more work written under the
spell of the old image of science than in any other discipline. 1 propose to use the
body/images scheme introduced above as a framework for describing the growth of
mathematical knowledge, while taking into account the philosophical, historical,
and social dimensions of mathematics — but without overlooking the distinctiveness
of the discipline.

The idea that the growth of scientific knowledge is not a linear process gained
substantial momentum after the emergence of the Einsteinian cosmology and the
consequent rejection of Newtonian physics.” Mathematics, however, was never
confronted with a crisis of the magnitude of that caused to physics by the rejection of
Newton’s theories. The so-called foundational crisis of the turn of the century, for
example, did not call into question a single theory in the body of classical mathemat-
ics. It did pose some interesting and deep questions for a small (but important) sector
of the mathematical community, and the outcome was a series of significant results
that increased mathematical knowledge; but no previously proven results were
rejected as a consequence of that process.

It is true that, according to some claims about mathematics proposed during the
first decades of the present century, some previously accepted methodological pre-
suppositions of mathematical research were to be limited (e.g., some rules of logic,
according to the intuitionists). But it is significant that even some of the proponents
of these limitations undertook the task of ““saving” as much of the classical results of
mathematics as possible, within the limits of their more restrictive methodology. The
“crisis” did not introduce new results that invalidated old ones. The discovery of
Russell’s paradox undermined, perhaps, Frege’s philosophical project, but not the
lion’s share of Frege’s mathematical results. However, a deep change occurred at the
level of the images of knowledge.

The discovery of a new theorem, proof, or concept does not warrant saying that
knowledge has changed. It is the images of knowledge (which are determined
socially, philosophicaily, by the interaction with other sciences, and so on) that
determine, as in the other sciences, the way in which a new item will be integrated
into the existing picture of knowledge, whether it will be considered important or be
ignored. Eventual changes in the images of knowledge may later transform the status

5 The idea itself, however, was already known in the nineteenth century. See Laudan 1973.
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of existing pieces of knowledge and produce a different overall picture of mathemat-
ics. Change proceeds not only quantitatively, by the addition of new results or
concepts. Although these additions are of course fundamental to the growth of
mathematics, real change occurs only insofar as the quantitative growth is accompa-
nied by a qualitative new appreciation of the body of knowledge.

Qualitative change is usually a change in the images of knowledge, and it is
essentially different from quantitative change in the body of knowledge. For the
latter we have quite clear criteria. Thus a theorem is added to the body of knowledge
when a proof is found, and a valid proof may usually be clearly distinguished from an
invalid proof.®* What change in the images of mathematical knowledge is, and how
and when such change occurs, is more difficult to define. It is precisely the task of the
historian of mathematics to characterize the images of knowledge of a given period
and to explain their interaction with the body of knowledge — and thus to explain the
development of mathematics. To illustrate the process let us briefly consider the
development of lattice theory.

Atthe end of the nineteenth century two alternative definitions of lattices had been
formulated, by Richard Dedekind and by Ernst Schréder; but they did not attract
any attention from other mathematicians. Dedekind had even found a considerable
number of interesting theorems and had indicated which kind of lattices were
important and should be a focus of concentration. Dedekind was far from peripheral
to the mathematical community; yet despite his reputation, this part of his work was
simply ignored for thirty years. In the 1930s, lattices were redefined by Garret
Birkhoff and Oysten Ore, and the real development of the discipline started.’
Without delving into the reasons for this gap of thirty years, we can learn from this
example that the relevance of mathematical theories cannot be judged by their
intrinsic features. Thus, among the main reasons for the rebirth of the theory, the
enormous nfluence of van der Waerden’s classic Moderne Algebra (1930) was
central. Although lattice theory is not one of the algebraic theories exposed in van
der Waerden’s book, the strong impact produced by publication of the book encour-
aged research in such abstract branches of mathematics as lattice theory (Mehrtens
1979, 144-65). Thus by producing a change in the images of knowledge, Moderne
Algebra helped to revive research in lattice theory, which in turn produced a change
in the body of mathematical knowledge. Relevance of mathematical theories is open
to debate, and the images of knowledge play a central role in this debate.

The original lack of interest in the theory of lattices was not produced by the
rejection of any part of the body of knowledge, nor did the eventual growth of
interest in it imply such a rejection. Likewise, while there may be severe dis-
agreement between such mathematicians as Benoit Mandelbrot and those of the
Bourbaki school as to the fruitfulness or the convenience of their respective
approaches,® their results, established through proof, are still valid and mutually

¢ This is a somewhat problematic issue, which I shall discuss below.
7 For a comprehensive history of lattice theory see Mehrtens 1979,
8 For Mandelbrot’s opinions on Bourbaki, see Albers and Alexanderson 1985, 222.
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compatible. A new mathematical theory may lead to the abandonment of an older
one by making it appear uninteresting or perhaps superfluous, but never wrong.” In
contrast, Einsteinian physics and the metaphysical view that it entails are incompat-
ible with Newton’s and we must choose between them. Choices must often be made
in the body of physics but never in the body of mathematics.

However, while the acceptance of new mathematical theories does not imply the
rejection of old ones, that does not mean that nothing is ever rejected from the body
of mathematics; in fact there have been serious mistakes in the history of mathemat-
ics, often made by great mathematicians, that took a long time to be detected.'
Indeed, they deserve to be discussed in some detail.

Traditionally, mistakes and uncertainty — when considered at all - were thought of
as only marginal events in the history of mathematics. In the last two decades,
however, their role has been increasingly acknowledged, and they now assume a
central role in the philosophy and historiography of mathematics. The first to assign
mistake and uncertainty a central role in the growth of mathematics was Lakatos (in
1976). He showed the heuristic value of such mistakes, by describing the growth of
mathematics as a process of systematically ferreting out mistakes in existing and new
mathematical proofs and concepts. Criticism of proofs, says Lakatos, leads to new
proofs and concepts, which are then themselves subjected to criticism. Lakatos’
approach has facilitated a balanced evaluation of the historical dimension of mathe-
matics; but at the same time it has encouraged the disclosure of “mistakes” even
where they do not in fact exist. Interestingly enough, Lakatos himself showed, by
means of an example, how such exaggeration occurs and should be avoided.

