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1. AXIOMATICS, GEOMETRY AND PHYSICS IN 
HILBERT’S EARLY LECTURES

This chapter examines how Hilbert’s axiomatic approach gradually consolidated over
the last decade of the nineteenth century. It goes on to explore the way this approach
was actually manifest in its earlier implementations.

Although geometry was not Hilbert’s main area of interest before 1900, he did
teach several courses on this topic back in Königsberg and then in Göttingen. His lec-
ture notes allow an illuminating foray into the development of Hilbert’s ideas and
they cast light on how his axiomatic views developed.

 

2

 

1.1 Geometry in Königsberg

 

Hilbert taught projective geometry for the first time in 1891 (Hilbert 1891). What
already characterizes Hilbert’s presentation of geometry in 1891, and will remain true
later on, is his clearly stated conception of this science as a natural one in which, at
variance with other mathematical domains, sensorial intuition— 

 

Anschauung

 

—plays
a fundamental role that cannot be relinquished. In the introduction to the course, Hil-
bert formulated it in the following words:

 

Geometry is the science that deals with the properties of space. It differs essentially from
pure mathematical domains such as the theory of numbers, algebra, or the theory of func-
tions. The results of the latter are obtained through pure thinking... The situation is com-
pletely different in the case of geometry. I can never penetrate the properties of space by
pure reflection, much as I can never recognize the basic laws of mechanics, the law of
gravitation or any other physical law in this way. Space is not a product of my reflections.
Rather, it is given to me through the senses. I thus need my senses in order to fathom its
properties. I need intuition and experiment, just as I need them in order to figure out
physical laws, where also matter is added as given through the senses.

 

3

 

1 This chapter is based on extracts from (Corry 2004), in particular on chapters 2, 3, and 5.
2 An exhaustive analysis of the origins of 

 

Grundlagen der Geometrie

 

 based on these lecture notes and
other relevant documents was first published in (Toepell 1986). Here we draw directly from this
source.

3 The German original is quoted in (Toepell 1986, 21). Similar testimonies can be found in many other
manuscripts of Hilbert’s lectures. Cf., e.g., (Toepell 1986, 58). 
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The most basic propositions related to this intuition concern the properties of inci-
dence, and in order to express them conveniently it is necessary to introduce “ideal
elements.” Hilbert stressed that these are to be used here only as a shorthand with no
metaphysical connotations.

In the closing passage of his lecture, Hilbert briefly discussed the connections
between analytic and projective geometry. While the theorems and proofs of the
former are more general than those of the latter, he said, the methods of the latter are
much purer, self-contained, and necessary.

 

4

 

 By combining synthetic and axiomatic
approaches, Hilbert hinted, it should be possible, perhaps, to establish a clear connec-
tion between these two branches of the discipline. 

In September of that year, Hilbert attended the 

 

Deutsche Mathematiker- Vereini-
gung 

 

meeting in Halle, where Hermann Wiener (1857–1939) lectured on the founda-
tions of geometry.

 

5

 

 The lecture could not fail to attract Hilbert’s attention given his
current teaching interests. Blumenthal reported in 1935 that Hilbert came out greatly
excited by what he had just heard, and made his famous declaration that it must be
possible to replace “point, line, and plane” with “table, chair, and beer mug” without
thereby changing the validity of the theorems of geometry (Blumenthal 1935, 402–
403). Seen from the point of view of later developments and what came to be consid-
ered the innovative character of 

 

Grundlagen der Geometrie,

 

 this may have been
indeed a reason for Hilbert’s enthusiasm following the lecture. If we also recall the
main points of interest in his 1891 lectures, however, we can assume that Wiener’s
claim about the possibility of proving central theorems of projective geometry without
continuity considerations exerted no lesser impact, and perhaps even a greater one, on
Hilbert at the time. Moreover, the idea of changing names of the central concepts
while leaving the deductive structure intact was an idea that Hilbert already knew, if
not from other, earlier mathematical sources, then at least from his attentive reading of
the relevant passages in Dedekind’s 

 

Was sind und was sollen die Zahlen?

 

,

 

6

 

 where he
may not have failed to see the introductory remarks on the role of continuity in geom-
etry. If Hilbert’s famous declaration was actually pronounced for the first time after
this lecture, as Blumenthal reported, one can then perhaps conclude that Wiener’s
ideas were more than just a revelation for Hilbert, but acted as a catalyst binding
together several threads that may have already been present in his mind for a while.

Roughly at the time when Hilbert’s research efforts started to focus on the theory
of algebraic number fields, from 1893 on, his interest regarding the foundations of
geometry also became more intensive, at least at the level of teaching. In preparing a
course on non-Euclidean geometry to be taught that year, Hilbert was already adopt-
ing a more axiomatic perspective. The original manuscript of the course clearly
reveals that Hilbert had decided to follow more closely the model put forward by
Pasch. As for the latter, using the axiomatic approach was a direct expression of a nat-

 

4 Cf. (Toepell 1986, 37).
5 He may have also attended Wiener’s second lecture in 1893. Cf. (Rowe 1999, 556).
6 As we know from a letter to Paul du Bois-Reymond of March-April, 1888. Cf. (Dugac 1976, 203). 
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uralistic approach to geometry, rather than a formalistic one: the axioms of geome-
try—Hilbert wrote—express observations of facts of experience, which are so simple
that they need no additional confirmation by physicists in the laboratory.

 

7

 

 From his
correspondence with Felix Klein (1849–1925),

 

8

 

 however, we learn that Hilbert soon
realized certain shortcomings in Pasch’s treatment, and in particular, certain redun-
dancies that affected it. Hilbert explicitly stipulated at this early stage that a success-
ful axiomatic analysis should aim to establish the 

 

minimal

 

 set of presuppositions
from which the whole of geometry could be deduced. Such a task had not been fully
accomplished by Pasch himself, Hilbert pointed out, since his Archimedean axiom,
could be derived from others in his system.

Hilbert’s correspondence also reveals that he kept thinking about the correct way
to implement an axiomatic analysis of geometry. In a further letter to Klein, on
15 November while criticizing Lie’s approach to the foundations of geometry, he for-
mulated additional tasks to be accomplished by such an analysis. He thus wrote:

 

It seems to me that Lie always introduces into the issue a preconceived one-sidedly ana-
lytic viewpoint and forgets completely the principal task of non-Euclidean geometry,
namely, that of constructing the various possible geometries by the successive introduc-
tion of elementary axioms, up until the final construction of the only remaining one,
Euclidean geometry.

 

9

 

The course on non-Euclidean geometry was not taught as planned in 1893, since
only one student registered for it.

 

10

 

 It did take place the following year, announced as
“Foundations of Geometry.” Hilbert had meanwhile considerably broadened his read-
ing in the field, as indicated by the list of almost forty references mentioned in the
notes. This list included most of the recent, relevant foundational works. A clear pref-
erence for works that followed an empiricist approach is evident, but also articles pre-
senting the ideas of Grassmann were included.

 

11

 

 It is not absolutely clear to what
extent Hilbert read Italian, but none of the current Italian works were included in his
list, except for a translated text of Peano (being the only one by a non-German
author).

 

12

 

 It seems quite certain, at any rate, that Hilbert was unaware of the recent
works of Fano, Veronese, and others, works that could have been of great interest for
him in the direction he was now following.

 

7 “Das Axiom entspricht einer Beobachtung, wie sich leicht durch Kugeln, Lineal und Pappdeckel zei-
gen lässt. Doch sind diese Erfahrungsthatsachen so einfach, von Jedem so oft beobachtet und daher so
bekannt, dass der Physiker sich nicht extra im Laboratorium bestätigen darf.” (Hilbert 1893–1894, 10)

8 Hilbert to Klein, 23 May 1893. Quoted in (Frei 1985, 89–90).
9 Hilbert to Klein, 15 November 1893. Quoted in (Frei 1985, 101). On 11 November, he wrote an

almost identical letter to Lindemann. Cf. (Toepell 1986, 47). 
10 Cf. (Toepell 1986, 51). 
11 The full bibliographical list appears in (Toepell 1986, 53–55). 
12 At the 1893 annual meeting of the 

 

Deutsche Mathematiker- Vereinigung 

 

in Lübeck (16–20 Septem-
ber), Frege discussed Peano’s conceptual language. If not earlier than that, Hilbert certainly heard
about Peano’s ideas at this opportunity, when he and Minkowski also presented the plans for their
expected reports on the theory of numbers. Cf. 

 

Jahresbericht der Deutschen Mathematiker-Vereini-
gung,

 

 Vol. 4 (1894–1895), p. 8. 
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Hilbert became acquainted with Hertz’s book on the foundations of mechanics,
though it was not mentioned in the list. This book seems to have provided a final, sig-
nificant catalyst for the wholehearted adoption of the axiomatic perspective for
geometry. Simultaneously the book established, in Hilbert’s view, a direct connection
between the latter and the axiomatization of physics in general. Moreover, Hilbert
adopted Hertz’s more specific, methodological ideas about what is actually involved
in axiomatizing a theory. The very fact that Hilbert came to hear about Hertz is not
surprising; he would probably have read Hertz’s book sooner or later. But that he read
it so early was undoubtedly due to Minkowski. During his Bonn years, Minkowski
felt closer to Hertz and to his work than to anyone else, and according to Hilbert, his
friend had explicitly declared that, had it not been for Hertz’s untimely death, he
would have dedicated himself exclusively to physics.

