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Introduction 
The centrality of the notion of a mathematical structure was a prominent motif in mathematical 

discourse throughout the twentieth century. A representative instance of this appears in a well-

known article of 1979 by Jean Dieudonné (1906-1922), where he used the following terms to 

describe “The Difficult Birth of Mathematical Structures” (Dieudonné 1979, p. 8): 

Today when we look at the evolution of mathematics for the last two centuries, we 

cannot help seeing that since about 1840 the study of specific mathematical objects has 

been replaced more and more by the study of mathematical structures. ... this evolution was 

not noticed at all by contemporary mathematicians until 1900, because not only was the 

general notion of mathematical structure foreign to them, but the basic notions of 

specific structures such as group or vector space were emerging very slowly and with a lot 

of difficulty.  

 

Similarly, in his well-known A History of Algebra-From al-Kharizmi to Emmy Noether, Bartel L. van 

der Waerden (1985, p. 76) stressed that: 

 

https://www.springer.com/gp/book/9783030628109#aboutBook
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Modern algebra begins with Evariste Galois. With Galois, the character of algebra 

changed radically. Before Galois, the efforts of algebraists were mainly directed towards 

the solution of algebraic equations... After Galois, the efforts of the leading algebraists 

were mainly directed towards the structure of rings, fields, algebras, and the like. 

 

And in this regard, Emmy Noether has been consistently acknowledged among the most 

prominent mathematicians who contributed to the consolidation and impact of this structural 

approach, not only in algebra but also in other mathematical disciplines as well (Rowe and 

Koreuber 2021). Thus for instance, in his epochal textbook on Algebraic Surfaces, Oscar Zariski 

(1935) explicitly wrote: 

In [Algebraic Surfaces] I tried my best to present the underlying ideas of the ingenious 

geometric methods and proofs with which the Italian geometers were handling these 

deeper aspects of the whole theory of surfaces ... I began to feel distinctly unhappy about 

the rigour of the original proofs (without losing in the least my admiration for the 

imaginative geometric spirit that permeated these proofs); I became convinced that the 

whole structure must be done over again by purely algebraic methods [such as in the 

work of Emmy Noether and in the important treatise of van der Waerden]. 

 

 

Paul Alexandroff and Heinz Hopf published that same year the first volume their influential 

treatise on Topology (1935) and they also found it important to make Noether’s impact explicit: 

The tendency to strict algebraization of topology on group theoretic foundations, which 

we follow in our exposition, goes back entirely to Emmy Noether. This tendency seems 

self-evident today. It was not so eight years ago. It took all the energy and the 

temperament of Emmy Noether to make it the common property of topologists, and to 

let it play the role it does today in framing the questions and the methods of topology. 

 

 

We could go on and on indicating important research articles and textbooks published after 1930 

and that bear the mark of the structural approach and of Noether’s work and personality. 

Perhaps the most important ones to be mentioned in this context are Saunders Mac Lane and 

Garret Birkhoff’s Survey of Modern Algebra (1941), which influenced generations of mathematicians 

in the USA, and the multi-volume Éléments de mathématique, published along decades starting in 

1939 by the members of the Bourbaki group. 

In this chapter, I outline some of the main features of Noether’s work in algebra and explain the 

sense in which it represented a synthesis of various threads that preceded it, and that opened new 

avenues of research by organizing the entire discipline around an innovative approach that came 

to be known as “structural”. The interested reader will find a detailed treatment of the topics 

discussed here, and a fully annotated body of references to the relevant sources, in my book 

Modern Algebra and the Rise of Mathematical Structures (Corry 2004).   
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What is that thing called “structural algebra”?  
The significance and impact of Noether’s work in algebra cannot be properly understood without 

turning attention to the seminal textbook published in 1930 by the Dutch mathematician Bartel 

Leendert van der Waerden (1903–1996) under the title of Moderne Algebra. This textbook signified 

a true paradigm-shift in the way that the discipline of algebra, its aims and methods, were 

conceived. Like many other good textbooks, this one presented a synthesis of a large number of 

recent works that called for a unified and systematic presentation of the topics it considered. 

Algebraic knowledge, van der Waerden indicated, had not only grown dramatically over the 

preceding decades. A fundamental change had also affected the very understanding of the 

discipline as a whole. He thus wrote (van der Waerden 1930, p. 9, italics in the original):  

The recent expansion of algebra far beyond its former bounds is mainly due to the 

“abstract”, “formal”, or “axiomatic” school. This school has created a number of novel 

concepts, revealed hitherto unknown inter-relations and led to far-reaching results, 

especially in the theories of fields and ideals, of groups and of hypercomplex numbers. The chief 

purpose of this book is to introduce the reader into this whole world of concepts.  

But in his book, van der Waerden did much more than just introducing the reader into a new 

world of concepts and innovative techniques. The very way in which the material was presented 

and organized involved an original insight of far-reaching consequences, namely, the realization 

that a certain family of abstract mathematical notions (groups, rings, fields, etc.), defined via sets 

of formal axioms, should be best seen as comprising instances of one and the same underlying 

idea, namely, the general idea of an algebraic structure. Under the new approach pursued in the 

book, the aim of algebraic research would become now the in-depth elucidation of the individual 

kinds of structures, based on the recurrent use of several common fundamental concepts, 

questions and techniques (e.g., isomorphisms, homomorphisms, quotients, residue classes, 

composition series and direct products, inclusion properties and chain conditions, etc.), and the 

search after similar kind of mathematical results concerning each of them. This is, in fact, the 

essence of the “structural approach to algebra.” Strange as it may sound nowadays, this 

fundamental insight had not been definitely achieved, let alone systematically presented in a 

panoramic textbook, before van der Waerden’s.  

It is important to emphasize that nowhere in the book did van der Waerden state what is an 

algebraic structure, either at the general, non-formal level or by means of the introduction of a 

rigorously defined mathematical concept. Rather, he just worked out in detail, chapter after 

chapter, the basic concepts and properties relevant to each of the domains he included under the 

general notion of structure. Neither did he specify a list of main tools to be repeatedly used in the 

investigation of the individual structures. Rather, he just put to work these tools under a single 

methodological perspective, thus yielding a unique and innovative view of what algebra is all 

about.  

One fundamental innovation implied by van der Waerden’s approach was a redefinition of the 

conceptual hierarchy underlying the discipline of algebra. The various system of numbers were 

not considered here, as was the case with previous textbooks, to be the underlying foundation 

over which the entire edifice of algebra, including the properties of polynomials, was to be 

erected. Rather, it was the other way round. The real and the rational numbers were now 

conceived each as particular case of a more general, abstract algebraic construct. The concept of a 

field of fractions could be defined, for instance, for integral domains in general, and the rational 

numbers were thus realized as a particular case of this general kind of construction. Real numbers 

were defined in purely algebraic terms as an infinite, ordered, “real field”. Additional, 
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nonalgebraic properties such as continuity or density could simply be ignored as part of the 

characterization of the real numbers in the newly defined algebraic context.  