Cauchy’s mistaken proof that a converging sequence of continuous functions
always converges to a continuous function is one of the best-known examples of
“error” in the history of mathematics. Lakatos has suggested an alternative historical
interpretation that explains why Cauchy’s proof should not be considered an error.
However, before one takes sides in this issue, or any other, one should first define
what an error is in the history of science. 1 shall not try to do that here; rather, taking
for granted that mistakes do occur in the history of mathematics, I shall explain their
role in the growth of mathematical knowledge. 1 shall now examine the classical
example of geometry, in order to explain my views on the issue.

Geometry came a long way from Euclid’s Elements to Hilbert’s Grundlagen der
Geometrie (1899), and of course the latter was not the last stop on the journey. It is
common knowledge that our understanding of geometry is quite different from that
of the ancient Greeks. But wherein does that difference lie? First of all, some specific
“shortcomings” of the Elements have been pinpointed throughout history. A classic
example is the discovery of Euclid’s implicit use of Pasch’s axiom. In 1882 Pasch

® Crowe points out (1988, 263) that “‘massive areas of mathematics have, for all practical purposes. been
abandoned.” Therefore, he claims, the assertion that mathematics is cumulative is one of the widely held
misconceptions about mathematics and its history. From my analysis above, it foliows that Crowe’s
premise does not yield his conclusion.

W An interesting list of such mistakes appears in Tymoczko 1985, 18-20, 171-75.
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published his own new exposition of geometry, in which he demanded that all
premises of geometry be stated explicitly “‘even if they are trifling,” taking what later
became Pasch’s axiom as one such premise. '’ Stated intuitively, the axiom establishes
thatif a line a enters the interior of a triangle A BC through one of its sides (say CB) it
also leaves it through another (say AB)."?

C

The axiom may indeed seem superfluous, but it is so only when we deal with actual
diagrams. Nevertheless, from a strictly logical point of view, this assumption is
independent of the other axioms and must be stated explicitly. Euclid was using the
axiom implicitly,* and Pasch stressed the necessity of stating it explicitly to ensure the
truly axiomatic status of his geometry. Later, in 1936 — after several editions of
Hilbert’s Grundlagen had already been published including Pasch’s axiom - van der
Waerden proposed a more general axiom, from which Pasch’s own axiom could be
derived as well as another of the axioms included in Hilbert’s system, thus further
reducing the number of axioms.™

These are two instances of “local” errors. Once they have been detected and
corrected, they can be taken into account by the system through minimal changes in
the latter; the discovery of such errors does not lead to a rejection of the whole
system of theorems and deductions. Improvements such as those introduced by
Pasch and later by van der Waerden are certainly local improvements.

As noted earlier, there could be some disagreement at this point about the very
definition of such cases as errors. However, what interests us now is just what kind of
changes are necessary for the body of knowledge to absorb the improved claim. Thus

"' For a detailed exposition of Pasch’s views on geometry, see Torreti 1978, 210-18.

12 The formal version of the axiom is quoted in Hilbert 1971, 5, axiom II, 4. Pasch’s axiomatic system
originally appeared in Pasch 1882.

13 See for example Euclid, Elements, Prop. 1, 10; in the bisection of a segment, Euclid presupposes that
the line bisecting an angle of a triangle will also intersect the opposite side. This is obviously true in a
diagram of a triangle; but as noted above, in a more logically rigorous conception of geometry it has to be
explicitly stated.

14 Cf. Hilbert 1971, Supplement 1, p. 200. Bernays, who wrote the supplement, cites van der Waerden
1934-36 as the reference.
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our question here is not whether Euclid should (or could) have paid attention to his
“careless” use of unwarranted presuppositions, rather, it is this: after Pasch realized
the need for the explicit statement of his axiom, what changes did its introduction
necessitate in the body of geometrical knowledge? Or, to take the above example
from the history of calculus, the question here is not whether Cauchy’s “incautious”
use of the concept of “convergence” (instead of “uniform convergence”) in his proof
was a mistake; rather, it is this: after Seidel defined uniform convergence, what kind
of changes did the introduction of this new concept, and of the proofs based on it,
necessitate in the body of knowledge? My answer is that it necessitated only “local”
changes and that, moreover, this is the only kind of change that could have occurred
when trying to overcome this kind of errors in mathematics.

Discoveries leading to local improvements such as those described above do not
occur exclusively in mathematics. They appear in what Kuhn calls the “normal”
stage of any science. The paradigmatic example is the improvement of Ptolemy’s
astronomy by means of successive additional epicycles. Eventually, however, a new
improvement essentially. different from the addition of epicycles was suggested —
namely, a different theory, capable of surmounting the difficulties confronted by
Ptolemy’s theory but incompatible with it. It is precisely improvements of this sort —
those that replace old theories with more powertul, mathematically incompatible
theories — that are foreign to the history of mathematics.

In addition to local improvements resulting from the correction of local errors,
geometry has also changed through generalization. The introduction of non-Eu-
clidean geometry has rendered Euclidean geometry a particular case of more general
“geometries.” The addition of an impressive corpus of specific results of non-
Euclidean geometry has not, however, invalidated the old results of geometry in any
possible way — it has merely changed their conceptual setting. In other words, while
the logical inferences constituting proofs have remained untouched, the meaning of
certain proofs has changed significantly and its scope has been considerably wid-
ened.” Only the old idea, that Euclidean geometry conveyed a true description of
physical space, has proved to be not necessarily true. The latter, however, is a
physical claim that belongs to the images of mathematical knowledge, but not to the
body of mathematical knowledge.

I have described two different kinds of changes undergone by the body of knowl-
edge of geometry. Such changes also produced a revolution in the images of geomet-
rical knowledge and simultaneously triggered interesting and fruitful processes of
reflexive thinking in mathematics. The theorems derived from the Euclidean axioms
remained valid inferences (with the pertinent local changes) but their status and
significance for us have totally changed during the process, and of course this new
outlook spread to many other mathematical fields. This broad transformation in the
body of knowledge raised problems in the reflexive realm of mathematics. For
instance, mathematicians were compelled to attempt to understand the nature of

5 One of the most serious limitations of Lakatos’ methodology of “proofs and refutations” is its
inability to account for this kind of change. 1 shall consider this point below.
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axiomatic systems, to understand the nature of mathematical inference, and to study
the interconnection between geometry and other axiomatically defined systems in
mathematics.