 

13

 

Just as with many other aspects of Hilbert’s early work, there is every reason to
believe that Minkowski’s enthusiasm for Hertz was transmitted to his friend. When
revising the lecture notes for his course, Hilbert added the following comment:

 

Nevertheless the origin [of geometrical knowledge] is in experience. The axioms are, as
Hertz would say, pictures or symbols in our mind, such that consequents of the images
are again images of the consequences, i.e., what we can logically deduce from the
images is itself valid in nature.

 

14

 

Hilbert defined the task to be pursued as part of the axiomatic analysis, including
the need to establish the independence of the axioms of geometry. In doing so, how-
ever, he stressed once again the objective and factual character of this science. Hilbert
wrote:

 

The problem can be formulated as follows: What are the necessary, sufficient, and mutu-
ally independent conditions that must be postulated for a system of things, in order that
any of their properties correspond to a geometrical fact and, conversely, in order that a
complete description and arrangement of all the geometrical facts be possible by means
of this system of things.

 

15

 

But already at this point it is absolutely clear that, for Hilbert, such questions were
not just abstract tasks. Rather, he was directly focused on important, open problems
of the discipline, and in particular, on the role of the axiom of continuity in the ques-
tions of coordinatization and metrization in projective geometry, as well as in the
proof of the fundamental theorems. In a passage that was eventually crossed out, Hil-
bert expressed his doubts about the prospects of actually proving Wiener’s assertion
that continuity considerations could be circumvented in projective geometry (Toepell

 

13 See (Hilbert 1932–1935, 3: 355). Unfortunately, there seems to be no independent confirmation of
Minkowski’s own statement to this effect.

14 “Dennoch der Ursprung aus der Erfahrung. Die Axiome sind, wie Herz [sic] sagen würde, Bilde[r]
oder Symbole in unserem Geiste, so dass Folgen der Bilder wieder Bilder der Folgen sind d.h. was
wir aus den Bildern logisch ableiten, stimmt wieder in der Natur.” It is worth noting that Hilbert’s
quotation of Hertz, drawn from memory, was somewhat inaccurate. I am indebted to Ulrich Majer for
calling my attention to this passage. (Hilbert 1893–1894, 10)

15 Quoted from the original in (Toepell 1986, 58–59). 
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1986, 78). Eventually, however, a main achievement of 

 

Grundlagen der Geometrie

 

would be a detailed realization of this possibility and its consequences, but Hilbert
probably decided to follow this direction only after hearing about the result of
Friedrich Schur (1856–1932) in 1898. I return to this matter in the next section.

Concerning the validity of the parallel axiom, Hilbert adopted in 1893–1894 a
thoroughly empirical approach that reminds us very much of Riemann’s 

 

Habilitati-
onsschrift

 

. Hilbert referred also directly to Gauss’s experimental measurement of the
sum of angles of the triangle described by three Hannoverian mountain peaks.

 

16

 

Although Gauss’s measurements were convincing enough for Hilbert to indicate the
correctness of Euclidean geometry as a true description of physical space, he still saw
an open possibility that future measurements would show it to be otherwise. Hilbert
also indicated that existing astronomical observations are not decisive in this respect,
and therefore the parallel axiom must be taken at least as a limiting case. In his later
lectures on physics, Hilbert would return to this example very often to illustrate the
use of axiomatics in physics. In the case of geometry, this particular axiom alone
might be susceptible to change following possible new experimental discoveries.
Thus, what makes geometry especially amenable to a full axiomatic analysis is the
very advanced stage of development it has attained, rather than any other specific,
essential trait concerning its nature. In all other respects, geometry is like any other
natural science. Hilbert thus stated:

 

Among the appearances or facts of experience manifest to us in the observation of
nature, there is a peculiar type, namely, those facts concerning the outer shape of things.
Geometry deals with these facts. ... Geometry is a science whose essentials are developed
to such a degree, that all its facts can already be logically deduced from earlier ones.
Much different is the case with the theory of electricity or with optics, in which still
many new facts are being discovered. Nevertheless, with regards to its origins, geometry
is a natural science.

 

17

 

It is the very process of axiomatization that transforms the natural science of
geometry, with its factual, empirical content, into a pure mathematical science. There
is no apparent reason why a similar process might not be applied to any other natural
science. And in fact, from very early on Hilbert made it clear that this should be done.
In the manuscript of his lectures we read that “all other sciences—above all mechan-
ics, but subsequently also optics, the theory of electricity, etc.—should be treated
according to the model set forth in geometry.”

 

18

 

16 The view that Gauss considered his measurement as related to the question of the parallel axiom has
been questioned in (Breitenberger 1984) and (Miller 1972). They have argued that this measurement
came strictly as a part of Gauss’s geodetic investigations. For replies to this argument, see (Scholz
1993, 642–644), and a more recent and comprehensive discussion in (Scholz 2004). Hilbert, at any
rate, certainly believed that this had been Gauss’s actual intention, and he repeated this opinion on
many occasions.

17 Quoted in (Toepell 1986, 58).
18 Quoted in (Toepell 1986, 94).
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By 1894, then, Hilbert’s interest in foundational issues of geometry had increased
considerably, and he had embarked more clearly in an axiomatic direction. His
acquaintance with Hertz’s ideas helped him conceive the axiomatic treatment of
geometry as part of a larger enterprise, relevant also for other physical theories. It
also offered methodological guidelines for actually implementing this analysis. How-
ever, many of the most important foundational problems remained unsettled for him,
and in this sense, even the axiomatic approach did not seem to him to be of great
help. At this stage he saw in the axiomatic method no more than an exercise in adding
or deleting basic propositions and guessing the consequences that would follow, but
certainly not a tool for achieving real new results.

 

19

 

1.2 Geometry in Göttingen

 

Hilbert moved to Göttingen in 1895 and thereafter he dedicated himself almost exclu-
sively to number theory both in his research and in his teaching. It is worth pointing
out, that some of the ideas he developed in this discipline would prove to be essential
some years later for his treatment of geometry as presented in 

 

Grundlagen der Geo-
metrie

 

. In particular, Hilbert’s work on the representation of algebraic forms as sums
of squares, which had a deep influence on the subsequent development of the theory
of real fields,

 

20

 

 also became essential for Hilbert’s own ideas on geometrical con-
structivity as manifest in 

 

Grundlagen der Geometrie

 

.
In the summer semester of 1899, Hilbert once again taught a course on the ele-

ments of Euclidean geometry. The elaboration of these lectures would soon turn into
the famous 

 

Grundlagen der Geometrie

 

. The very announcement of the course came
as a surprise to many in Göttingen, since it signified, on the face of it, a sharp depar-
ture from the two fields in which he had excelled since completing his dissertation in
1885: the theory of algebraic invariants and the theory of algebraic number fields. As
Blumenthal recalled many years later:

 

[The announcement] aroused great excitement among the students, since even the vet-
eran participants of the ‘number theoretical walks’ (

 

Zahlkörpersspaziergängen

 

) had
never noticed that Hilbert occupied himself with geometrical questions. He spoke to us
only about fields of numbers. (Blumenthal 1935, 402)

 

Also Hermann Weyl (1855–1955) repeated this view in his 1944 obituary:

 

[T]here could not have been a more complete break than the one dividing Hilbert’s last
paper on the theory of number fields from his classical book 

 

Grundlagen der Geometrie.

 

(Weyl 1944, 635)

 

As already suggested, however, the break may have been less sharp than it
appeared in retrospect to Hilbert’s two distinguished students. Not only because of the
strong connections of certain, central results of 

 

Grundlagen der Geometrie

 

 to Hil-

 

19 As expressed in a letter to Hurwitz, 6 June 1894. See (Toepell 1986, 100).
20 Cf. (Sinaceur 1984, 271–274; 1991, 199–254).
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bert’s number-theoretical works, or because of Hilbert’s earlier geometry courses in
Königsberg, but also because Hilbert became actively and intensely involved in cur-
rent discussions on the foundations of projective geometry starting in early 1898. In
fact, at that time Hilbert had attended a lecture in Göttingen given by Schoenflies who
discussed a result recently communicated by Schur to Klein, according to which Pap-
pus’s theorem could be proven starting from the axioms of congruence alone, and
therefore without relying on continuity considerations.

 

21

 

 Encouraged by this result,
and returning to questions that had been raised when he taught the topic several years
earlier, Hilbert began to elaborate on this idea in various possible alternative direc-
tions. At some point, he even thought, erroneously as it turned out, to have proved that
it would suffice to assume Desargues’s theorem in order to prove Pappus’s theorem.

 

22

 

Schur’s result provided the definitive motivation that led Hilbert to embark on an
effort to elucidate in detail the fine structure of the logical interdependence of the var-
ious fundamental theorems of projective and Euclidean geometry and, more gener-
ally, of the structure of the various kinds of geometries that can be produced under
various sets of assumptions. The axiomatic method, whose tasks and basic tools Hil-
bert had been steadily pondering, would now emerge as a powerful and effective
instrument for properly addressing these important issues.