The task of finding the real and complex roots of an algebraic equation and of understanding 

their mutual interrelations, which had been the hard core of algebra over the previous centuries, 

was relegated in van der Waerden’s book for the first time to a subsidiary role. Three short 

sections in his chapter on Galois theory dealt with this specific application of the theory, and in 

the discussion no previous knowledge of the properties of real numbers is assumed. The new 

conceptual hierarchical underlying this structural view of algebra was illuminatingly visualized in a 

diagram (Leitfaden) appended to the Table of Contents, which indicated the logical 

interdependence of the chapters (Fig. 1). 

 

 

Fig. 1: Moderne Algebra - Leitfaden 

  

Van der Waerden wrote his book under the decisive influence of two mathematicians whose 

lectures he had attended recently: Emmy Noether in Göttingen and Emil Artin (1898–1962) in 

Hamburg. A considerable part of the contents of the book was directly taken from their lectures. 

The influence of Artin was significant and it cannot be underplayed but it related to two main 

topics: (1) his innovative and strikingly structural approach to Galois theory and (2) his work on 

“real fields”. Noether’s influence was much more thoroughgoing and much broader, as it 

transpired through the whole structure of the book as well as in the detailed treatments of the 

various topics discussed. The forthcoming sections will elaborate on this central point.   

 

What is, then, that thing called „classical algebra“: 
If the new disciplinary conception of algebra involved in the structural approach is best 

understood by looking at van der Waerden’s Moderne Algebra, so we can likewise examine the 

contents and structure of Heinrich Weber’s Lehrbuch der Algebra (Weber 1895) as the most 
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adequate manner to understand the disciplinary image that was previously dominant, particularly 

in the German-speaking world.  

When the first volume of the Lehrbuch appeared in 1895, Weber (1843–1912) was surely 

acquainted with the latest advances in various branches of algebra, and in particular with the 

increasing awareness of the possibility of defining algebraic concepts in purely abstract terms. As 

a matter of fact, in 1893 he had been the first person to provide, in the framework of one and the 

same article, abstract axiomatic definitions of both groups and fields, while presenting the latter 

as a group with an added operation that satisfies some additional axioms. Significantly, the aim of 

the article was to clarify the “Foundations of Galois Theory” (Weber 1893). Weber  introduced 

all the elements needed for establishing in general terms the isomorphism between the group of 

permutations of the roots of the equation and the group of automorphisms of the splitting field 

that leave the elements of the base field invariant. His article implicitly directed attention to the 

interplay between what we can retrospectively see as the structural properties of both entities, but 

did not become explicit at that. Nevertheless, it is remarkable that, for all what in retrospect 

seems innovative in it, this article had minimal direct influence on the algebraic research of other, 

contemporary mathematicians. Even more strikingly, it did not even influence the perspective 

adopted by Weber in his own Lehrbuch, which embodied the main traits of the classical 

nineteenth-century image of algebra as the science of polynomial equations and polynomial 

forms, and soon became the standard textbook of choice in the discipline. 

As many other important textbooks, the Lehrbuch appeared when its author felt that the 

development of the discipline over the preceding decades had rendered the existing textbooks 

obsolete and had brought about the need for a systematic, coherent presentation of many new 

results and of their main applications. In this case, the state-of-the-art techniques and 

conceptions related to the problem of finding the roots of polynomial equations, in association 

with ideas that originated with Galois and were developed by many others, dominated a 

considerable portion of the book. But like in all previous books in algebra, the theory of 

polynomials still appeared here as conceptually dependent on, and derivative from, a thorough 

knowledge of the properties of the various systems of numbers.  

The increasingly visibility of techniques associated with Galois theory as the main tool for 

studying solvability of polynomial equations was duly represented in the book, but at the same 

time many remnants of ideas that would eventually discarded from algebraic discourse still played 

a prominent role in the presentation of the discipline. Thus, for instance, “symmetric functions,” 

a concept that had been used by Lagrange in his early research on solvability of polynomial 

equations and that developments in algebra over the nineteenth century rendered as rather 

dispensable. Weber included a treatment of them in the Lehrbuch as part of a tradition of which 

his approach to algebra was still part and parcel. In this tradition, a treatment of the theory of 

polynomial equations should include every particular technique devised to deal with their 

solvability, as he indeed did here. 

Likewise was the case with what is nowadays considered as “analytic” and thus not directly 

related to an exposition of the basic ideas of algebra. For example, the concept of the root of an 

equation which is discussed in terms of limits, continuity, ε-δ arguments etc. Weber also discussed 

Sturm’s problem concerning the question of the number of real roots of a given polynomial 

equation that lie between two given real numbers. This, and further similar problems, are solved 

with the help of derivatives and other analytical tools. Likewise, Weber discussed well-known 

approximation techniques, such as interpolation and Newton’s method of tangents. Weber also 
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discussed roots of unity, but he did so without mentioning in any way their group-theoretical 

properties as had already been thoroughly known since the work of Gauss.  

Weber’s treatment of Galois theory appears in the book after nearly five hundred pages of 

thorough discussion of various aspects of the resolution of polynomial equations. Although 

Weber did refer to his own article of 1893, in which he had insisted upon the potential interest 

involved in studying finite fields, he considered here only infinite fields, or, more specifically, sets 

of complex numbers closed under the four arithmetical operations of addition, multiplication, 

subtraction and non-zero division. He briefly mentioned also fields of functions but in no way 

did he research fields as an autonomous concept with intrinsic interest, even at the relatively 

elementary level that he did for groups. 

Groups are mentioned for the first time in the Lehrbuch after more than five hundred pages of 

discussion of polynomials, and even here one does not find a general treatment of groups. 

Rather, at this stage Weber considered group of substitutions of one root of a function with 

another. He defined a group of permutations and the Galois group of a given field, and he 

explained how the concept can be applied to the theory of polynomial equations. He explicitly 

stated that the focus of interest does not lie in the study of the properties of the group of 

permutations as such, but only insofar as it sheds light on the theory of equations.  He also 

proved that the alternating group is simple, which he needed for the proof of the impossibility of 

solving the general fifth degree equation in radicals.   

A thoroughly abstract treatment of groups, similar to that of Weber’s own 1893 article appears 

only in the second volume of the Lehrbuch. After the basic concepts of the theory of groups were 

introduced in the first four chapters of the second volume in a general and abstract way, Weber 

stated the object of the abstract study of groups. His formulation stresses the need he felt to 

explain to his contemporaries the meaning of the very use of abstract concepts of this kind (p. 

121):  

The general definition of group leaves much in darkness concerning the nature of the 

concept.... The definition of group contains more than appears at first sight, and the 

number of possible groups that can be defined given the number of their elements is 

quite limited. The general laws concerning this question are barely known, and thus every 

new special group, in particular of a reduced number of elements, offers much interest 

and invites detailed research.  

He also pointed out that the determination of all the possible groups for a given number of 

elements was still an open question.  