So much for the role of error in the growth of mathematical knowledge. We can
now go on to discuss the relation between images of mathematics and the role of
proof in mathematics. Usually there exists a high degree of agreement among
mathematicians about what constitutes an acceptable proof. The criteria according
to which this decision is made belong to the images of mathematics and, although
they may seem universal, are subject to criticism, debate, and change. These criteria
have never been explicitly formulated. Rather, they appear as a tacit code shared by
practitioners of a given branch of mathematics. As such, they are the outcome both
of a historical process of reciprocal interaction with the body of mathematics and of
external influences. It is here that the nonlinearity of mathematical growth may be
most clearly identified, for the criteria of proof have not progressed unfailingly from
naiveté to sophistication, from concreteness to abstraction, from looseness to rigor.

By the turn of the century, such mathematical works as Russell and Whitehead's
Principia, Hilbert’s Grundlagen der Geometrie, and Frege’s Grundlagen der Arith-
metik induced the adoption of strict and restrictive standards for proof. In the
decades that followed it was assumed that all mathematical proofs should, and in
principle could, conform to those standards. Over the past years, however, proofs
that do not, and cannot even in principle, fit those restrictive standards of rigor have
been increasingly used in mathematics. Although proofs of this kind cannot today be
considered mainstream, they are being increasingly accepted and used by the mathe-
matical community. The need to reevaluate the existing images of mathematics thus
becomes increasingly acute. Many recent works in the philosophy of mathematics
reflect this reevaluation, and they may be characterized as an attempt to articulate
more realistic images of mathematics.

Some of the new kinds of proofs to which I refer above are computer-assisted
proofs (e.g., relating to the four-color problem); “very long proofs” (e.g., relating to
the simple-groups classification theorem); and proofs whose truth is established by
claiming that their probability to be so is “extremely high” (e.g. see Rabin 1976 on
the distribution of prime numbers).'¢

The existence of proofs of this type lends further credence to the growing ac-
knowledgment of the ubiquitous presence of uncertainty in mathematics. Those who
want to accept such proofs as legitimate (and ignoring them is becoming more and
more difficult) find it hard to go on accepting the definition of proof provided by the
formalistic conception of mathematics — namely, that proof is a chain of unques-
tioned deductive inferences within a formal axiomatic system, produced according to
inference rules prescribed in advance. It may also become increasingly harder to
claim that the formalistic conception of proof is the ideal to which mathematicians

' Discussions of the philosophical problems raised by computer-assisted proofs appear in Tymoczko
1979 and Detlefsen and Luker 1980. On “very long proofs,” see Kitcher 1983, 40ff. On proofs based on
probabilities, see Kolata 1976. A general discussion of all these issues appears also in Davis 1972.
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aspire, although they sometimes fall short of it. The new images of mathematics are
trying to shift the borderline between proof and nonproof so as to include such proofs
as those mentioned above. Amid all these changes, however, one image of mathe-
matics has not changed and does not seem likely to change — namely the idea that
mathematical knowledge is legitimated through proof. The need for proof as such,
then, has been preserved, while the criteria of what counts as proof have changed. All
these changes occur at the level of the images of mathematics, while simultaneously
new proofs and theorems are continually being integrated into the body of
mathematics.

In view of the acceptance of new criteria for proof and the increasing awareness of
the role of uncertainty in mathematics, many authors have remarked on the social
dimension of mathematics and, in particular, of proofs. Philosophers and methodol-
ogists of mathematics who favor a quasi-empirical approach tend to consider proof,
above all, as a process of communication among researchers trying to convince
themselves of the truth of certain assertions. Once again Lakatos — to whom a
proposed proof was no more than an invitation to fellow mathematicians to find the
mistake in the argument — was one of the pioneers of this conception of proof.

A thought-provoking description of the social dimension of the acceptance or
rejection of proofs appears in Davis and Hersh 1986. In their account, a published
mathematical proof

is nothing but a testimony that the author has convinced himself and his friends

that certain “‘results” are true, and it presents part of the evidence on which this

conviction is based. (p. 66)

Davis and Hersh reject an assumption that has long been unquestioned'” and assert
that a complete formalization of mathematical arguments is not only impracticable
but also unilluminating and absolutely unnecessary. The belief in the correctness of a
given proof is, therefore, the result of social agreement (among practitioners of the
relevant mathematical field) and no more than that. This agreement is not definitive,
and it is subject to criticism. Thus absolute certainty cannot be attained in
mathematics.

We do not have absolute certainty in mathematics; we may have virtual certainty,

just as in other areas of life. Mathematicians disagree, make mistakes and correct

them, are uncertain whether a proof is correct or not. (Hersh [1979] 1985, 20)
Therefore, conclude Davis and Hersh:

Our confidence in the correctness of our mathematical results is not absolute, nor

is it fundamentally different in kind from our confidence in our judgment of the

physical reality or ordinary daily life. (1986, 73)

Although Davis and Hersh’s description is accurate, their conclusion does not

necessarily follow from it. A quasi-empirical approach to mathematics need not lead
to an equation between mathematics and other kinds of knowledge.

17 Such as that expressed in Bourbaki 1968, 8.
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Davis and Hersh seem to ignore the special character of the body of mathematical
knowledge, as do many other authors who stress the social dimension of mathemat-
ical activity. The fact that the criteria for acceptance and rejection of proof are in part
socially determined and that the identification and (local) removal of error are in part
historically determined does not change the fact that a stable body of mathematical
knowledge has been progressively created. A considerable number of theorems and
results have been absorbed into this body of knowledge, and it seems likely that no
future theorem will force us to delete organic parts of it.