The course of 1899 contains much of what will appear in 

 

Grundlagen der Geome-
trie

 

. It is worth pointing out here that in the opening lecture Hilbert stated once again
the main achievement he expected to obtain from an axiomatic analysis of the foun-
dations of geometry: a complete description, by means of independent statements, of
the basic facts from which all known theorems of geometry can be derived. This time
he also mentioned the precise source from which this formulation had been taken: the
introduction to Hertz’s 

 

Principles of Mechanics

 

.

 

23

 

 In Hilbert’s view, this kind of task
was not limited to geometry, and of course also applied, above all, to mechanics. Hil-
bert had taught seminars on mechanics jointly with Klein in 1897–1898. In the winter
semester 1898–1899, he also taught his first full course on a physical topic in Göttin-
gen: mechanics.

 

24

 

 In the introduction to this course, he explicitly stressed the essen-
tial affinity between geometry and the natural sciences, and also explained the role
that axiomatization should play in the mathematization of the latter. He compared the
two domains in the following terms:

 

Geometry also [like mechanics] emerges from the observation of nature, from experi-
ence. To this extent, it is an 

 

experimental science

 

. ... But its experimental foundations are

 

21 Later published as (Schur 1898). 
22 Cf. (Toepell 1986, 114–122). Hessenberg (1905) proves that, in fact, it is Pappus’s theorem that

implies Desargues’s, and not the other way round.
23 Cf. (Toepell 1986, 204).
24 According to the 

 

Nachlass 

 

David Hilbert (Niedersächsische Staats- und Universitätsbibliothek Göt-
tingen, Abteilung Handschriften und Seltene Drucke), (Cod. Ms. D. Hilbert, 520), which contains a
list of Hilbert’s lectures between 1886 and 1932 (handwritten by Hilbert himself up until 1917–1918),
among the earliest courses taught by Hilbert in Königsberg was one in Hydrodynamics (summer
semester, 1887). 
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so irrefutably and so 

 

generally acknowledged

 

, they have been confirmed to such a
degree, that no further proof of them is deemed necessary. Moreover, all that is needed is
to derive these foundations from a minimal set of 

 

independent axioms

 

 and thus to con-
struct the whole edifice of geometry by 

 

purely logical means

 

. In this way [i.e., by means
of the axiomatic treatment] geometry is turned into a pure mathematical science. In
mechanics it is also the case that all physicists recognize its most 

 

basic facts

 

. But the

 

arrangement

 

 of the basic concepts is still subject to a change in perception... and there-
fore mechanics cannot yet be described today as a 

 

pure mathematical

 

 discipline, at least
to the same extent that geometry is. We must strive that it becomes one. We must ever
stretch the limits of pure mathematics wider, on behalf not only of our mathematical
interest, but rather of the interest of science in general.

 

25

 

This is perhaps the first explicit presentation of Hilbert’s program for axiomatiz-
ing natural science in general. The more definitive status of the results of geometry, as
compared to the relatively uncertain one of our knowledge of mechanics, clearly
recalls similar claims made by Hertz. The difference between geometry and other
physical sciences—mechanics in this case—was not for Hilbert one of essence, but
rather one of historical stage of development. He saw no reason in principle why an
axiomatic analysis of the kind he was then developing for geometry could not eventu-
ally be applied to mechanics with similar, useful consequences. Eventually, that is to
say, when mechanics would attain a degree of development equal to geometry, in
terms of the quantity and certainty of known results, and in terms of an appreciation
of what really are the “basic facts” on which the theory is based.

2. GRUNDLAGEN DER GEOMETRIE

When Hilbert published his 1899 

 

Festschrift

 

 (Hilbert 1899) he was actually contribut-
ing a further link to a long chain of developments in the foundations of geometry that
spanned several decades over the nineteenth century. His works on invariant theory
and number theory can be described in similar terms, each within its own field of rel-
evance. In these two fields, as in the foundations of geometry, Hilbert’s contribution
can be characterized as the “critical” phase in the development of the discipline: a
phase in which the basic assumptions and their specific roles are meticulously
inspected in order to revamp the whole structure of the theory on a logically sound

 

25 “Auch die Geometrie ist aus der Betrachtung der Natur, aus der Erfahrung hervorgegangen und inso-
fern eine 

 

Experimentalwissenschaft

 

. ... Aber diese experimentellen Grundlagen sind so unumstösslich
und so 

 

allgemein anerkannt,

 

 haben sich so überall bewährt, dass es einer weiteren experimentellen
Prüfung nicht mehr bedarf und vielmehr alles darauf ankommt diese Grundlagen auf ein geringstes
Mass 

 

unabhängiger Axiome 

 

zurückzuführen und hierauf 

 

rein logisch

 

 den ganzen Bau der Geometrie
aufzuführen. Also Geometrie ist dadurch eine rein 

 

mathematische

 

 Wiss. geworden. Auch in der
Mechanik werden die

 

 Grundthatsachen

 

 von allen Physikern zwar anerkannt. Aber die 

 

Anordnung

 

 der
Grundbegriffe ist dennoch dem Wechsel der Auffassungen unterworfen... so dass die Mechanik auch
heute noch nicht, jedenfalls nicht in dem Masse wie die Geometrie als eine 

 

rein mathematische

 

 Disci-
plin zu bezeichnen ist. Wir müssen streben, dass sie es wird. Wir müssen die Grenzen echter Math.
immer weiter ziehen nicht nur in unserem math. Interesse sondern im Interesse der Wissenschaft
überhaupt.” (Hilbert 1898–1899, 1–3)
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basis and within a logically transparent deductive structure. This time, however, Hil-
bert had consolidated the critical point of view into an elaborate approach with
clearly formulated aims, and affording the proper tools to achieve those aims, at least
partly. This was the axiomatic approach that characterizes 

 

Grundlagen der Geometrie

 

and much of his work thereafter, particularly his research on the foundations of phys-
ical theories. However, 

 

Grundlagen der Geometrie

 

 was innovative not only at the
methodological level. It was, in fact, a seminal contribution to the discipline, based
on a purely synthetic, completely new approach to arithmetizing the various kinds of
geometries. And again, as in his two previous fields of research, Hilbert’s in-depth
acquaintance with the arithmetic of fields of algebraic numbers played a fundamental
role in his achievement.

It is important to bear in mind that, in spite of the rigor required for the axiomatic
analysis underlying Grundlagen der Geometrie, many additions, corrections and
improvements—by Hilbert himself, by some of his collaborators and by other mathe-
maticians as well— were still needed over the following years before the goals of this
demanding project could be fully attained. Still most of these changes, however
important, concerned only the details. The basic structure, the groups of axioms, the
theorems considered, and above all, the innovative methodological approach implied
by the treatment, all these remained unchanged through the many editions of 

 

Grund-
lagen der Geometrie

 

.
The motto of the book was a quotation taken from Kant’s 

 

Critique of Pure Rea-
son

 

: “All human knowledge thus begins with intuitions, proceeds thence to concepts
and ends with ideas.” If he had to make a choice, Kant appears an almost obvious one
for Hilbert in this context. It is hard to state precisely, however, to what extent he had
had the patience to become really acquainted with the details of Kant’s exacting
works. Beyond the well-deserved tribute to his most distinguished fellow Königs-
berger, this quotation does not seem to offer a reference point for better understand-
ing Hilbert’s ideas on geometry.

Hilbert described the aim of his 

 

Festschrift

 

 as an attempt to lay down a “simple”
and “complete” system of “mutually independent” axioms, from which all known
theorems of geometry might be deduced. His axioms are formulated for three sys-
tems of undefined objects named “points,” “lines,” and “planes,” and they establish
mutual relations that these objects must satisfy. The axioms are divided into five
groups: axioms of incidence, of order, of congruence, of parallels, and of continuity.
From a purely logical point of view, the groups have no real significance in them-
selves. However, from the geometrical point of view they are highly significant, for
they reflect Hilbert’s actual conception of the axioms as an expression of spatial intu-
ition: each group expresses a particular way that these intuitions manifest themselves
in our understanding.
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2.1 Independence, Simplicity, Completeness, Consistency

 

Hilbert’s first requirement, that the axioms be independent, is the direct manifestation
of the foundational concerns that directed his research. When analyzing indepen-
dence, his interest focused mainly on the axioms of congruence, continuity and of
parallels, since this independence would specifically explain how the various basic
theorems of Euclidean and projective geometry are logically interrelated. But as we
have seen, this requirement had already appeared—albeit more vaguely formulated—
in Hilbert’s early lectures on geometry, as a direct echo of Hertz’s demand for appro-
priateness. In 

 

Grundlagen der Geometrie, the requirement of independence not only
appeared more clearly formulated, but Hilbert also provided the tools to prove sys-
tematically the mutual independence among the individual axioms within the groups
and among the various groups of axioms in the system. He did so by introducing the
method that has since become standard: he constructed models of geometries that fail
to satisfy a given axiom of the system but satisfy all the others. However, this was not
for Hilbert an exercise in analyzing abstract relations among systems of axioms and
their possible models. The motivation for enquiring about the mutual independence
of the axioms remained, essentially, a geometrical one. For this reason, Hilbert’s orig-
inal system of axioms was not the most economical one from the logical point of
view. Indeed, several mathematicians noticed quite soon that Hilbert’s system of axi-
oms, seen as a single collection rather than as a collection of five groups, contained a
certain degree of redundancy.26 Hilbert’s own aim was to establish the interrelations
among the groups of axioms, embodying the various manifestations of special intu-
ition, rather than among individual axioms belonging to different groups.