The Lehrbuch became the standard German textbook on algebra at the turn of the twentieth 

century and it underwent several reprints. The image of algebra conveyed by Weber’s book was 

to dominate the algebraic scene for almost thirty years. As a matter of fact, this was the textbook 

from which van der Waerden himself learnt his undergraduate algebra in Amsterdam in 1919-

1924 (van der Waerden 1975, p. 32). Its influence can be easily detected, among others, through 

the widespread adoption of a large portion of the terminology introduced in it. As matter of fact, 

even after the publication of van der Waerden’s introduction of the new, structural image of 

algebra Weber’s influence did not totally disappear. One can notice this by looking at several 

books published in the 1920s which are closer to the Lehrbuch than to Moderne Algebra, in terms of 

their overall view of the discipline. This is the case with Modern Algebraic Theories (1926), by 

Leonard Eugene Dickson (1874-1954), and Höhere Algebra (1926) by Helmut Hasse (1898-1979). 

The clearest sign of the Lehrbuch’s longstanding influence on algebraic activity, especially within 
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Germany, is provided by the publication in 1924 of another textbook by Robert Fricke (1861-

1930). Fricke wrote his book upon request of Weber’s publisher after the Lehrbuch had sold out. 

In spite of the relatively long time since the original publication, and the many important 

adavnces in algebraic research since then, Fricke chose to essentially abide by the conception of 

algebra embodied in Weber’s presentation He stressed this very clearly in the name he chose for 

his own textbook: Lehrbuch der Algebra - verfasst mit Benutzung vom Heinrich Webers gleichnamigem Buche. 

 

The impact of Emmy Noether on the rise of the structural approach to algebra may be 

understood with reference to the thorough-going transformation noticeable in the image of the 

discipline as it was presented, successively, in Weber’s and in van der Waerden’s textbooks. An 

illuminating way to explain how Noether was instrumental in bringing about this transition is by 

focusing on developments that arose from three main threads of ideas at the turn of the century: 

(1) work on algebraic integers, (2) the study of polynomials and their factorization properties, and 

(3) the rise of the idea of abstract fields. Noether’s path-breaking synthesis that led to the rise of 

modern algebra was based on her deep acquaintance with a very broad range of current works. 

She was able to identify significant trends and to select and improve the most important concept 

and techniques that her predecessors had started to develop (On this point see McLarty 2017, 

Merzbach 1983). The forthcoming sections are devoted to discussing these three important 

threads.  

 

Dedekind’s Ideals  
The first thread to be mentioned as part of the genealogy of ideas that led to Noether’s 

innovations, and one whose importance can hardly be exaggerated, relates to the work of Richard 

Dedekind (1831-1916) on the question of factorization of domains of algebraic integers. Noether 

herself testified to the deep impact that this work had on her own, as she repeatedly used to state: 

“Es steht alles schon bei Dedekind”. This statement was meant to refer, above all, to Dedekind’s 

theory of ideals, the basic ideas of which he started to work out as early as 1856, and which he 

published between 1871 and 1894 as supplements to successive versions of his edition of the 

Vorlesungen über den Zahlentheorie of Gustav Lejeune Dirichlet (1805- 1859).  

Dedekind’s theory of ideals arose against the background of previous work of Ernst Eduard 

Kummer (1810–1893) on the question of factorization in domains that generalize the system of 

Gaussian integers a+ib, with a,b integers. Carl Friedrich Gauss (1777-1855) had investigated this 

domain in his work on biquadratic reciprocity. He succeeded in generalizing the basic ideas of the 

arithmetic of ℤ, by identifying counterparts of the prime numbers that would help prove a 

generalized version of the fundamental theorem of unique factorization. Kummer went on to 

explore questions related with higher reciprocity and he did so by carrying Gauss’s ideas further 

on into even more general domains of numbers. Specifically, he investigated domains of numbers 

of the kind a + ρb (a,b integers) within ℂ, where ρ could be either √−𝑡  (t ≠1) or √−1𝑛
 (n ≥ 3). 

With the help of the ingenious idea of “ideal complex numbers”, he was able to make important 

progress in these questions, but he also became aware very soon of significant limitations 

inherent in his theory. Dedekind studied in detail Kummer’s work and became strongly 

impressed by it. Dedekind’s main mathematical strenght was on conceptualizing complicated 

mathematical situations and coming up with the correct settings where the main problem should 

be successfully analyzed. Accordingly, he realized that the hurdles encountered in Kummer’s 
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theory derived from the need to choose specific “ideal numbers” in every particular case to be 

considered, thus obscuring the more general principles underlying the mathematical situation at 

stake (Corry 2004, pp. 80-92).  

In order to overcome these hurdles, Dedekind started by focusing on those subsets of ℂ which 

are closed under the four arithmetic operations, which he called “fields” (Zahlkörper). Further, 

within any given field Ω of complex numbers he defined a specific collection of numbers, D, the 

“algebraic integers” of Ω, comprising all numbers in Ω which are roots of some irreducible 

monic polynomial with coefficients in ℤ. This collection D, he realized, plays within Ω the same 

role that—for the purposes of investigating factorization properties— ℤ plays within the smallest 

sub-field of ℂ, namely ℚ. Thus if we want to investigate for example the factorization properties 

of generalized Gaussian integers of the kind G = {  𝑎 + 𝑏√−3 / a,b in ℤ }, then we need to 

place ourselves within the number field Ω = {  𝑎 + 𝑏√−3 / a,b in ℚ }, and then, within Ω, we 

need to consider the collection D of all its algebraic integers. It is in D, rather than in G, 

Dedekind understood, that the correct laws of factorization will surface. By doing so, given that 

G ⊆ D, we will have obtained the factorization laws that apply to G.  

Thus, Dedekind’s first important insight in this regard was to have identified the correct domain 

of numbers where factorization has to be investigated. Dedekind’s second important insight was 

to define the correct tool with which to do so. This is where his ground-breaking concept of 

“ideal” appears. Ideals embody one of Dedekind’s central methodological principles, with the 

help of which he was able to introduce many important and useful new concepts, namely, rather 

than looking at the individual numbers and their properties when trying to understand their 

behavior, it is more important to look at collections of numbers and at their properties as collections 

(i.e., mostly inclusion properties). This proved to be a crucial principle in the case of ideals. While 

studying the factorization properties of an algebraic integer δ in a number field, Dedekind 

focused on properties of the collection i(δ) of all multiples of δ. Particularly he pointed out the 

following two seemingly obvious properties of that collection:  

• If α and β both belong to i(δ), then both α+β and α−β must also belong to i(δ);  

• If β belongs to i(δ) and x is any (algebraic) integer in the domain considered, then βx 

must also belong to i(δ).  

Dedekind called this collection i(δ) the “principal ideal generated by δ”. The important insight 

here was that, side by side with these principal ideals, there are other collections of algebraic 

integers which, while not themselves also principal ideals, they do satisfy the same two properties. 

Moreover, Dedekind understood that such collections will be of help for understanding 

factorization in its broadest setting. Thus, Dedekind defined an ideal M to be any collection of 

algebraic integers satisfying the following two properties: 

(1) If α, β ∈ M, then α + β ∈ M and α − β ∈ M;  

(2) If β ∈ M and x is any (algebraic) integer in D, then βx ∈ M.  