Mathematics grows differently than the empirical sciences, and Davis and Hersh
overlook this difference when they equate mathematical knowledge and other forms
of knowledge. I think that if pushed to the wall most quasi-empiricists who defend
ideas similar to those of Davis and Hersh will not deny that the body of mathematical
knowledge is, in the long run, cumulative. When mistakes are discovered in proofs,
the theorems themselves are usually not refuted. In the empirical sciences, in
contrast, mistakes in arguments or experimental data may often lead to the ref-
utation of theories, or at least to questions about their truth. More generally, the
central difference between mathematics and the empirical sciences is that new
mathematical theories do not force us to reject old ones. As Hilary Putnam wrote ina
different context:

[The] chief characteristic of empirical science is that for each theory there are
usually alternatives in the field, or at least alternatives struggling to be born. As
long as the major parts of classical logic and number theory and analysis have no
alternatives in the field — alternatives which require a change in the axioms and
which affect the simplicity of total science, including empirical science, so that a
choice has to be made —the situation will be what it always has been. (Putnam 1967,
51; italics added)

We are faced, therefore, with two apparently contradictory features of mathemat-
ical knowledge. On the one hand, its development has an active sociohistorical
dimension, the existence of which suggests a certain degree of uncertainty. On the
other hand, the body of knowledge is peculiarly stable. 1t has continually grown (and
has been amended locally) as a result of thousands of years of reséarch. Its truth
status has never really been threatened by alternatives; on the contrary, it has been
reinforced by the successful application of mathematics to empirical sciences. This
apparent contradiction reveals a tension inherent in the quasi-empirical approach:
between a tendency to relativisim (which tesults from the sociohistorical character of
the creative process of mathematics) and the objective status of the end product. This
tension is not explicitly mentioned by quasi-empiricist authors, and it is certainly not
resolved in their writings. It may be resolved, however, by accepting that mathemat-
ical knowledge comprises both images of knowledge and the body of knowledge.
Thus the sociohistorical dimension plays a central role in determining the images of
mathematics, and only through them does it affect the content of the body of
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matllematigs. Th.e body of knowledge is not directly affected by the action of external
factors, so its objectivity and stability are preserved from relativism.

To suplmarize, mathematical knowledge comprises two interacting layers: a hard
core which accumulates over time, and shifting images of knowledge. Some compo-
nents of the hard core are furnished by the images of knowledge, as the latter enter
the hard core and stay there as reflexive thinking. It may sometimes be hard to
distinguish between the pure body of knowledge and pure images of knowledge.
These constitute the extremes of a continuum, and what we have called reflexive
thinking (as distinct from pure images of knowledge) stands somewhere in between.
Reflexive thinking is clearly part of the body of mathematical knowledge, because it
is produced as is any other piece of mathematical knowledge and is justified by proof.
On the.other hand, it is produced by concentrating on purely second-order problems,
and hence itisrelated to the images of knowledge. Mathematical knowledge includes
all the layers, and their separation is done for analytical purposes only. They are in a
state of “‘ongoing dialectical debate,” which we must try to understand if we want to
understand the historical process of the growth of mathematics. We cannot really
separate hard-core mathematical knowledge from the way it is looked upon mathe-
matically, just as we cannot separate form from content (in mathematics or in any
other field): they are conditioned by each other. This analysis can often be formu-
lated only in hindsight.

4. Alternative Views

As mentioned earlier, several authors in the last two decades have presented their
own conception of the growth of mathematical knowledge. Some of them represent
attempts at translating approaches used by historians of empirical science. It is
usually hoped that such conceptions will close the gap existing between those two
related fields. It may be illuminating to discuss some of those views and to assess their
value by comparing them with the body/images scheme proposed here.

Itis interesting to note, first of all, that in many cases alternative conceptions of the
history and philosophy of mathematics may be subsumed under the body/images
scheme. Consider, for example, the “ten laws concerning mathematical change”
suggested in Crowe 1975, 1976. Rather than being universally valid laws, they seem
to describe certain specific historical instances of the interaction between the two
layers of mathematical knowledge. Crowe even mentions the existence of various
layers in mathematics, although he does not explain how they interact. Thus one of
his laws states:

The “knowledge” possessed by mathematicians at any point in time is multi-
layered. A “metaphysics” of mathematics, frequently invisible to the mathema-
tician yet expressed in his writings and teaching in ways more subtle than simple
declarative sentences, has existed and can be uncovered in historical research or
becomes apparent in mathematical controversy. (Crowe 1976, 469-70)




426 LEO CORRY

By replacing the term “metaphysics™ with “images,” one can see this law as a
particular instance of the scheme I have presented. Like Crowe’s, the work of
Lorenzo (1977) can also be subsumed under the paradigm I have suggested. Lorenzo
speaks of an “ideology” of mathematical practice, but unfortunately he does not
develop his ideas systematically and leaves many questions unanswered.

As noted above, one of the first systematic presentations of the new approach to
the philosophy and history of mathematics was the work of Lakatos. In his Proofs and
Refurations (1976), Lakatos used a classic historical example to demonstrate that
mathematics grows according to a scheme of ‘“‘conjectured proof-refutation-
improved proof™ parallel to that proposed by Popper (1963) for empirical science.
Lakatos’ work pioneered the very idea that it is possible to attack the positivist view
of science in its last and most impregnable fortress, mathematics. He was the first to
attribute to error an active role in the development of mathematics instead of an
accidental, marginal one. Lakatos’ work has also been the target of sustained
criticism, on which I shall not comment here.’ T would like, however, to mention
some aspects of that criticism which are related to the present discussion.

Lakatos” approach fails to distinguish mathematics from empirical science. He
cannot account for the cumulative character of the body of mathematical knowledge
or for its objectivity. Nor can he explain any change that is not local. Interestingly
enough, Lakatos overlooks the distinction that Popper drew between empirical and
mathematical knowledge. Only in mathematics, Popper claimed, can a theory be
considered definitely true; wrong proofs that are not discovered in the long run are
the exception rather than the rule (Popper 1963, 197).

In his later work Lakatos developed his own approach to the history and philos-
ophy of science in general, an approach he termed “Methodology of Research
Programs” (MRP) (see Lakatos 1978, vol. 1). The possibility of applying this
approach to mathematics was explored in Hallett 1979. Hallett’s primary task was to
characterize universally a ‘“‘progressive” research program in mathematics as
opposed to a “stagnated” one. He claimed that there exists a wide consensus among
mathematicians regarding the relevance of different mathematical theories, and he
tried to define systematically the basis of this consensus. He concluded that the
consensus was based on the demand that a mathematical theory resolve important
problems it was not originally conceived to solve. He constructed a concise formula-
tion of this criterion, which allegedly enables a clear-cut universal identification of
progressive theories (1979, 10).