The second requirement, simplicity, complements that of independence. It means,
roughly, that an axiom should contain “no more than a single idea.” This is a require-
ment that Hertz also had explicitly formulated, and Hilbert seemed to be repeating it
in the introduction to his own book. Nevertheless, it was neither formally defined nor
otherwise realized in any clearly identifiable way within Grundlagen der Geometrie.
The ideal of formulating “simple” axioms as part of this system was present implic-
itly as an aesthetic desideratum that was not transformed into a mathematically con-
trollable feature.27

The “completeness” that Hilbert demanded for his system of axioms should not
be confused with the later, model-theoretical notion that bears the same name, a

26 Cf., for instance, (Schur 1901). For a more detailed analysis of this issue, see (Schmidt 1933, 406–
408). It is worth pointing out that in the first edition of Grundlagen der Geometrie Hilbert stated that
he intended to provide an independent system of axioms for geometry. In the second edition, however,
this statement no longer appeared, following a correction by E. H. Moore (1902) who showed that one
of the axioms might be derived from the others. See also (Corry 2003, § 3.5; Torretti 1978, 239 ff.).

27 In a series of articles published in the USA over the first decade of the twentieth century under the
influence of Grundlagen der Geometrie, see (Corry 2003, § 3.5), a workable criterion for simplicity of
axioms was systematically sought after. For instance, Edward Huntington (1904, p. 290) included
simplicity among his requirements for axiomatic systems, yet he warned that “the idea of a simple
statement is a very elusive one which has not been satisfactorily defined, much less attained.”
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notion that is totally foreign to Hilbert’s axiomatic approach at this early stage.
Rather it is an idea that runs parallel to Hertz’s demand for “correctness.” Thus, Hil-
bert demanded from any adequate axiomatization that it should allow for a derivation
of all the known theorems of the discipline in question. The axioms formulated in
Grundlagen der Geometrie, Hilbert claimed, would indeed yield all the known
results of Euclidean geometry or of the so-called absolute geometry, namely that
valid independently of the parallel postulate, if the corresponding group of axioms is
ignored. Thus, reconstructing the very ideas that had given rise to his own concep-
tion, Hilbert discussed in great detail the role of each of the groups of axioms in the
proofs of two crucial results: the theorem of Desargues and the theorem of Pappus.
Unlike independence, however, the completeness of the system of axioms is not a
property that Hilbert knew how to verify formally, except to the extent that, starting
from the given axioms, he could prove all the theorems he was interested in.

The question of consistency of the various kinds of geometries was an additional
concern of Hilbert’s analysis, though, perhaps somewhat surprisingly, one that was
not even explicitly mentioned in the introduction to Grundlagen der Geometrie. He
addressed this issue in the Festschrift right after introducing all the groups of axioms
and after discussing their immediate consequences. Seen from the point of view of
Hilbert’s later metamathematical research and the developments that followed it, the
question of consistency might appear as the most important one undertaken back in
1899; but in the historical context of the evolution of his ideas it certainly was not. In
fact, consistency of the axioms is discussed in barely two pages, and it is not immedi-
ately obvious why Hilbert addressed it at all. It doesn’t seem likely that in 1899 Hil-
bert would have envisaged the possibility that the body of theorems traditionally
associated with Euclidean geometry might contain contradictions. After all, he con-
ceived Euclidean geometry as an empirically motivated discipline, turned into a
purely mathematical science after a long, historical process of evolution and depura-
tion. Moreover, and more importantly, Hilbert had presented a model of Euclidean
geometry over certain, special types of algebraic number fields. If with the real num-
bers the issue of continuity might be thought to raise difficulties that called for partic-
ular care, in this case Hilbert would have no real reason to call into question the
possible consistency of these fields of numbers. Thus, to the extent that Hilbert
referred here to the problem of consistency, he seems in fact to be echoing here
Hertz’s demand for the permissibility of images. As seen above, a main motivation
leading Hertz to introduce this requirement was the concern about possible contradic-
tions brought about over time by the gradual addition of ever new hypotheses to a
given theory. Although this was not likely to be the case for the well-established dis-
cipline of geometry, it might still have happened that the particular way in which the
axioms had been formulated in order to account for the theorems of this science
would have led to statements that contradict each other. The recent development of
non-Euclidean geometries made this possibility only more patent. Thus, Hilbert
believed that, although contradictions might in principle possibly occur within his
own system, he could also easily show that this was actually not the case.
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The relatively minor importance conceded by Hilbert in 1899 to the problem of
the consistency of his system of axioms for Euclidean geometry is manifest not only
in the fact that he devoted just two pages to it. Of course, Hilbert could not have in
mind a direct proof of consistency here, but rather an indirect one, namely, a proof
that any contradiction existing in Euclidean geometry must manifest itself in the
arithmetic system of real numbers. This would still leave open the question of the
consistency of the latter, a problem difficult enough in itself. However, even an indi-
rect proof of this kind does not appear in explicit form in Grundlagen der Geometrie.
Hilbert only suggested that it would suffice to show that the specific kind of synthetic
geometry derivable from his axioms could be translated into the standard Cartesian
geometry, taking the axes as representing the whole field of real numbers.28 More
generally stated, in this first edition of Grundlagen der Geometrie, Hilbert preferred
to bypass a systematic treatment of the questions related to the structure of the system
of real numbers. Rather, he contented himself with constructing a model of his sys-
tem based on a countable, proper sub-field—of whose consistency he may have been
confident—and not the whole field of real numbers (Hilbert 1899, 21). It was only in
the second edition of Grundlagen der Geometrie, published in 1903, that he added an
additional axiom, the so-called “axiom of completeness” (Vollständigkeitsaxiom),
meant to ensure that, although infinitely many incomplete models satisfy all the other
axioms, there is only one complete model that satisfies this last axiom as well,
namely, the usual Cartesian geometry, obtained when the whole field of real numbers
is used in the model (Hilbert 1903a, 22–24). As Hilbert took pains to stress, this
axiom cannot be derived from the Archimedean axiom, which was the only one
included in the continuity group in the first edition.29 It is important to notice, how-
ever, that the property referred to by this axiom bears no relation whatsoever to Hil-
bert’s general requirement of “completeness” for any system of axioms. Thus his
choice of the term “Vollständigkeit” in this context seems somewhat unfortunate.

3. THE 1900 LIST OF PROBLEMS

Soon after the publication of Grundlagen der Geometrie, Hilbert had a unique oppor-
tunity to present his views on mathematics in general and on axiomatics in particular,
when he was invited to address the Second International Congress of Mathematicians

28 And the same is true for Hilbert’s treatment of “completeness” (in his current terminology) at that
time.

29 The axiom is formulated in (Hilbert 1903a, 16). Toepell (1986, 254–256) briefly describes the rela-
tionship between Hilbert’s Vollständigkeitsaxiom and related works of other mathematicians. The
axiom underwent several changes throughout the various later editions of the Grundlagen, but it
remained central to this part of the argument. Cf. (Peckhaus 1990, 29–35). The role of this particular
axiom within Hilbert’s axiomatics and its importance for later developments in mathematical logic is
discussed in (Moore 1987, 109–122). In 1904 Oswald Veblen introduced the term “categorical”
(Veblen 1904, 346) to denote a system to which no irredundant axioms may be added. He believed
that Hilbert had checked this property in his own system of axioms. See (Scanlan 1991, 994).
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held in Paris in August of 1900. The invitation was a definite sign of the reputation
that Hilbert had acquired by then within the international mathematics community.
Following a suggestion of Minkowski, Hilbert decided to use the opportunity to pro-
vide a glimpse into what, in his view, the new century would bring for mathematics.
Thus he posed a list of problems that he considered significant challenges that could
lead to fruitful research and to new and illuminating ideas for mathematicians
involved in solving them.

In many ways, Hilbert’s talk embodied his overall vision of mathematics and sci-
ence, and he built the list of problems to a large extent according to his own mathe-
matical horizons.30 Some of the problems belonged to number theory and the theory
of invariants, the domains that his published work had placed him in among the lead-
ing world experts. Some others belonged to domains with which he was closely
acquainted, even though he had not by then published anything of the same level of
importance, such as variational calculus. It further included topics that Hilbert simply
considered should be given a significant push within contemporary research, such as
Cantorian set theory. The list reflected Hilbert’s mathematical horizon also in the
sense that a very significant portion of the works he cited in reference to the various
problems had been published in either of the two main Göttingen mathematical ven-
ues: the Mathematische Annalen and the Proceedings of the Göttingen Academy of
Sciences. And although Hilbert’s mathematical horizons were unusually broad, they
were nonetheless clearly delimited and thus, naturally, several important, contempo-
rary fields of research were left out of the list.31 Likewise, important contemporary
Italian works on geometry, and the problems related to them, were not referred to at
all in the geometrical topics that Hilbert did consider in his list. Moreover, two major
contemporary open problems, Fermat’s theorem and Poincaré’s three-body problem,
though mentioned in the introduction, were not counted among the twenty-three
problems.