Working out the details of a theory of ideals meant, above all, defining operations among the 

ideals, identifying properties of specific kinds of ideals (such as “prime ideals”) and, of course, 

formulating generalized versions of the fundamental theorem of unique factorization as known 

to hold in the basic case of ℤ. The various, successive versions of Dedekind’s theory were meant 

to make the theorems less and less dependent on the need to choose specific representatives in the 

collection of numbers considered for the sake of defining the properties or of proving theorems 

related to them. Gradually, Dedekind set to himself a more radical aim, namely, coming up with 
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proofs which would ideally be formulated solely in terms of the collections themselves and of their inclusion 

properties. This was a quest for increasingly “structural”, and less “computational” understanding 

of the mathematics involved here, and one that Noether would later on continue to pursue with 

increased sharpness (McLarty 2006).  

One issue in which the gradual changes along the successful versions of the theory become 

particularly noticeable is that of prime ideals and their multiplicities. In the first published version 

of the theory, dating from 1871, Dedekind formulated the main factorization theorem as follows 

(1930-32, Vol. 3, p. 258): 

• Every ideal is the l.c.m. of all the powers of prime ideals that divide it.      (*) 

This should be read as follows: an ideal A is a multiple of another ideal B (or “is divisible by B”) 

whenever A ⊆ B. An ideal P is prime if its only divisors are itself and the ideal U, U being i(1) (or 

the collection of all algebraic integers in the field considered). Notice that in present-day terms, 

Dedekind’s prime ideals are called “maximal ideals”, while an ideal is called nowadays prime if for 

any product of ideals contained in it, at least one of the factors is also contained in it. Domains in 

which every ideal can be uniquely written as a product of prime ideals are called nowadays 

“Dedekind domains”. It was Noether, as will be seen below, who indicated the specific 

importance of such domains.  

Now, the main problem here is how to define the “power” of an ideal. In order to do so, 

Dedekind introduced the following equivalent definition of a prime ideal:  

 

  An ideal P is prime if for every product αβ ∈ P, either α ∈ P or β ∈ P.  

 

This definition allowed him to add a new concept, “simple ideal”, whose formulation, like the 

latter, alternative one, requires choosing specific elements in the ideal and checking some of the 

properties of their powers, so as to define the power of the ideal (For details, see Corry 2004, pp. 

92-120). This definition in turn, provides a rather workable tool for proving useful results. For 

example:  

every principal ideal i(µ) is the l.c.m. of all powers of simple ideals containing µ.  

Further:  

every prime ideal is indeed a prime simple one. 

Hence, one can speak only of prime ideals, while forgetting about the simple ones. Further: 

if all the powers of the prime ideals that divide a given ideal M, divide also the principal 

ideal i(δ), then M divides the principal ideal i(δ). 

Finally, with this results at hand he was able to prove the fundamental factorization theorem (*).  

Dedekind’s definition and use of simple ideals in order to deal with multiplicity of factors in the 

first version of his theory epitomizes the inherent reasons for attempting improved versions. 

Simple ideals were not defined through an abstract property, as a special class of prime, or of 

other kind of ideals, but rather as collections of integers satisfying a specific kind of congruence 

which required selecting specific numbers. Dedekind was able to couch his new factorization 

theorem in ideal-theoretical language, but in an important sense he did not yet abandon the 
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traditional outlook which he wanted to overcome. Dedekind worked hard in the subsequent 

versions in order to omit this concept as well as some other similar ones. 

In 1879, for example, Dedekind was able to reformulate the main concepts and theorems by 

developing in detail a full arithmetic of ideals, including operations such as division and negative 

powers, without relying on specific choices. This allowed him to avoid defintions and proofs 

based on choices of specific numbers and to develop a theory with a distinct structurally-oriented 

flavor. An emblematic results found in this version is the following:  

Given a chain of modules A1, A2, . . . An, . . . contained in a given finitely-generated 

module N, and such that Ai is contained in An+1 for all indexes i, then there is an index k 

such that Ai = Ak, for all k > i.  

This is already quite close to the kind of structural formulations that one may find later on in the 

work of Noether, particularly because of what appears here as an early version of the “ascending 

chain condition” (a.c.c.), which will become the hallmark of her approach. In the proof, however, 

Dedekind constructed a certain determinant whose rows contain the coordinates of a specific set 

of numbers, with respect to a given basis. Dedekind stated (1930-32, Vol. 3, p. 527) that “this 

proof is not satisfactory because it depends upon specific choices of numbers, and, moreover, 

because the theory of determinants is alien to the proper content of the theorem.”  

It is important to stress that Dedekind’s early use of this kind of “chain condition” was essentially 

different from that which we will later find in Noether’s work, and this difference is indeed 

crucial. Dedekind’s proof relied on a lemma which is based on properties of complex numbers 

and algebraic integers, and which, moreover, requires choosing specific elements in the module. 

He did not singled out this chain condition as an abstract kind of properties that we might 

postulate as an abstract axiom to characterize all domains for which unique factorization 

theorems hold but rather used it as a specific property of the numbers he was working with.  

This is, then, the important point to stress here: Dedekind’s fields were the subject matter of his 

theory, whereas ideals were a tool for handling the main question arising in the study of this 

subject matter, namely, unique factorization. Fields and ideals were not, one may say, 

mathematical entities belonging to one and the same family, or different manifestations of a 

common underlying notion. Similar was the case with Dedekind’s quite idiosyncratic approach to 

Galois theory: he focused on sub-fields of the complex numbers, and the (extensions) containing 

the roots of given polynomial equations. This was the subject matter to be investigated. The group 

of a given equation was a tool with the help of which, the question of solvability could be 

analyzed. Thus, sub-fields of ℂ and their algebraic integers were for Dedekind the subject-matter 

of “higher arithmetic”, whereas polynomial equations and polynomial forms was the subject-

matter of “algebra”; ideals and groups, one  the other hand, were the right tools to deal with the 

main problems arising in each of these domains. In both cases, the main properties on the basis 

of which the corresponding mathematical theory is built are the properties of the systems of 

numbers, which are assumed to be well-established in their own.  

 

Polynomials and Factorization  
The second thread in the genealogy of ideas leading to Noether’s innovations is the one that 

concerns the issue of factorization in systems of polynomials, specifically ideas associasted with 

the work of Emmanuel Lasker (1868–1941) Francis Sowerby Macaulay (1862–1937) (Lasker 

1905, Macaulay 1913). The starting point of their works go back to ideas developed by Hilbert 



 
Leo Corry  - 11 - Noether’s Algebra 

early in his career. He had famously proved that for any module M of polynomials in n variables 

x1,..., xn, there exists a finite sub-collection F1, ...,Fk, such that any member of M may be written 

as X1F1 + ... + XkFk, where Xi represent arbitrary polynomials. This collection is called a basis. 

Hilbert also proved his famous Nullstellensatz, according to which given a finite set of polynomials 

F1, ...,Fh,  and another polynomial F, such that F vanishes in all the common roots of F1, ...,Fh, 

then there exists a natural number k, and h polynomials A1, ...,Ah,such that Fk = A1F1 + ... + 

AhFh.  