Hallett takes Lakatos’ methodologies of “proofs and refutations” and MRP for
granted; valid criticism of Lakatos can therefore be applied to Hallet’s claims as well.
Certainly Hallet’s criterion is important, but one wonders whether it is indeed as
universal as Hallett claims. Moreover, I think that the very idea that a criterion of this
sort can independently determine the relative importance of theories is wrong.
Determining the relative relevance of theories is a central component of the images

18 Such criticism may be found, for instance, in Dauben 1988, 179-83; Feferman 1978; Hacking 1979;
and Holton 1978, 105-7.
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of knowledge, but it is not the only, or even the most important, determinant of the
growth of the body of knowledge. Many factors, and not only a clear-cut answer to a
succinetly formulated question, determine the relative relevance accorded to differ-
ent mathematical theories. These may include personal, sociological, and philoso-
phical factors, and not only purely rational ones.

A further attempt to apply theories of the growth of science to mathematics is
related to Kuhn. The problems arising in connection with the application of Kuhn's
theory to science in general,” arise with equal or greater force when it is applied to
mathematics. Clearly, if truth in the body of mathematical knowledge is established
by proof, it may not be said to be determined by a conventionally established
paradigm. Some of Kuhn’s concepts might be useful, though to a limited extent, in
studying the images of mathematics (paradigm, crisis, disciplinary matrix, etc.).

The possibility of applying Kuhn’s ideas to mathematics was explored in Mehrtens
1976. Of the concepts that Kuhn developed, Mehrtens believes that only the concept
of “‘anomalies” is pertinent to mathematics. It is noteworthy, however, that what
Mehrtens termed anomalies in the history of mathematics (e.g., Kummer’s wrong
belief that the methods and theorems of the theory of natural numbers can be
extended to algebraic integers, and his attempt to prove Fermat’s theorem by
wrongly assuming that those numbers may be uniquely decomposed into prime
factors) are instances in which accepted images of knowledge lagged far behind
the development of the body of mathematics. In each of the cases mentioned by
Mehrtens, when new, more realistic images were adopted by the mathematical
community, the anomalies disappeared.

A more fully articulated attempt to use Kuhn’s ideas to describe mathematical
progress is that of Philip Kitcher.™ Like Kuhn, Kitcher believes that observational
statements of science are produced within a theoretical conceptual framework (which
he calls scientific practice instead of paradigm) and not independent of it. At variance
with Kuhn, however, Kitcher denies that theoretical change takes place in a discon-
tinuous fashion — namely, through the revolutionary change of paradigms. He
attempts to apply a similar thesis to mathematics, while arguing that mathematical
and scientific change are similar. Kitcher’s picture is similar in some important
aspects to the one I have presented here.

In order to develop his ideas, Kitcher first examines the three main arguments on
which the alleged difference of scientific and mathematical knowledge is based and
later rejects them. The arguments presented are the following: (1) there are no true
debates in mathematics; (2) there is a corpus of mathematical truths that has long
remained unquestioned; and (3) the only mathematical claims that have been aban-
doned in the history of mathematics are those that were unjustifiably held from the
outset. Let us see how Kitcher deals with these arguments.

¥ A thorough discussion of Kuhn's theory appears in Lakatos and Musgrave 1970.

% These views are presented in detail in Kitcher 1983. Kitcher 1988 contains a more succinct presenta-
tion of them, including some reformulations of earlier ideas.
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' Kitcher refutes the first argument by presenting historical examples of mathemat-
ical debates such as the Kronecker-Cantor debate and the Leibnitz-Newton debate.
The .SC.COHd argument is rejected by asserting that in fact both mathematics and the
er'nplrlcal sciences contain truths which have long been unquestioned. Just as Eu-
clid’s theorems in mathematics have been accepted since the time of the Greeks, so
too has the claim that a feather floats in water. Regarding the third, Kitcher examined
the history of mathematics and analyzed some epistemic situations where mathema-
ticians were justified in holding beliefs that were revealed to be false only as a result of
later work.

The body/images scheme uncovers some problems in Kitcher's arguments. The
highly significant debates invoked to refute the first point were debates about the
images of mathematics and not debates between two reciprocally exclusive mathe-
matical theories. Kitcher’s argument regarding the second point is unconvincing
since the comparison on which it is based is unsound. Euclid’s theorems are part of a
system of knowledge, while the assertion that a feather floats is a claim about an
isolated fact. Aristotle’s explanation for the feather’s buoyancy, on the other hand, is
no longer accepted, while Euclid’s proofs are. Regarding the third point, as
remarked earlier, the question is not whether people were justified in holding some
claim but how the improved claim has been reincorporated into the whole system.
This reincorporation is different in mathematics than in empirical science, since in
the former it never implies the rejection of whole theories. In fact Kitcher himself
realizes that such a difference exists, and he states that “we do not seem to find in
mathematics . . . the analogs of the discarded theories of past science” (1983, 158).
Thus Kitcher’s own view of mathematical change concedes that “mathematics is
cumulative in a way that natural science is not”; but his “concession to the thesis that
mathematics is cumulative should not be taken to invalidate the project of describing
mathematical methodology” (p. 161). Let us briefly consider his description.

Kitcher proposes to see mathematics as a series of historically changing “mathe-
matical practices,” which the historian of mathematics must discern and whose
evolution he must explain. A “mathematical practice” is a quintuple
<L,M,Q,R,5>: alanguage, L; a set of metamathematical conceptions, M; a set of
accepted questions, Q; a set of accepted inference procedures, R; and a set of
accepted statements, S. This scheme allows a common description of mathematical
and scientific change, while at the same time accounting for the special quasi-
cumulative character of mathematics. Thus while most scientific change is produced
as a response to new observations, most mathematical change is produced as a
response to tensions among the various components of the practice at a given point in
time.

Note, however, that among the five components of a given mathematical practice
L, Q, and R belong to the images of mathematics; S constitutes the body of
knowledge, and M represents the body of reflexive knowledge, which is exclusive to
mathematics. Thus while it is clear that these are indeed important points to be
considered while analyzing mathematical change, one may wonder whether L, Q,
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and R are the unique parameters through which the images of knowledge should be
examined.” Kitcher shows their relevance through a detailed case study; but the
question remains, in my view, open to debate. In addition, the peculiar reflexive
character of the interaction of the different components of the practice does not come
to the fore in Kitcher’s account.