The talk also reflected three other important aspects of Hilbert’s scientific person-
ality. Above all is his incurable scientific optimism, embodied in the celebrated and
often quoted statement that every mathematical problem can indeed be solved:
“There is the problem. Seek its solution. You can find it by pure reason, for in mathe-
matics there is no ignorabimus.” This was meant primarily as a reaction to a well-
known pronouncement of the physiologist Emil du Bois Reymond (1818–1896) on
the inherent limitations of science as a system able to provide us with knowledge
about the world.32 Second, is the centrality of challenging problems in mathematics
as a main, necessary condition for the healthy development of any branch of the dis-
cipline and, more generally, of that living organism that Hilbert took mathematics to
be. And third, is the central role accorded to empirical motivations as a fundamental
source of nourishment for that organism, in which mathematics and the physical sci-

30 Several versions of the talk appeared in print and they were all longer and more detailed than the
actual talk. Cf. (Grattan-Guinness 2000).

31 Cf. (Gray 2000, 78–88).
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ences appear tightly interrelated. But stressing the empirical motivations underlying
mathematical ideas should by no means be taken as opposed to rigor. On the contrary,
contrasting an “opinion occasionally advocated by eminent men,” Hilbert insisted
that the contemporary quest for rigor in analysis and arithmetic should in fact be
extended to both geometry and the physical sciences. He was alluding here, most
probably, to Kronecker and Weierstrass, and the Berlin purist tendencies that kept
geometry and applications out of their scope of interest. Rigorous methods are often
simpler and easier to understand, Hilbert said, and therefore, a more rigorous treat-
ment would only perfect our understanding of these topics, and at the same time
would provide mathematics with ever new and fruitful ideas. Explaining why rigor
should not be sought only within analysis, Hilbert actually implied that this rigor
should actually be pursued in axiomatic terms. He thus wrote:

Such a one-sided interpretation of the requirement of rigor would soon lead to the ignor-
ing of all concepts arising form geometry, mechanics and physics, to a stoppage of the
flow of new material from the outside world, and finally, indeed, as a last consequence, to
the rejection of the ideas of the continuum and of irrational numbers. But what an impor-
tant nerve, vital to mathematical science, would be cut by rooting out geometry and
mathematical physics! On the contrary I think that wherever mathematical ideas come
up, whether from the side of the theory of knowledge or in geometry, or from the theories
of natural or physical science, the problem arises for mathematics to investigate the prin-
ciples underlying these ideas and to establish them upon a simple and complete system
of axioms, so that the exactness of the new ideas and their applicability to deduction shall
be in no respect inferior to those of the old arithmetical concepts.33

Using rhetoric reminiscent of Paul Volkmann’s 1900 book, Hilbert described the
development of mathematical ideas as an ongoing, dialectical interplay between the
two poles of thought and experience, an interplay that brings to light a “pre-estab-
lished harmony” between nature and mathematics.34 The “edifice metaphor” was
invoked to help stress the importance of investigating the foundations of mathematics
not as an isolated concern, but rather as an organic part of the manifold growth of the
discipline in several directions. Hilbert thus said:

Indeed, the study of the foundations of a science is always particularly attractive, and the
testing of these foundations will always be among the foremost problems of the investi-

32 See (Du Bois-Reymond 1872). Hilbert would repeat this claim several times later in his career, nota-
bly in (Hilbert 1930). Although the basic idea behind the pronouncement was the same on all occa-
sions, and it always reflected his optimistic approach to the capabilities of mathematics, it would
nevertheless be important to consider the specific, historical framework in which the pronouncement
came and the specific meaning that the situation conveys in one and the same sentence. If in 1900 it
came, partly at least, as a reaction to Du Bois-Reymond’s sweeping claim about the limitation of sci-
ence, in 1930 it came after the intense debate against constructivist views about the foundations of
arithmetic.

33 The classical locus for the English version of the talk is (Hilbert 1902a). Here I have preferred to
quote, where different, from the updated translation appearing in (Gray 2000, 240–282). This passage
appears there on p. 245. 

34 The issue of the “pre-established harmony” between mathematics and nature was a very central one
among Göttingen scientists. This point has been discussed in (Pyenson 1982).
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gator ... [But] a thorough understanding of its special theories is necessary for the suc-
cessful treatment of the foundations of the science. Only that architect is in the position
to lay a sure foundation for a structure who knows its purpose thoroughly and in detail.35

Speaking more specifically about the importance of problems for the healthy
growth of mathematics, Hilbert characterized an interesting problem as one that is
“difficult in order to entice us, yet not completely inaccessible, lest it mock our
efforts.” But perhaps more important was the criterion he formulated for the solution
of one such problem: it must be possible “to establish the correctness of the solution
by a finite number of steps based upon a finite number of hypotheses which are
implied in the statement of the problem and which must always be exactly formu-
lated.”

3.1 Foundational Problems

This is not the place to discuss in detail the list of problems and their historical back-
ground and development.36 Our main concern here is with the sixth problem— Hil-
bert’s call for the axiomatization of physical sciences—and those other problems on
the list more directly connected with it. The sixth problem is indeed the last of a well-
defined group within the list, to which other “foundational” problems also belong.
Beyond this group, the list can be said roughly to contain three other main areas of
interest: number theory, algebraic-geometrical problems, and analysis (mainly varia-
tional calculus) and its applications in physics.

The first two foundational problems, appearing at the head of Hilbert’s list, are
Cantor’s continuum hypothesis and the compatibility of the axioms of arithmetic. In
formulating the second problem on his list, Hilbert stated more explicitly than ever
before, that among the tasks related to investigating an axiomatic system, proving its
consistency would be the most important one. Eventually this turned into a main
motto of his later program for the foundations of arithmetic beginning in the 1920s,
but many years and important developments still separated this early declaration,
diluted among a long list of other important mathematical tasks for the new century,
from an understanding of the actual implications of such an attempt and from an
actual implementation of a program to pursue it. In the years to come, as we will see
below, Hilbert did many things with axiomatic systems other than attempting a proof
of consistency for arithmetic.

Hilbert stated that proving the consistency of geometry could be reduced to prov-
ing that of arithmetic, and that the axioms of the latter were those presented by him in
“Über den Zahlbegriff” several months prior to this talk. Yet, Hilbert was still confi-
dent that this would be a rather straightforward task, easily achievable “by means of a
careful study and suitable modification of the known methods of reasoning in the the-
ory of irrational numbers” (Hilbert 1902a, 448).Hilbert did not specify the exact

35 Quoted from (Gray 2000, 258).
36 Cf. (Rowe 1996), and a more detailed, recent, discussion in (Gray 2000). 
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meaning of this latter statement, but its wording would seem to indicate that in the
system of axioms proposed for arithmetic, the difficulty in dealing with consistency
would come from the assumption of continuity. Thus the consistency of Euclidean
geometry would depend on proving the consistency of arithmetic as defined by Hil-
bert through his system of axioms. This would, moreover, provide a proof for the
very existence of the continuum of real numbers as well. Clearly Hilbert meant his
remarks in this regard to serve as an argument against Kronecker’s negative reactions
to unrestricted use of infinite collections in mathematics, and therefore he explicitly
asserted that a consistent system of axioms could prove the existence of higher Can-
torian cardinals and ordinals.37 He thus established a clear connection between the
two first problems on his list through the axiomatic approach. Still, Hilbert was evi-
dently unaware of the difficulties involved in realizing this point of view, and, more
generally, he most likely had no precise idea of what an elaborate theory of systems
of axioms would involve. On reading the first draft of the Paris talk, several weeks
earlier, Minkowski understood at once the challenging implications of Hilbert’s view,
and he hastened to write to his friend:

In any case, it is highly original to proclaim as a problem for the future, one that mathe-
maticians would think they had already completely possessed for a long time, such as the
axioms for arithmetic. What might the many laymen in the auditorium say? Will their
respect for us grow? And you will also have a though fight on your hands with the philos-
ophers.38

Minkowski turned out to be right to a large extent, and among the ideas that pro-
duced the strongest reactions were those related with the status of axioms as implicit
definitions, such as Hilbert introduced in formulating the second problem. He thus
wrote:

When we are engaged in investigating the foundations of a science, we must set up a sys-
tem of axioms which contains an exact and complete description of the relations subsist-
ing between the elementary ideas of the science. The axioms so set up are at the same
time the definitions of those elementary ideas, and no statement within the realm of the
science whose foundation we are testing is held to be correct unless it can be derived
from those axioms by means of a finite number of logical steps. (Hilbert 1902a,447)39

The next three problems in the list are directly related with geometry and, although
not explicitly formulated in axiomatic terms, they address the question of finding the
correct relationship between specific assumptions and specific, significant geometri-
cal facts. Of particular interest for the present account is the fifth. The question of the
foundations of geometry had evolved over the last third of the nineteenth century
along two parallel paths. First was the age-old tradition of elementary synthetic

37 Hilbert also pointed out that no consistent set of axioms could be similarly set up for all cardinals and
all alephs. Commenting on this, Ferreirós (1999, 301), has remarked: “This is actually the first pub-
lished mention of the paradoxes of Cantorian set theory — without making any fuss of it.” See also
(Peckhaus and Kahle 2002).