Lasker, better known for being World Chess Champion for 27 years, had studied in Göttingen, 

where he got to know Hilbert, and later completed his PhD in Erlangen under Max Noether 

(1844-1921), Emmy Noether’s father. While studying factorization properties for systems of 

polynomials, Lasker inotrduced the idea of a primary ideal, which, in modern terms and 

considering a general ring R, can be stated as follows: 

An ideal A of an arbitrary ring R is called a primary ideal if given two elements a,b of R, 

such that their product ab belongs to A but a does not belong to A, then there exists an 

integer k such that bk belongs to A. 

The connection of this idea with Hilbert’s Nullstellensatz is evident. The infleunce of Dedekind’s 

work on ideals is also evident, but Lasker never became invovled with the idea of possibly 

formulating a general theory of rings and ideals valid both for numbers and polynomials. Rather 

he just trasnferred some of Dedekind’s main concepts from the realm of numbers into the realm 

of polynomials, which he considered to be a completely separate one, with its own properties that 

are independent, in many important senses, from those of numbers.  

Lasker proved two main results: 

1. every module is representable as an intersection of a finite number of primary modules 

and a module such that at no point a1, ...,an all the polynomials belonging to the module 

vanish.  

2. for every polynomial form f belonging to the prime ideal P associated with a primary ideal 

M, there exists an integer h such that fh is an element of M.  

The important point is that for proving the latter result, Lasker relied on the following lemma: 

given an infinite ascending sequence of ideals M1, M2,... there exists a number n so that for 

N > n, the module MN is contained in (M1, M2,..., Mn), the l.c.m. of the n modules M1, 

M2,... Mn.  

While this lemma can be seen as a version of the a.c.c. specifically formulated for polynomial 

forms, Lasker proved it using Hilbert’s basis theorem, and in this sense it is a direct consequence 

of specific properties of polynomails, rather than a general principle valid in an abstract ring. 

Remerkably, Lasker did not mention the reciprocal theorem, namely, that the said chain 

condition implies the existence of a finite basis. In the framework of polynomials, this statement 

would have been superfluous.  

Lasker’s results were complemented in 1913 by Macaulay. Macualay proved the uniqueness of the 

decomposition and provided an algorithm to actually perform it. The Lasker-Macaulay theorem 

thus states that every ideal of polynomials can be uniquely decomposed as an intersection of 

finitely many primary ideals. Noether would eventually prove the more general theorem, 

nowadays known as the Lasker-Noether theorem, namely that “every ideal in a ring with a.c.c. can 

be uniquely decomposed as an intersection of finitely many primary ideals”. 
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From p-adic numbers to abstract fields  
The third thread to be considered here, and one that became a crucial turning point in this story, 

is the one associated with the seminal work on abstract fields published in 1910 by Ernst Steinitz 

(1871–1928). The opening section of Steinitz‘s article, “Algebraische Theorie der Körper”, 

included an abstract defintion of fields as presented in Weber‘s article of 1893, but the focus of 

his inquiry diverged significantly from that of Weber. In Steinitz’s own words (1910, p. 5):  

Whereas Weber’s aim was a general treatment of Galois theory, independent of the 

numerical meaning of the elements, for us it is the concept of field that represents the 

focus of interest. . . . The aim of the present work is to advance an overview of all the 

possible types of fields and to establish the basic elements of their interrelations.  

Of fundamental importance in his quest was the idea of the charcateristic of the field. Steinitz 

showed for the first time that any given field contains a “prime field” which is isomorphic, 

according to the characteristic of the original field, either to the field of rational numbers or to 

the quotient field of the integers modulo p (p prime). Then, after thoroughly studying the 

properties of these prime fields, he proceeded to classify all possible extensions of a given field 

and to analyze which properties are passed over from any field to its various possible extensions. 

Since every field contains a prime field, by studying prime fields and the way in which properties 

are passed over to extensions, Steinitz would attain a full picture of the structure of all possible 

fields.  

Besides the characteritic, Steinitz also worked out in some details additional importat ideas such 

as seprabale elements in the field, and the degree of trascendence of an extension. He also proved 

that every field has an algebraically closed extension. Remarkable is also the way in which Steinitz 

devoted specific attention to his use of set-theoretical ideas. At the time, this was still quite a 

novel issue which needed to yet to find a proper place in mathematical discourse and Steinitz was 

fully aware of the advantages but also of the dangers involved in it. This is manifest in his remark 

about the use of the Axiom of Choice and the need to do this is with great care.  

The main source of inspiration for Steinitz’s work came from the original research that Kurt 

Hensel (1861–1941) had recently conducted on the thoery of p-adic numbers. What is special 

about these p-adic numbers is that they embodied a truly new kind of entity, that was full of 

mathematical meaning and interest, and which, unlike what is found in Dedekind, “counts neither 

as the field functions nor as the field of numbers in the usual sense of the word.” Moreover, the 

p-adic numbers do not comprise a field of numbers located somewhere between ℚ and ℂ as had 

been all the number fields theretofore investigated. The importance of the characteristic as a 

main notion in the theory arose no doubt from Hensel’s ideas.  

It is interesting that this same work of Hensel gave rise to the definition of abstract rings, but not 

in itself to an abstract investigation of rings in parallel to that of Steinitz. Hensel had presented 

his work in two main books, Theorie der algebraischen Zahlen (1908) and Zahlentehorie (1913). In both 

books he was assisted by the then graduate student Abraham Halevy Franekel (1891-1965). 

Fraenkel raised the question what would happen with Hensle’s numbers if, instead of a prime 

number p, a composite number g would be used as the basis for representing numbers as series of 

powers. The mian issue here is that when doing so, one obtains a system of numbers where 

divisors of zero do appear. Hensel thought that such systems are devoid of interest, whereas his 

student Fraenkel undertook the exercise of formulating general axioms that define an abstract 
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system with two operations, one of which does not necessarily comprise inverse elements, and in 

which divisors of zero may appear (Fraenkel). Fraenkel attempted to adapt to the case of ring the 

kind of ideas developed by Steinitz in his article on fields. On the other hand, he did not connect, 

in any way, the idea of a ring with the question of unique factorization as presented in the works 

of Dedekind on algebraic numbers and of Lasker on polynomials, as Noether would do about ten 

years later. Indeed his articles on this topic remained at the most elementary level and did not 

open ways to use the general notion of ring as a tool for actual research (Corry 2000). 

 

Noether’s Abstract Rings  
Noether’s first publication dealing with the question of unique factorization in abstract rings, 

“Idealtheorie in Ringbereichen”, appeared in 1921. She stated very clearly that the aim of the paper 

was:  

… to translate the factorization theorems of the rational integer numbers and of the 

ideals in algebraic number fields into ideals of arbitrary integral domains and domains of 

general rings. (Noether 1921, p. 25) 

In order to do so, she started by focusing on the unique representation of an integer as a product 

of powers of prime numbers written in the following alternative way: 

𝑎 = 𝑝1
𝑟1𝑝2

𝑟2 … 𝑝𝑠
𝑟𝑠 = 𝑞1𝑞2 … 𝑞𝑠 

In this representation, some elementary properties are immediately noticeable: 

(1) Any two different factors 𝑞𝑖, 𝑞𝑗 are relatively prime and they cannot be further 

decomposed into factors having this property. Moreover, since the factors are relatively 

prime, the product of the 𝑞𝑖’s represents also their l.c.m. 