Quasi-empirical views of mathematics developed from an increasing dissatis-
faction with the contribution of foundations research to the philosophy of mathemat-
ics. Quasi-empirical views demand that we analyze “what mathematicians really do™
in their work, and not an idealized picture of mathematical knowledge. I have thus
far presented quasi-empirical views that stress the sociohistorical character of mathe-
matical activity. There have also been mathematicians who proposed to bring about a
revival in the philosophy of mathematics by looking at “what mathematicians really
do,” but laying the stress on their end product. Such is the case of Saunders MacLane
1981, 1987a, or of Solomon Feferman 1984, 1985.

Feferman’s views are interestingly relevant to the present discussion. In his search
for a new, more fruitful direction for the philosophy of mathematics, Feferman
rejected both quasi-empirical views such as those discussed above and the attitude of
mathematicians who avoid philosophical concern by hiding behind a formalist-
Platonist shelter that cannot in the long run be sustained. His attempt to foster a
philosophy of mathematics based on an analysis of “‘what mathematicians really do,”
however, does attribute a leading role to logic in explaining the peculiarities of
mathematics. On the other hand, the fact that the “great logical systems” (such as
Russell’s, Quine’s, or Rosser’s) have failed to provide a sound basis for all of
‘mathematics, leads Feferman to the conclusion that the search for such a system
should be abandoned. The role of logic in the production and justification of
mathematical knowledge should be stressed; but at the same time it should be
explained in terms other than those proposed thus far in the foundationalists’
attempts.

Feferman’s own proposal consists in providing ‘‘logical foundations at work” for
mathematics. In order to do this, he exhaustively examined the various ‘‘clarification
activities” that have been undertaken within different branches of mathematics. He
classified those activities under ten tentative headings — a classification that should
provide the basis for an explanation of mathematics’ singular character and growth.
Among Feferman’s categories we find, for instance, ““‘Conceptual Clarification” —
namely, the definition of frequently used informal concepts in terms of better-
understood, basic ones. Further headings are “‘Dealing with Problematic Concepts

“! In fact, there is good reason to think that they are not. For example, a similar view of science appears
in Bunge 1983, 200-207, and Bunge 1985, 24. However, parallel to Kitcher’s five components of the
scientific practice, Bunge mentions ten components of a “*scientific field of knowledge” <C,S,D,G, K E, Q,
P,A,0,M>: a community of researchers, C; a society, S, which supports or at least tolerates the activities
of the members of C; a domain of discourse, D; a general philosophical conception, G; a formal
background. F: a specific background. E: a set of problems. P; a background of accumulated knowledge.
Aj; aset of objectives, O; and an accepted methodology, M. Should we prefer the ten-component scheme
over the five-component one, or the other way round? The body/images division of knowledge is in any
case simpler, clearer, and more soundly justified.
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gnd Principles,” which led in the past to clear formulations of concepts (e.g.

imaginary and complex numbers) and principles (e.g., the axiom of choice), anci
“Axiomatization” (of mature theories), etc. Of special interest is the category that
according to Feferman has been insufficiently appreciated: “Reflective Expansion of
Concepts and Principles.” Examples of this kind of foundational activity are found in
th? passage to IR" after plane and space geometry have been understood in terms of
R* and IR’, or in the definition of spaces of operators after differentiation and
integration have been understood as such. What, according to Feferman, character-
izes this mathematical way of creation?

Basically, this is a form of generalization, but of the following particular character:
at a certain point one reflects on what has led one to accept and work with certain
concepts, and sees that a much more general concept is implicit in accepting that.
(1985, 245; italics in the original)

Feferman includes some additional examples from different branches of mathemat-
Ics, in particular from different branches of logic, and explains:

From a logical point of view, our interest here is in whether we can make

theoretical sense of describing all the concepts and principles that one ought to

accept if one has accepted given concepts and principles or, put more succinctly,

describing all the concepis and principles implicit in given ones. (Ibid., 246; italics

in the original)
Here, I think Feferman has subsumed two essentially different things under the same
heading. The awareness that it is possible to generalize from R? to [R”, and especially
that it is worth doing so, is a good example of an image of mathematics. General-
ization of this sort has often been a successful strategy. However, it has also on
occasion led mathematical research up a blind alley. In contrast, the logical inquiry to
which Feferman refers is part of the body of mathematical knowledge within a certain
branch, the aim of which is to elucidate in an abstract and general fashion the logical
basis and the limitations of such a passage whenever it is successfully done. While the
two aspects are closely related, the first, as a part of the images of knowledge, may
only direct the mathematical research of the second, which belongs to the body of
knowledge or, to be more precise, to the body of the reflexive knowledge of
mathematics.

Feferman exposed his ideas as a program to be developed in the future, rather than
as a definitive picture of mathematics. As described in his articles, it is neither clear
how these activities account for the growth of mathematical knowledge in general
nor why they are so peculiar to mathematics. All this is more clearly understood, 1
think, when Feferman’s account is seen in the light of the body/images separation of
mathematics, and when it is remembered that reflexive thinking is possible only in
mathematics. What Feferman has achieved is, in my view, no less (but also no more)
than an exhaustive and authoritative survey of present reflexive knowledge in mathe-
matics and its role in the ongoing debate on the images and body of mathematical
knowledge. In fact the “foundational ways™ that Feferman expounds in his articles
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include many ideas from mathematical branches other than logic. While this is
probably not what Feferman intended, it turns out that the special role logic plays in
the explanation of the singular character of mathematical knowledge is only a part of
the role of reflexive thinking in general in the evolution of mathematics.

Saunders MacLane, too, urged that a new direction be developed in the philos-
ophy of mathematics. The main problem he saw in existing works in the field is that
recent advances in all branches of mathematics are never taken into account when
the nature of mathematical knowledge is discussed. As extreme examples of this
tendency, he mentions Kant and Wittgenstein, whose philosophies of mathematics
barely examine the basic facts of arithmetics and geometry. In contrast, MacLane’s
own picture is based on an exhaustive presentation of the achievements of contempo-
rary and past mathematics.?

MacLane seeks to describe the genesis of mathematical concepts, to define the
subject matter of mathematics, to account for the peculiarities of mathematical
knowledge, and to explain what makes a particular mathematical field or pursuit
more interesting and relevant than another. He answers all these questions by
examining exclusively the body of mathematics, with no reference to external
factors.