38 On 17 July 1900, (Rüdenberg and Zassenhaus 1973, 129). 
39 And also quoted in (Gray 2000, 250).
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geometry, where the question of foundations more naturally arises in axiomatic
terms. A second, alternative, path, that came to be associated with the Helmholtz-Lie
problem, had derived directly from the work of Riemann and it had a more physi-
cally-grounded orientation connected with the question of spaces that admit the free
mobility of rigid bodies. Whereas Helmholtz had only assumed continuity as under-
lying the motion of rigid bodies, in applying his theory of group of transformations to
this problem, Lie was also assuming the differentiability of the functions involved.
Hilbert’s work on the foundations of geometry, especially in the context that led to
Grundlagen der Geometrie, had so far been connected with the first of these two
approaches, while devoting much less attention to the second one. Now in his fifth
problem, he asked whether Lie’s conditions, rather than assumed, could actually be
deduced from the group concept together with other geometrical axioms.

As a mathematical problem, the fifth one led to interesting, subsequent develop-
ments. Not long after his talk, on 18 November 1901, Hilbert himself proved that, in
the plane, the answer is positive, and he did so with the help of a then innovative,
essentially topological, approach (Hilbert 1902b). That the answer is positive in the
general case was satisfactorily proved only in 1952.40 What concerns us here more
directly, however, is that the inclusion of this problem in the list underscores the
actual scope of Hilbert’s views over the question of the foundations of geometry and
over the role of axiomatics. Hilbert suggested here the pursuit of an intricate kind of
conceptual clarification involving our assumptions about motion, differentiability and
symmetry, such as they appear intimately interrelated in the framework of a well-
elaborate mathematical theory, namely, that of Lie. This quest is typical of the spirit
of Hilbert’s axiomatic involvement with physical theories. At this point, it also clearly
suggests that his foundational views on geometry were much broader and open-ended
than an exclusive focusing on Grundlagen der Geometrie— with a possible overem-
phasizing of certain, formalist aspects—might seem to imply. In particular, the fifth
problem emphasizes, once again and from a different perspective, the prominent role
that Hilbert assigned to physicalist considerations in his approach to geometry. In the
long run, one can also see this aspect of Hilbert’s view resurfacing at the time of his
involvement with general theory of relativity. In its more immediate context, how-
ever, it makes the passage from geometry to the sixth problem appear as a natural one
within the list.

Indeed, if the first two problems in the list show how the ideas deployed in
Grundlagen der Geometrie led in one direction towards foundational questions in
arithmetic, then the fifth problem suggests how they also naturally led, in a different
direction, to Hilbert’s call for the axiomatization of physical science in the sixth prob-
lem. The problem was thus formulated as follows:

The investigations on the foundations of geometry suggest the problem: To treat in the
same manner, by means of axioms, those physical sciences in which mathematics plays

40 This was done, simultaneously, in (Gleason 1952) and (Montgomery and Zippin 1952). 
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an important part; in the first rank are the theory of probabilities and mechanics. (Hilbert
1902a, 454)41

As examples of what he had in mind Hilbert mentioned several existing and well-
known works: the fourth edition of Mach’s Die Mechanik in ihrer Entwicklung,
Hertz’s Principles, Boltzmann’s 1897 Vorlesungen Über die Principien der Mecha-
nik, and also Volkmann’s 1900 Einführung in das Studium der theoretischen Physik.
Boltzmann’s work offered a good example of what axiomatization would offer, as he
had indicated, though only schematically, that limiting processes could be applied,
starting from an atomistic model, to obtain the laws of motion of continua. Hilbert
thought it convenient to go in the opposite direction also, i.e., to derive the laws of
motions of rigid bodies by limiting processes, starting from a system of axioms that
describe space as filled with continuous matter in varying conditions. Thus one could
investigate the equivalence of different systems of axioms, an investigation that Hil-
bert considered to be of the highest theoretical importance.

This is one of the few places where Hilbert emphasized Boltzmann’s work over
Hertz’s in this regard, and this may give us the clue to the most immediate trigger that
was in the back of Hilbert’s mind when he decided to include this problem in the list.
Hilbert had met Boltzmann several months earlier in Munich, where he heard his talk
on recent developments in physics. Boltzmann had not only discussed ideas con-
nected to the task that Hilbert was now calling for, but he also adopted a rhetoric that
Hilbert seems to have found very much to the point. In fact, Boltzmann had sug-
gested that one could follow up the recent history of physics with a look at future
developments. Nevertheless, he said, “I will not be so rash as to lift the veil that con-
ceals the future” (Boltzmann 1899, 79). Hilbert, on the contrary, opened the lecture
by asking precisely, “who among us would not be glad to lift the veil behind which
the future lies hidden” and the whole trust of his talk implied that he, the optimistic
Hilbert, was helping the mathematical community to do so.

Together with the well-known works on mechanics referred to above, Hilbert also
mentioned a recent work by the Göttingen actuarial mathematician Georg Bohlmann
(1869–1928) on the foundations of the calculus of probabilities.42 The latter was
important for physics, Hilbert said, for its application to the method of mean values
and to the kinetic theory of gases. Hilbert’s inclusion of the theory of probabilities
among the main physical theories whose axiomatization should be pursued has often
puzzled readers of this passage. It is also remarkable that Hilbert did not mention
electrodynamics among the physical disciplines to be axiomatized, even though the
second half of the Gauss-Weber Festschrift, where Hilbert’s Grundlagen der Geome-
trie was published, contained a parallel essay by Emil Wiechert (1861–1956) on the
foundations of electrodynamics (Wiechert 1899). At any rate, Wiechert’s presentation

41 Quoted in (Gray 2000, 257).
42 This article reproduced a series of lectures delivered by Bohlmann in a Ferienkurs in Göttingen (Bohl-

mann 1900). In his article Bohlmann referred the readers, for more details, to the chapter he had writ-
ten for the Encyklopädie on insurance mathematics.
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was by no means axiomatic, in any sense of the term. On the other hand, the topics
addressed by him would start attracting Hilbert’s attention over the next years, at least
since 1905.

Modelling this research on what had already been done for geometry meant that
not only theories considered to be closer to “describing reality” should be investi-
gated, but also other, logically possible ones. The mathematician undertaking the axi-
omatization of physical theories should obtain a complete survey of all the results
derivable from the accepted premises. Moreover, echoing the concern already found
in Hertz and later to appear also in Hilbert’s letters to Frege, a main task of the axi-
omatization would be to avoid that recurrent situation in physical research, in which
new axioms are added to existing theories without properly checking to what extent
the former are compatible with the latter. This proof of compatibility, concluded Hil-
bert, is important not only in itself, but also because it compels us to search for ever
more precise formulations of the axioms.

3.2 A Context for the Sixth Problem

The sixth problem of the list deals with the axiomatization of physics. It was sug-
gested to Hilbert by his own recent research on the foundations of geometry. He thus
proposed “to treat in the same manner, by means of axioms, those physical sciences
in which mathematics plays an important part.” This sixth problem is not really a
problem in the strict sense of the word, but rather a general task for whose complete
fulfilment Hilbert set no clear criteria. Thus, Hilbert’s detailed account in the opening
remarks of his talk as to what a meaningful problem in mathematics is, and his stress
on the fact that a solution to a problem should be attained in a finite number of steps,
does not apply in any sense to the sixth one. On the other hand, the sixth problem has
important connections with three other problems on Hilbert’s list: the nineteenth
(“Are all the solutions of the Lagrangian equations that arise in the context of certain
typical variational problems necessarily analytic?”), the twentieth (dealing with the
existence of solutions to partial differential equations with given boundary condi-
tions), closely related to the nineteenth and at the same time to Hilbert’s long-stand-
ing interest on the Dirichlet Principle,43 and, finally, the twenty-third (an appeal to
extend and refine the existing methods of variational calculus). Like the sixth prob-
lem, the latter two are general tasks rather than specific mathematical problems with
a clearly identifiable, possible solution.44 All these three problems are also strongly
connected to physics, though unlike the sixth, they are also part of mainstream, tradi-

43 On 11 October 1899, Hilbert had lectured in Göttingen on the Dirichlet principle, stressing the impor-
tance of its application to the theory of surfaces and also to mathematical physics. Cf. Jahresbericht
der Deutschen Mathematiker-Vereinigung 8 (1900), 22.

44 A similar kind of “general task” problem that Hilbert had perhaps considered adding as the twenty-
fourth problem in his list is hinted at in an undated manuscript found in Nachlass David Hilbert (Cod.
Ms. D. Hilbert, 600). It concerns the definition of criteria for finding simplest proofs in mathematics
in general. Cf. a note in (Grattan-Guinness 2001, 167), and a more detailed account in (Thiele 2003). 
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tional research concerns in mathematics.45 In fact, their connections to Hilbert’s own
interests are much more perspicuous and, in this respect, they do not raise the same
kind of historical questions that Hilbert’s interest in the axiomatization of physics
does. Below, I will explain in greater detail how Hilbert conceived the role of varia-
tional principles in his program for axiomatizing physics.