(2) Given 𝑞𝑖, 𝑞𝑘 and an integer b such that 𝑞𝑘 divides b²·𝑞𝑖, then, it follows that 𝑞𝑘 

necessarily divides b·𝑞𝑖;  

(3) Given that 𝑞 divides b²·c, but 𝑞 does not divide b, then 𝑞 necessarily divides a power 

of c. However, the product of two factors 𝑞𝑖, 𝑞𝑘 does not satisfy this property anymore;  

(4) Each factor 𝑞𝑖 in the above decomposition cannot be represented as the l.c.m. of two 

proper divisors of 𝑞𝑖. 

 

The theorem of unique factorization of integer numbers could now be formulated in terms of the 

primary components 𝑞𝑖 . To each 𝑞𝑖 there is a uniquely associated prime number 𝑝𝑖  and a natural 

number σ, such that 𝑝𝑖
𝜎 = 𝑞𝑖, and the theorem is stated as follows:  

In any two different factorizations of a rational integer numbers into irreducible, greatest 
primary factors q, the number of factors, the corresponding prime numbers (up to their 
sign), and the exponents coincide. (Noether 1921, p. 25)  

Then, substituting the word “number” by “ideal generated by a number”, she obtained the 
theorem for ideals in algebraic number fields, as Dedekind had formulated it. 
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From here, she moved into the realm of an abstract rings Σ. By this time, the general idea of an 
abstract ring was still totally unfamiliar to her audience so that she started by defining a ring and 
stating some of its most basic properties, following the work of Fraenkel. Echoing the core of 
Hilber’s work on polynomials she also required that the rings satisfy the “finitness condition” 
(Endlichkeitbedingung), namely, that every ideal in the ring should have a finite basis. She then took 
the fundamental step of proving the equivalence between the finiteness condition and the a.c.c., 
now formulated in purely abstract terms.  

Within this spirit of ideas, Noether proceeded to define new concepts that were all formulated 
strictly in terms of chain conditions and other inclusion properties, and to prove several 
factorization properties in the same terms. Thus, for instance, Noether defined primary and 

prime ideals as follows: D is a primary ideal in Σ if from AB ⊆  D and A⊈ D, it follows that 

there exists an integer n such that Bn ⊆ D. If, in addition, n=1 for every ideal B, then D is a prime 
ideal. For any primary ideal D, there exists a unique prime ideal P containing D, such that a power 
of P is contained in D. The lowest such power is called the exponent of D. The main 
factorization theorem is the following: 

In a ring satisfying the a.c.c., every ideal is representable as the reduced intersection of a finite 

number of indecomposable ideals (which are also primary); the number of such ideals and the 

collection of associated prime ideals is invariant for every given ideal, though possibly the 

specific primary ideals used in the factorization are not.  

 

In her 1921 paper, Noether proved four factorization theorems of this kind. All four were already 
known for the domains of polynomials, but the previously existing proofs relied, as Noether 
herself remarked, on the fact that every polynomial is uniquely representable as a product of 
irreducible polynomials. This result, in turn, depended on properties of polynomials that are 
directly derived from those of the systems of real and complex numbers. Noether’s main insight 
was to understand that the factorization of ideals may indeed be formulated independently of this 
property of polynomials, and that what determines it is, in fact, what may be properly called a 
“structural property”, namely, the a.c.c. Moreover, Noether clearly stated the uniqueness 
conditions of each of the different factorizations. In the introduction she mentioned a series of 
earlier articles in which uniqueness had been discussed, but always in a partial, non-systematic 
fashion. The decomposition theorems of this paper are all “multiplicative” ones: namely, they 
present the ideals as products or l.c.m. of other ideals. However, Noether mentioned the existence 
of other, “additive” decomposition theorems and pointed out that a translation of the latter kind 
of decompositions into the former would be possible using the concepts introduced in her 
article, together with some additional ones. These additional concepts were meant to define 
properties of the systems of residue classes defined by the ideals in the ring. The latter happen to 
constitute themselves a ring satisfying the same general properties as the original one. In fact, the 
original ring might itself have been considered as a special case of a residue system.  

Noether’s structural concerns appear clearly conveyed by these kinds of remarks. Moreover, they 
condition the direction of her research, since they suggest both the kinds of questions that should 
be addressed and the preferred way to answer them. Noether chose here decomposition 
questions as her main focus of interest, but these are addressed from a peculiar perspective. Not 
only are the subjects of her research abstractly defined by means of axioms, but, moreover, 
contrary to the classical approach in which the systems of numbers have a privileged status and 
the properties of other algebraic constructs may be derived from those of the number-systems, 
under this approach there is no essential difference between a given algebraic system and the 
building blocks that constitute it. Faced with these systems the question arises, how their 
properties (in this case, decomposition properties) are passed over back and forth, from the 



 
Leo Corry  - 15 - Noether’s Algebra 

original structure into its building blocks (the quotient systems). These kinds of questions had 
already been worked out by Steinitz in the case of fields, but in extending Steinitz’s point of view 
to rings, Noether was in fact establishing a guideline for research with much more general 
implications, namely, that these questions are relevant for a more general class of interesting, 
abstractly defined algebraic systems.  

In her next important paper (Noether 1926), Noether approached the problem of factorization 
within a much more maturely conceived axiomatic framework. She proved a series of 
decomposition theorems that hold in a commutative ring R, to which five additional axioms are 
successively added. Taken together, these five axioms add up to define what is known nowadays 
as a “Dedekind ring”, namely a ring in which every primary ideal is a power of a prime ideal. The 
five axioms are formulated at the beginning of the paper as follows: 

I. R satisfies the a.c.c.  

II. Every proper descending chain of ideals in R, each of which contains a given non-zero 

ideal, is a finite chain.  

III. There exists a unit for the multiplication in R.  

IV. There are no divisors of zero in R.  

V. The field of fractions of the ring R is integrally closed (i.e., each element of the field of 

fractions, which is an integer with respect to R, belongs in fact to R). 

Noether considered abstract rings here, not only as an appropriate framework for formulating 

general theorems of factorization, but increasingly as an object of intrinsic interest that raised 

structural questions worthy of detailed study. Given a ring T with identity and having no divisors 

of zero, and given a fixed sub-ring R of T containing the identity, Noether defined an R-Module 

as a sub-set of T satisfying the usual conditions for the addition and for the product by an 

element of R. Consequently, An ideal is a module all of whose elements belong to R. In these 

terms, one illustrative example of the kinds of theorem proved here by Noether deals with finite 

modules, namely, modules for which a finite basis exists. The theorem is formulated as follows:  

If R is a commutative ring with unit satisfying the a.c.c., and M is a finite R-module, then 

also M satisfies the a.c.c. (Noether 1926, p. 34)  

The structural spirit of the theorem is manifest in that it considers an abstractly defined domain 

and establishes the conditions under which certain properties of the basic domain are passed over 

to a new domain which is derivative from it. And what is of special significance is that the proof 

relies on a correspondence between the lattice of sub-modules of M and that of the ideals of R. 