The deep and delicate tissue of interconnections among diverse mathematical
theories was one of the central issues in MacLane’s own mathematical research.
These interconnections appear as a central concern of his philosophical inquiry as
well. Unfortunately, MacLane remains at the level of tentative formulation, and he
does not clearly articulate a philosophical picture of mathematics. Rather he poses a
score of questions that he considers central to elucidating the nature of mathematical
knowledge and answers each of them by presenting long lists and complicated tables
in which the interconnection of ideas behind mathematical activity comes to the fore.
Thus, for example, he claims that his presentation of mathematics also suggests
preferred directions for future research. Regarding this issue MacLane writes:

Mathematics, in our description, rests on ideas and problems arising from human
experience and scientific phenomena and consists in many successive and inter-
connected steps in formalizing and generalizing these inputs. Thus mathematical
research can be directed in a wide variety of overlapping ways:

(a) Extracting ideas and problems from the scientific environment;

(b) Formulating ideas;

(c) Solving externally posed problems;

(d) Establishing new connections between mathematical concepts;

(e) Rigorous formulations of concepts;

(f) Further development of concepts (e.g., new theorems);

(g) Solving (or partially solving) internal mathematical problems;

(h) Formulating new conjectures and problems;

2 MacLane outlined his ideas on various occasions — e.g. MacLane 1981, 1987b. Those ideas are fully
developed in MacLane 1987a.
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(i) Understanding aspects of all the above. (1987a, 450)

MacLane’s list “‘does put special emphasis upon extracting and formulating ideas and
on understanding their import,” in contrast to the view that stresses only the
importance of new theorems and problem solving.

1 think that MacLane’s specifically philosophical claims about mathematics are in
need of much further refinement. On the other hand, his detailed description of
many branches of mathematics may be used as sound evidence for the picture 1
described in the earlier sections of this paper. In particular, MacLane takes pains to
underline all through his book (and the long quotation above is a good example) the
central role of reflexive thinking in mathematics.

5. Images of Knowledge in Twentieth-Century Mathematics

‘Reflexive thinking in mathematics reached a peak in the present century. The
modern axiomatic method enabled a new kind of reflexivity in mathematics that does
not exist in any other exact science. Many examples may be mentioned of the results
achieved in reflexive fields of mathematical research. For instance the logicist
school’s efforts, which led — through the study of given axiomatic systems — to the
articulation of specific propositions (e.g., the axiom of reducibility or the axiom of
infinity) essential to determining whether mathematics can be reduced to logic.”
Similarly, through the analysis of a set of postulates Sheffer introduced the “stroke
symbol,” which reduced the number of basic operations of Boolean algebras to one,
thus basing the entire theory on a single undefined term and circumventing the
supposition of the existence of a zero element, a unity element, or a complement for
each element of the algebra (Sheffer 1913; Wilder 1952, chap. 9). Finally, Godel's
theorems, through a rigorous deductive argument formulated within an axiomatic
system, set definite limits to reasoning within axiomatic systems.

The success of this reflexive research may, to a great extent, account for founda-
tionalism’s domination of the philosophy of mathematics since the turn of the
century. Most of the debates during the so-called foundational crisis were conducted
not as philosophical debate but rather as mathematical research. This research
consisted in the study of mathematical axiomatic systems designed to justify and
develop the tenets of each of the “philosophical schools” involved in the debate (i.e.,
the intuitionist school, the logicist school, and the formalist school). This is not to
suggest that there were no philosophical issues at stake. There were, and they were
very important ones. However, these debates occurred not on the philosophical level
but on the mathematical level ™

Philosophical debates about mathematics came to be understood exclusively in
terms of foundational research — mathematical research in branches that happen to

2 A good exposition of this point may be found in Wilder 1952, chap. 9.
2 Errett Bishop (1975) argued this point while presenting his views on the controversy between
intuitionists and formalists. See esp. pp. 509 and 515.
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deal with problems related to “foundations.” Moreover, the striking mathematical
insights attained through reflexive research produced a new central image of mathe-
matics — namely, that the only meaningful assertions about mathematics are gained
through technical mathematical research. To quote Errett Bishop:

People tell me in so many words that when 1 was proving theorems, I was doing
something original and worthwhile; but when I started to think about philosophi-
cal questions, I could not possibly be doing something deep. This prejudice, that
all good work must be technical in the mathematical sense, has made economists,
sociologists, etc., feel inferior, as if they should mathematicize, very often to the
detriment of the real meaning of their work. (1975, 515; italics in the original)

The success of reflexive thinking further influenced the images of knowledge by
reinforcing the traditionally well-established authority of the great mathematical
masters to decide all-embracing questions about mathematics. The issue of authority
in mathematics presents a paradox.

On the one hand, more than in any other exact science or scholarly field, an
isolated result in mathematics may be attained and corroborated without resorting to
the authority of individuals or of written sources. Results may often be obtained
through ingenuity and inspiration, and a thorough knowledge of sources and of the
writings of the great masters is by no means a necessary condition for innovation (asit
is in the humanities, for example). Proof remains the only validating procedure, and
its standards are established through shared images of knowledge.

In contrast, in fields where new results may invalidate previous ones, the authority
of scientists may be jeopardized as research develops in new directions. Conse-
quently, these scientists may have good reasons (scientific, institutional, or political
reasons) to refuse to accept new results. This kind of conflict of interests, cannot arise
within the body of knowledge of mathematics. There are no polemics, in principle,
within the body of knowledge of mathematics. Proof, based on its accepted stan-
dards, has the last (and only) word. Authority of any kind is explicitly proscribed as a
criterion for acceptance of any claim within the body of knowledge.

On the other hand, it is a plain fact that the images of knowledge are constantly
being debated, and these debates must be settled. Since there are no accepted
criteria for settling debates about the images of mathematics, more often than not
these debates are settled by relying on the authority of mathematical masters.

A good illustration is furnished by a “leading figure,” the Bourbaki group, whose
conceptions have to a large extent dominated the images of contemporary mathe-
matical knowledge. Bourbaki insisted that the axiomatic approach adopted in their
books exempted them from philosophical debate; and he claimed that the group’s
attitude toward foundational problems (problems that, to Bourbaki, subsume all
philosophical questions) “can be best described as total indifference.” Confronting
criticism directed at the overall conception of Bourbaki’s work, Jean Dieudonné,
one of the most outspoken members of the group, replied:
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No one can understand or criticize the choices made by Bourbaki unless he has a
solid and extended background in many mathematical theories, both classical and
more recent.