Another central issue to be discussed below in some detail is the role the sixth
problem played in subsequent developments in mathematics and in physics. At this
stage, however, a general point must be stressed about the whole list in this regard. A
balanced assessment of the influence of the problems on the development of mathe-
matics throughout the century must take into account not only the intrinsic impor-
tance of the problems,46 but also the privileged institutional role of Göttingen in the
mathematical world with the direct and indirect implications of its special status. If
Hilbert wished to influence the course of mathematics over the coming century with
his list, then his own career was only very partially shaped by it. Part of the topics
covered by the list belonged to his previous domains of research, while others
belonged to domains where he never became active. On the contrary, domains that he
devoted much effort to over the next years, such as the theory of integral equations,
were not contemplated in the list. In spite of the enormous influence Hilbert had on
his students, the list did not become a necessary point of reference of preferred topics
for dissertations. To be sure, some young mathematicians, both in Göttingen and
around the world, did address problems on the list and sometimes came up with
important mathematical achievements that helped launch their own international
careers. But this was far from the only way for talented young mathematicians to
reach prominence in or around Göttingen. But, ironically, the sixth problem, although
seldom counted among the most influential of the list, will be shown here to count
among those that received a greater attention from Hilbert himself and from his col-
laborators and students over the following years.

For all its differences and similarities with other problems on the list, the impor-
tant point that emerges from the above account is that the sixth problem was in no
sense disconnected from the evolution of Hilbert’s early axiomatic conception. Nor
was it artificially added in 1900 as an afterthought about the possible extensions of an
idea successfully applied in 1899 to the case of geometry. Rather, Hilbert’s ideas con-
cerning the axiomatization of physical science arose simultaneously with his increas-
ing enthusiasm for the axiomatic method and they fitted naturally into his overall
view of pure mathematics, geometry and physical science—and the relationship
among them—by that time. Moreover, as will be seen in the next chapter in some
detail, Hilbert’s 1905 lectures on axiomatization provide a very clear and comprehen-
sive conception of how the project suggested in the sixth problem should be realized.
In fact, it is very likely that this conception was not essentially different from what
Hilbert had in mind when formulating his problem in 1900.47 Interestingly, the devel-

45 For a detailed account of the place of variational principles in Hilbert’s work, see (Blum 1994). 
46 As treated in (Alexandrov 1979; Browder 1976).
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opment of physics from the beginning of the century, and especially after 1905,
brought many surprises that Hilbert could not have envisaged in 1900 or even when
he lectured at Göttingen on the axioms of physics; yet, over the following years Hil-
bert was indeed able to accommodate these new developments to the larger picture of
physics afforded by his program for axiomatization. In fact, some of his later contri-
butions to mathematical physics came by way of realizing the vision embodied in this
program, as will be seen in detail in later chapters.

4. FOUNDATIONAL CONCERNS – EMPIRICIST STANDPOINT

Following the publication of Grundlagen der Geometrie, Hilbert was occupied for a
while with research on the foundations of geometry. Several of his students, such as
Max Dehn (1878–1952), Georg Hamel (1877–1954) and Anne Lucy Bosworth
(1868–?), worked in this field as well, including on problems relating to Hilbert’s
1900 list. Also many meetings of the Göttinger Mathematische Gesellschaft during
this time were devoted to discussing related topics. On the other hand, questions
relating to the foundations of arithmetic and set theory also received attention in the
Hilbert circle. Ernst Zermelo (1871–1953) had already arrived in Göttingen in 1897
in order to complete his Habilitation, and his own focus of interest changed soon
from mathematical physics to set theory and logic. Around 1899–1900 he had already
found an important antinomy in set theory, following an idea of Hilbert’s.48 Later on,
in the winter semester of 1900–1901, Zermelo was teaching set theory in Göttingen
(Peckhaus 1990, 48–49).

Interest in the foundations of arithmetic became a much more pressing issue in
1903, after Bertrand Russell (1872–1970) published his famous paradox arising from
Frege’s logical system. Although Hilbert hastened to indicate to Frege that similar
arguments had been known in Göttingen for several years,49 it seems that Russell’s
publication, coupled with the ensuing reaction by Frege,50 did have an exceptional
impact. Probably this had to do with the high esteem that Hilbert professed towards
Frege’s command of these topics (which Hilbert may have come to appreciate even
more following the sharp criticism recently raised by the latter towards his own
ideas). The simplicity of the sets involved in Russell’s argument was no doubt a fur-
ther factor that explains its strong impact on the Göttingen mathematicians. If Hilbert
had initially expected that the difficulty in completing the full picture of his approach
to the foundations of geometry would lie on dealing with more complex assumptions
such as the Vollständigkeitsaxiom, now it turned out that the problems perhaps started
with the arithmetic itself and even with logic. He soon realized that greater attention

47 Cf. (Hochkirchen 1999), especially chap. 1.
48 See (Peckhaus and Kahle 2002).
49 Hilbert to Frege, 7 November 1903. Quoted in (Gabriel et al. 1980, 51–52). 
50 As published in (Frege 1903, 253). See (Ferreirós 1999, 308–311). 
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should be paid to these topics, and in particular to the possible use of the axiomatic
method in establishing the consistency of arithmetic (Peckhaus 1990, 56–57).

Hilbert himself gradually reduced his direct involvement with all questions of this
kind, and after 1905 he completely abandoned them for many years to come. Two
instances of his involvement with foundational issues during this period deserve some
attention here. The first is his address to the Third International Congress of Mathe-
maticians, held in 1904 in Heidelberg. In this talk, later published under the title of
“On the Foundations of Logic and Arithmetic,” Hilbert presented a program for
attacking the problem of consistency as currently conceived. The basic idea was to
develop simultaneously the laws of logic and arithmetic, rather than reducing one to
the other or to set theory. The starting point was the basic notion of thought-object that
would be designated by a sign, which offered the possibility of treating mathematical
proofs, in principle, as formulae. This could be seen to constitute an interesting antici-
pation of what later developed as part of Hilbert’s proof theory, but here he only out-
lined the idea in a very sketchy way. Actually, Hilbert did not go much beyond the
mere declaration that this approach would help achieve the desired proof. Hilbert cur-
sorily reviewed several prior approaches to the foundations of arithmetic, only to dis-
card them all. Instead, he declared that the solution for this problem would finally be
found in the correct application of the axiomatic method (Hilbert 1905c, 131).

Upon returning to Göttingen from Heidelberg, Hilbert devoted some time to
working out the ideas outlined at the International Congress of Mathematicians. The
next time he presented them was in an introductory course devoted to “The Logical
Principles of Mathematical Thinking,” which contains the second instance of Hil-
bert’s involvement with the foundation of arithmetic in this period. This course is
extremely important for my account here because it contains the first detailed attempt
to implement the program for the axiomatization of physics.51 I will examine it in
some detail below. At this point I just want to briefly describe the other parts of the
course, containing some further foundational ideas for logic and arithmetic, and some
further thoughts on the axiomatization of geometry.

Hilbert discussed in this course the “logical foundations” of mathematics by
introducing a formalized calculus for propositional logic. This was a rather rudimen-
tary calculus, which did not even account for quantifiers. As a strategy for proving
consistency of axiomatic systems, it could only be applied to very elementary
cases.52 Prior to defining this calculus Hilbert gave an overview of the basic princi-
ples of the axiomatic method, including a more detailed account of its application to
arithmetic, geometry and the natural sciences. What needs to be stressed concerning
this text is that, in spite of his having devoted increased attention over the previous
years to foundational questions in arithmetic, Hilbert’s fundamentally empiricist

51 There are two extant sets of notes for this course: (Hilbert 1905a and 1905b). Quotations below are
taken from (Hilbert 1905a). As these important manuscripts remain unpublished, I transcribe in the
footnotes some relevant passages at length. Texts are underlined or crossed-out as in the original.
Later additions by Hilbert appear between < > signs.

52 For a discussion of this part of the course, see (Peckhaus 1990, 61–75). 
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approach to issues in the foundations of geometry was by no means weakened, but
rather the opposite. In fact, in his 1905 course, Hilbert actually discussed the role of
an axiomatic analysis of the foundations of arithmetic in similar, empiricist terms. 