This lattice expresses in a succinct fashion the inclusion relations of the sub-domains of the two 

domains in question. 

This structural approach is also explicitly worked out when Noether explains how the properties 

expressed as axioms I to V carry over from certain basic rings to their finite extensions. In 

particular, if axioms I-V hold for a given ring R, they hold for the domain S of all integers in T 

relative to R. At this stage it is clear how to proceed: 

It is enough to prove for subordinate fields of numbers and of functions that the basic 

domains satisfy axioms I-V: integer numbers, single-variable polynomials, functional 

domains of many-variables polynomials. (Noether 1926, 37)  
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Thus, while in the case of fields, Steinitz had established that the most basic fields are the prime 

fields associated with any field, turning these fields into the building blocks of a structural theory 

of fields, Noether‘s factorization theorems embodied a natural step in the process of determining 

the building blocks of an euqally structural, abstract theory of rings. 

In the main result of the paper, Noether considered the consequences of adding axioms II-V to 

the a.c.c. Assuming all the five axioms allows proving that primary ideals are powers of their 

associated prime ideals. As a consequence, the main decomposition theorem is the following:  

If a ring R satisfies axioms I-V, then every ideal in R is uniquely representable as 

intersection of a finite number of powers prime ideals. (Noether 1926, 53)  

Finally, in the closing section of the article Noether proved the equivalence of the double-chain 
condition (i.e. the simultaneous occurrence of the ascending and descending chain conditions) 
with the existence of a composition series (A sequence E ≤ Hn ≤ ...H1 ≤ G of sub-groups of a 
given group constitute a composition series when each subgroups is normal relative to its 
immediate predecessor and when the factor groups Hi /Hi+1 are all simple groups). She 
formulated all of her arguments in terms of modules in general. She did not mention operations 
among elements of the module, and relied purely on arguments dealing with the interrelation of 
the ideals and the sub-modules involved. Moreover, as she explained in a footnote, since the 
modules are in fact Abelian groups under addition, the composition series are indeed principal 
series (In a composition series, it might be the case that Hi+1  is normal in Hi , but not in G. If, 
however, all the Hi’s are normal in G, then the series is called a principal series. For Abelian 
groups, every composition series is also a principal series). However, since all the theorems are 
formulated in terms of composition series, they remain valid also for the case of non-Abelian 
groups. The converse is also true: the existence of a composition series implies the double chain 
condition. As a by-product of this result, Noether also proved a general version of the Jordan-
Hölder theorem using induction on the length of the series in the standard way. 

  

In the following years, Noether became increasingly active in research in other topics of algebra 

such as representation theory and hypercomplex numbers. He contributed important results in 

these fields as well, always conducting her research within the same structural spirit that was 

visible in her two articles on rings. In particular, Noether focused her interest in the non-

commutative cases and in the search after the “structural invariants” that arise in such cases. In 

the non-commutative case it is somewhat limitative to rely on the properties of the operations 

defined on the individual elements of the abstract ring. Decomposition theorems in this case are 

best proved purely in terms of inclusion properties of sub-domains. This perspective afforded, in 

her view, fundamental insights to understanding the commutative case as well.  

Noether’s abstractly conceived concepts provided a natural framework in which conceptual 

priority may be given to the axiomatic definitions over the numerical systems considered as 

concrete mathematical entities. Still, her axiomatic conception, perhaps because of her own deep 

acquaintance with the classical aims of concrete algebraic research, was not one that aimed at 

formal games with symbols, devoided of a more concrete matematical meaning. For Noether, the 

axiomatic analysis of concepts is only one of two complementary aspects, rather than the 

exclusive essence of mathematical research. Thus she was quoted as saying:  

In mathematics, as in knowledge of the world, both aspects are equally valuable: the 

accumulation of facts and concrete constructions and the establishment of general 

principles which overcome the isolation of each fact and bring the factual knowledge to a 

new stage of axiomatic understanding. (Quoted in Corry 2004, p. 249) 
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Other works in Algebra in the early 20th Century  
In spite of her decisive influence, it is obvious that the rise of the structural approach in algebra 

was the outcome of the combined impact of works by various mathematicians who worked out 

their ideas since the turn of the twentieth century. This impact was felt not only in terms of 

innovative techniques and results, but also in terms of a thoroughgoing reconceptualization of 

the discipline, its internal organization and its place in the overall economy of mathematics 

(Corry 2007). Besides Noether, the most significant influence over van der Waerden in writing 

his book was that of Emil Artin. Van der Waerden attended in 1926 a course on algebra in 

Hamburg taught by Artin in collaboration with Otto Schreier (1901-1929). They presented an 

updated overview of recent work by Steinitz on fields and Noether on rings, as well as a 

presentation on Galois theory that would essentially be the one that van der Waerden followed in 

his textbook. But of especial interest for van der Waerden was the recent work on real fields, by 

Artin and Schreier, which he would reproduce in chapter X of his book.  

The problem which Artin addressed and which led to his definition of real fields, together with 

Schreier, is the following: 

Let F be an algebraically closed field. Find all proper subfields K of F, such that F is an 

algebraic extension of finite degree of K. 

In 1924 Artin found a solution for a field F which is an algebraic closure of ℚ. Two years later, 

together with Schreier, he found a more general solution, valid for any algebraically closed field 

of characteristic 0:  F has to be an extension of K of degree 2, and K has the property that -1 

cannot be expressed as a sum of squares (Artin and Schreier 1926, 1927). Besides the intrinsic 

interest of this result, the definition of real fields in purely algebraic terms was of the utmost 

importance for the consolidation of van der Waerden’s view of the entire discipline of algebra as 

a hierarchy of structures, since it lent definitive support to the idea that the field of real numbers 

has no essential conceptual priority, but rather it is a very specific case of combined ideas that 

relate to algebraic structures. This idea is emblematically represented in the fact that, in van der 

Waerden’s Leitfaden, real fields appeared at the deep-bottom of the hierarchy of concepts, as a 

particular case of infinite fields.  

Throughout his career, Artin distinguished himself as a brilliant expositor who published various, 

highly influential textbooks on Galois theory (1942), Rings with minimum condition (1948), Geometric 

algebra (1957), and Class field theory (1961). All these texts bear the strong structural character that 

in van der Waerden’s book implied a groundbreaking innovation, and that, in turn, had been 

highly influenced by Artin.  