If, however, somebody decides anyway to put forward some kind of criticism, then

[Bourbaki] has no means to prevent such a misguided behavior, for it would imply
engaging in polemics, and as I told you that is something he has steadfastly refused
to do. (Dieudonné 1982, 623)

These two apparently contradictory facets of the role of authority in mathematics
are, in fact, closely connected. The lack of polemics within the body of knowledge is
taken to be also the desired state for the images of knowledge; but since proof cannot
always be used here, as in the body of knowledge, authority often becomes decisive
in debates. The authority of the masters cannot be questioned, since they know the
details better than anybody else. They are the best equipped to speak about the body
of knowledge, so they are thought to be the best equipped to dictate the images of
knowledge. In some special cases it is convenient to support those images through
the ultimate judgment: that of mathematical proof. However, this is not always
possible. Therefore, as a consequence of the success of reflexive thinking and its
associated images of knowledge underrating the value of mathematical claims other
than those supported by proof, authority often determines which images of knowl-
edge will be accepted.

There is some justification for the tendency to arbitrate debates pertaining to the
images of knowledge through the criteria of mathematical authority, particularly
because specialization has brought about such a diversity of flourishing fields in
mathematics as to make an overall appreciation of mathematics extremely difficult
for the layman, and even for most mathematicians. But problems arise when there is
no room left for any other kind of considerations and authority becomes the only
criterion for the passing of judgment.

6. Images of Knowledge and the History of Mathematics

The historiography of mathematics has been greatly affected by the dominant images
of knowledge in contemporary mathematics — in particular, by the idea that all
meaningful debate about the body of mathematics should be done only through
mathematical argumentation and, in cases where this is not possible, by relying on
the undisputed authority of the masters. These images of knowledge suggest that the
history of mathematics should be written only by mathematicians (or if written by
somebody else then judged only by mathematicians) and that historical research
about mathematics is meaningful only insofar as it throws new light on present
mathematical research through a strictly mathematical analysis of past mathemat-
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ics.” The general acceptance of this view accounts to a large extent for the domi-
nance of the positivistic approach in the historiography of mathematics. This may be
illustrated by the following quotation from an enthusiastic review of Bourbaki 1960 —
a classic among history books on contemporary mathematics:

This fascinating volume assembles the historical notes from Bourbaki’s various
[books]. . . . These elements of history are just . . . former mathematics as it
seems now to Bourbaki, and not as it seemed to its practitioners then. In the
terminology of historiography, it is “Whig history”. But for the mathematician,
the various chapters are full of interesting insights. (MacLane 1986)

This is, to be sure, neither the most emphatic defense of Bourbaki’s historiographical
approach nor the harshest criticism of the alternative one. I quote it in this context,
however, because it expresses the heart of the matter. Mathematicians will certainly
endorse Bourbaki’s historiographical approach because of the interesting mathemat-
ical insights it affords, even when it is done at the expense of a faithful historical
interpretation. As a matter of fact, after mentioning some of the interesting insights,
the reviewer is compelled to note that “‘on the way to these insights, there may be
some minor annoyances.” His list of “annoyances” includes some very typical
instances of Whig history. For instance:

The Gibbs-Wilson vector analysis (1900), which has dominated notation in Anglo-
Saxon Physics for 85 years, is dismissed as a vulgarization of the ideas of Hamilton
and Grassman — despite the fact that Gibbs understood the tensor product of
vector spaces well before Bourbaki. (MacLane 1986)

Preference is granted to the interesting insights — which may be natural when
mathematical research is the main interest. This preference, however, is often taken
as historically right as well, and any historiographical research not willing to accept
the “minor annoyances” is disparaged as uninteresting, if not downright nonsense.

One example of the tension between mathematicians and historians of mathemat-
ics® is the debate about the so-called “geometrical algebra” of the ancient Greeks.
Traditional views about the issue are based mainly on the approach described above;
the geometry of the Greeks is understood as a series of algebraic problems whose real
algebraic identity they concealed for some unexplained reason in geometric
language. In order to understand the Greeks we must, according to this view, use

% This position is articulated in Weil 1980. See also Askey 1988. For a different opinion, see Grabiner
1975 and May 1975, each of which could have been entitled ““A Historian of Mathematics” Apology.”
Their main point is that there is room for the independent historical research of mathematics, which is at
least as important as research carried out by mathematicians themselves. This issue is similarly viewed in
Lorenzo 1977, 33.

% Tn a discussion similar to the present one, Grabiner (1975, 444) adds the following footnote: “By
‘historian’ and ‘mathematician’ I do not mean a classification according to the field of a person’s Ph.D., but
according to his point of view. . . . In general mathematicians and historians have, while writing the
history of mathematics, in fact taken the different approaches I describe, though there is no a priori reason
they would necessarily have to do s0.” I adopt Grabiner's formulation but would add that I hope in the
present article T have explained satisfactorily the (a posteriori) reasons for this state of affairs.




436 LEO CORRY

mathematical language and ideas that developed much later, namely those of sym-
bolic algebra as developed since Viete and Descartes.

This historiographical point of view has been thoroughly criticized by Sabetai
Unguru (1975);7 but the historical evidence he advanced in support of his claim that
algebraic thinking was alien to the Greeks was simply ignored as irrelevant, Strong
reactions to Unguru’s criticism were advanced by three leading mathematicians who
have also written on history of mathematics — see Freudenthal 1976, van der Waerden
1976, and Weil 1978. The disagreement between Unguru and the three mathemat-
icians may be characterized in the terms used above. The mathematicians’ arguments
were mathematical; the mathematical equivalence between specific points of Greek
geometry and the symbolic manipulation of algebraic formulae was taken as the key
to a proper historical understanding. Unguru, on the other hand, introduced extra-
mathematical considerations into his argument in order to conduct the debate on
historical rather than purely mathematical grounds. His outlook met with bitter
criticism, and he was accused of using irrelevant arguments to arrive at nonsensical
conclusions.” The force of the arguments against Unguru resides solely in the
authority of the mathematicians involved in the debate.

In this paper 1 have presented a picture of mathematical knowledge that also
suggests a program for historical research. According to this view, the aim of the
historian of mathematics is to detect and describe changes in the images of mathe-
matics in a given context, and explain the growth of the body of knowledge and the
interaction of the two layers. The best test of this suggested program will be its use in
detailed case studies in the history of mathematics. It is in such research that the

value of this approach will be determined.
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