 

In the German context, we should also mention here the works of Berlin mathematicians such as 

Issai Schur (1875-1941) and Georg Ferdinand Frobenius (1849-1917), on matrices, algebras and 

hypercomplex numbers (Curtis 1999; Hawkins 2013). Taken individually all these works 

contributed with important results that were in the background to Noether’s work, but they did 

not came up with a new, coherent overall picture of the discipline that would challenge the 

existing one as embodied, above all, in Weber’s Lehrbuch.  Similar is the case with the work of 

American mathematicians such as Leonard Dickson (1874-1954) and  Joseph Wedderburn (1882-
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1948), and their predecesors Benjamin Peirce (1809-1880) and Josiah Willard Gibbs (1839-1903), 

who had worked on vector calculus, linear groups, Galois fields, and hypercomplex numbers 

(Artin 1950, Fenster 1998, Parshall 1985).  

 

A last point of particular interest to be mentioned here, which helps understand the crucial role 

of Noether, as the main figure in this story, concerns the work of Hilbert. Hilbert’s far-reaching 

influence on all fields of activity in mathematics at the turn of the century—including those 

related to algebra—cannot be overemphasized, of course, and precisely because of this, it allows 

us stressing the particularly novel character of Noether’s work. I already mentioned above the 

work of Lasker, and the way in which it was influenced by Hilbert. Indeed, there are other 

aspects Hilbert’s work which, on the face of it, are directly related to the most important 

developments in early-twentieth century mathematics and which we tend to associate with the 

rise of the structural approach in algebra. In the first place is his work on the theory algebraic 

invariants. This was the first field of research in which Hilbert distinguished himself as an 

upcoming figure of mathematics by the end of the nineteenth century. His achievements derived, 

among other things, from a rejection of the algorithmic style that dominated the discipline and by 

focusing several conceptual central ideas that he adopted from number theory. Then, working in 

the theory of algebraic number fields, he adopted the more conceptual perceptive developed by 

Dedekind, while preferring it over that of Leopold Kronecker (1823-1891) which was more 

algorithmic (Corry 2001). Hilbert’s famous account of 1897, Zahlbericht, which definitely 

embodied this preference, turned into one of the most influential ones in the theory of algebraic 

number fields, thus helping promote Dedekind’s point of view. Finally, the central role of the 

modern axiomatic method, a main component of the structural approach to algebra, is justly 

identified with the work of Hilbert, beginning with his 1899 book on the foundations of 

geometry (Hilbert 1899).  

In all of these respects it may indeed make sense to speak about Hilbert as the harbinger of a new 

conception of algebra, and yet, against the description provided above, several important 

considerations shed light on the gap that still was necessary to overcome in order to reach the 

new conception embodied in the work of Noether. Take as an example of this the famous list of 

twenty-three problems put forward by Hilbert in 1900. Five of them are somehow related to 

algebra in the “classical” sense, but none to algebra in a more “modern” sense. There is no 

problem related to the theory of groups, algebras or systems of hypercomplex numbers, and not 

even to Galois theory. In his Göttingen lectures, where he typically presented the ideas that were 

occupying his mind over the years, we find none of the topics related to questions of 

factorization in abstract rings, group theory, abstract fields, or the like. Nor did any of his 

outstanding doctoral students (no less than 68, including the likes of Hermann Weyl) wrote 

dissertations on such topics.  

As already mentioned, Noether proved Lasker’s theorem using the “finitness condition”, as 

Hilbert had done before her. But she derived this property from the a.c.c. alone, whereas Hilbert 

had derived it from specific properties of polynomials over ℂ. Hilbert, as far as we are aware, 

never commented on this point, or indicated its importance. More importantly, there is no know 

evidence that Hilbert ever commented on the idea of structure as a possible, organizing principle 

for algebra, let alone mathematics at large. In all of his lectures and publications, he consistency 

abode by the classical conceptual hierarchy whereby the systems of numbers, either genetically or 

axiomatically defined, are the basis on which the entire edifice of mathematics is built. Moreover, 

there seems to be no evidence that he ever commented positively on van der Waerden’s book.  
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Concluding Remarks 
Beyond the intrinsically mathematical virtues of Noether’s work, it also seems clear that the great 

influence she was able to exert needs also to be explained by the quantity and the quality of her 

Göttingen students. It seems unlikely that such a circumstance could have come about in an 

institutional environment other than the truly unique one which developed in Göttingen between 

the years 1895, w ith Hilbert’s arrival, and 1933, after Hitler’s rise to power (Rowe 2018). 

Obviously, regardless of their own personal abilities to create a stable group of students around 

them and to communicate to them their own ideas, neither Dedekind, nor Steinitz, Fraenkel, 

Lasker or Macaulay enjoyed the opportunity to do in their respective intitutions. The peculiarity 

of the Noether Schule as a cultural phenomenon is discussed in detail in the chapter by Mechtchild 

Koreuber in the present collection, and its importance in the process of spreading her ideas 

cannot be overlooked (see also Koreuber 2015). In the words of Hermann Weyl (Cited in Corry 

2004, p. 222):  

In my Göttingen years, 1930-1933, she was without doubt the strongest center of 

mathematical activity there, considering both the fertility of her scientific research 

program and her influence upon a large circle of pupils. 

Among Emmy Noether’s direct students we can mention leading algebraists such as Max 

Deuring (1907-1984), Hans Fitting (1906-1938), Friedrich Grell (1903-1974), Jakob Levitzki 

(1904-1956), Kenjuri Shoda (1902-1977), Otto Shilling (1911-1973) and Ernst Witt (1911-1991). 

Several other leading mathematicians co-worked with her and her influence was decisive on their 

own works. Besides those already mentioned, one should also point out here Helmuth Hasse 

(1898-1979) and  Wolfgang Krull (1891-1971) whose contributions to algebra were of the highest 

quality and impact (Fenster & Schwermer 2007). As Stefan Müller-Stach explains in his chapter in 

this collection, one can trace a direct line leading from the contributions of Noether and her 

successors to many important topics that are central to current algebraic research, such as 

homological algebra, the application of categorical methods in group theory and topology, 

algebraic and arithmetic geometry, and algebraic K-theory.  

 

Noether’s influence on van der Waerden’s Moderne Algebra and—through the impact of the 

latter—on modern algebraic research at large can be characterized as follows: van der Waerden 

adopted many results of Noether and presented them in a systematic way. Noether—original as 

her thought was—was not the only important algebraist from whom van der Waerden took his 

ideas. He also included methods and results of Artin, Krull and other important mathematicians 

who were working on the same issues and were influenced by (and probably also influenced) 

Emmy Noether. In van der Waerden’s presentation, different mathematical domains were 

presented as individual instances of algebraic structures, that need therefore to undergo similar 

treatments: they are abstractly defined, they are investigated by recurrently using a well-defined 

collection of key concepts, and a series of questions and standard techniques is applied to all of 

them. Some of these features had already appeared in Steinitz’s and in Fraenkel’s work, but 

Noether’s research on ideals definitely contributed to give legitimation and interest to the 

possibility of applying them systematically. Van der Waerden also included issues that had not 

been developed by Noether but which found a natural place among the other algebraic domains. 

The most outstanding example of this was group theory, which appeared in van der Waerden’s 

book for the first time as an algebraic theory of parallel status to field theory, ring theory, etc. 
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