Once again, Hilbert contrasted the axiomatic method with the genetic approach in
mathematics, this time making explicit reference to the contributions of Kronecker
and Weierstrass to the theory of functions. Yet Hilbert clearly separated the purely
logical aspects of the application of the axiomatic method from the “genetic” origin
of the axioms themselves: the latter is firmly grounded on empirical experience.
Thus, Hilbert asserted, it is not the case that the system of numbers is given to us
through the network of concepts (Fachwerk von Begriffen) involved in the eighteen
axioms. On the contrary, it is our direct intuition of the concept of natural number and
of its successive extensions, well known to us by means of the genetic method, which
has guided our construction of the axioms:

The aim of every science is, first of all, to set up a network of concepts based on axioms
to whose very conception we are naturally led by intuition and experience. Ideally, all the
phenomena of the given domain will indeed appear as part of the network and all the the-
orems that can be derived from the axioms will find their expression there.53

What this means for the axiomatization of geometry, then, is that its starting point
must be given by the intuitive facts of that discipline,54 and that the latter must be in
agreement with the network of concepts created by means of the axiomatic system.
The concepts involved in the network itself, Hilbert nevertheless stressed, are totally
detached from experience and intuition.55 This procedure is rather obvious in the
case of arithmetic, and to a certain extent the genetic method has attained similar
results for this discipline. In the case of geometry, although the need to apply the pro-

53 “Uns war das Zahlensystem schließlich nichts als ein Fachwerk von Begriffen, das durch 18 Axiome
definiert war. Bei der Aufstellung dieser leitete uns allerdings die Anschauung, die wir von dem
Begriff der Anzahl und seiner genetischen Ausdehnung haben. ... So ist in jeder Wissenschaft die Auf-
gabe, in den Axiomen zunächst ein Fachwerk von Begriffen zu errichten, bei dessen Aufstellung wir
uns natürlich durch die Anschauung und Erfahrung leiten lassen; das Ideal ist dann, daß in diesem
Fachwerk alle Erscheinungen des betr. Gebietes Platz finden, und daß jeder aus den Axiomen fol-
gende Satz dabei Verwertung findet.
Wollen wir nun für die Geometrie ein Axiomensystem aufstellen, so heißt das, daß wir uns den Anlaß
dazu durch die anschaulichen Thatsachen der Geometrie geben lassen, und diesen das aufzurichtende
Fachwerk entsprechen lassen; die Begriffe, die wir so erhalten, sind aber als gänzlich losgelöst von
jeder Erfahrung und Anschauung zu betrachten. Bei der Arithmetik ist diese Forderung verhältnismä-
ßig naheliegend, sie wird in gewissem Umfange auch schon bei der genetischen Methode angestrebt.
Bei der Geometrie jedoch wurde die Notwendigkeit dieses Vorgehens viel später erkannt; dann aber
wurde eine axiomatische Behandlung eher versucht, als in der Arithmetik, wo noch immer die geneti-
sche Betrachtung herrschte. Doch ist die Aufstellung eines vollständigen Axiomensystemes ziemlich
schwierig, noch viel schwerer wird sie in der Mechanik, Physik etc. sein, wo das Material an Erschei-
nungen noch viel größer ist.” (Hilbert 1905a, 36–37)

54 “... den Anlaß dazu durch die anschaulischen Thatsachen der Geometrie geben lassen...” (Hilbert
1905a, 37)

55 “... die Begriffe, die wir so erhalten, sind aber als gänzlich losgelöst von jeder Erfahrung und
Anschauung zu betrachten.” (Hilbert 1905a, 37)
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cess truly systematically was recognized much later, the axiomatic presentation has
traditionally been the accepted one. And if setting up a full axiomatic system has
proven to be a truly difficult task for geometry, then, Hilbert concluded, it will be
much more difficult in the case of mechanics or physics, where the range of observed
phenomena is even broader.56

Hilbert’s axioms for geometry in 1905 were based on the system of Grundlagen
der Geometrie, including all the corrections and additions introduced to it since 1900.
Here too he started by choosing three basic kinds of undefined elements: points, lines
and planes. This choice, he said, is somewhat “arbitrary” and it is dictated by consid-
eration of simplicity. But the arbitrariness to which Hilbert referred here has little to
do with the arbitrary choice of axioms sometimes associated with twentieth-century
formalistic conceptions of mathematics; it is not an absolute arbitrariness constrained
only by the requirement of consistency. On the contrary, it is limited by the need to
remain close to the “intuitive facts of geometry.” Thus, Hilbert said, instead of the
three chosen, basic kinds of elements, one could likewise start with [no... not with
“chairs, tables, and beer-mugs,” but rather with] circles and spheres, and formulate
the adequate axioms that are still in agreement with the usual, intuitive geometry.57

Hilbert plainly declared that Euclidean geometry—as defined by his systems of
axioms—is the one and only geometry that fits our spatial experience,58 though in his
opinion, it would not be the role of mathematics or logic to explain why this is so. But
if that is the case, then what is the status of the non-Euclidean or non-Archimedean
geometries? Is it proper at all to use the term “geometry” in relation to them? Hilbert
thought it unnecessary to break with accepted usage and restrict the meaning of the
term to cover only the first type. It has been unproblematic, he argued, to extend the
meaning of the term “number” to include also the complex numbers, although the lat-
ter certainly do not satisfy all the axioms of arithmetic. Moreover, it would be unten-
able from the logical point of view to apply the restriction: although it is not highly
probable, it may nevertheless be the case that some changes would still be introduced
in the future to the system of axioms that describes intuitive geometry. In fact, Hilbert
knew very well that this “improbable” situation had repeatedly arisen in relation to
the original system he had put forward in 1900 in Grundlagen der Geometrie. To
conclude, he compared once again the respective situations in geometry and in phys-
ics: in the theory of electricity, for instance, new theories are continually formulated
that transform many of the basic facts of the discipline, but no one thinks that the
name of the discipline needs to be changed accordingly.

56 “... das Material an Erscheinungen noch viel größer ist.” (Hilbert 1905a, 37)
57 “Daß wir gerade diese zu Elementardingen des begrifflichen Fachwerkes nehmen, ist willkürlich und

geschieht nur wegen ihrer augenscheinlichen Einfachheit; im Princip könnte man die ersten Dinge
auch Kreise und Kugeln nennen, und die Festsetzungen über sie so treffen, daß sie diesen Dingen der
anschaulichen Geometrie entsprechen.” (Hilbert 1905a, 39)

58 “Die Frage, wieso man in der Natur nur gerade die durch alle diese Axiome festgelegte Euklidische
Geometrie braucht, bezw. warum unsere Erfahrung gerade in dieses Axiomsystem sich einfügt, gehört
nicht in unsere mathematisch-logichen Untersuchungen.” (Hilbert 1905a, 67)
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Hilbert also referred explicitly to the status of those theories that, like non-Euclid-
ean and non-Archimedean geometries, are created arbitrarily through the purely logi-
cal procedure of setting down a system of independent and consistent axioms. These
theories, he said, can be applied to any objects that satisfy the axioms. For instance,
non-Euclidean geometries are useful to describe the paths of light in the atmosphere
under the influence of varying densities and diffraction coefficients. If we assume that
the speed of light is proportional to the vertical distance from a horizontal plane, then
one obtains light-paths that are circles orthogonal to the planes, and light-times equal
to the non-Euclidean distance from them.59 Thus, the most advantageous way to
study the relations prevailing in this situation is to apply the conceptual schemes pro-
vided by non-Euclidean geometry.60

A further point of interest in Hilbert’s discussion of the axioms of geometry in
1905 concerns his remarks about what he called the philosophical implications of the
use of the axiomatic method. These implications only reinforced Hilbert’s empiricist
view of geometry. Geometry, Hilbert said, arises from reality through intuition and
observation, but it works with idealizations: for instance, it considers very small bod-
ies as points. The axioms in the first three groups of his system are meant to express
idealizations of a series of facts that are easily recognizable as independent from one
other; the assertion that a straight line is determined by two points, for instance, never
gave rise to the question of whether or not it follows from other, basic axioms of
geometry. But establishing the status of the assertion that the sum of the angles in a
triangle equals two right angles requires a more elaborate axiomatic analysis. This
analysis shows that such an assertion is a separate piece of knowledge, which—we
now know for certain—cannot be deduced from earlier facts (or from their idealiza-
tions, as embodied in the three first groups of axioms). This knowledge can only be
gathered from new, independent empirical observation. This was Gauss’s aim,
according to Hilbert, when he confirmed the theorem for the first time, by measuring
the angles of the large triangle formed by the three mountain peaks.61 The network of
concepts that constitute geometry, Hilbert concluded, has been proved consistent, and
therefore it exists mathematically, independently of any observation. Whether or not

59 As in many other places in his lectures, Hilbert gave no direct reference to the specific physical theory
he had in mind here, and in this particular case I have not been able to find it.

60 “Ich schließe hier noch die Bemerkung an, daß man jedes solches Begriffschema, das wir so rein
logisch aus irgend welchen Axiomen aufbauen, anwenden kann auf beliebige gegenständliche Dinge,
wenn sie nur diesen Axiomen genügen. ... Ein solches Beispiel für die Anwendung des Begriffsche-
mas der nichteuklidischen Geometrie bildet das System der Lichtwege in unserer Atmosphäre unter
dem Einfluß deren variabler Dichte und Brechungsexponenten; machen wir nämlich die einfachste
mögliche Annahme, daß die Lichtgeschwindigkeit proportional ist dem vertikalen Abstande  von
einer Horizontalebene, so ergeben sich als Lichtwege gerade die Orthogonalkreise jener Ebene, als
Lichtzeit gerade die nichteuklidiche Entfernung auf ihnen. Um die hier obwaltenden Verhältnisse also
genauer zu untersuchen, können wir gerade mit Vorteil das Begriffschema der nichteuklidischen Geo-
metrie anwenden.” (Hilbert 1905a, 69–70)

61 “In diesem Sinne und zu diesem Zwecke hat zuerst Gauß durch Messung an großen Dreiecken den
Satz bestätigt.” (Hilbert 1905a, 98)

y
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it corresponds to reality is a question that can be decided only by observation, and our
analysis of the independence of the axioms allows determining very precisely the
minimal set of observations needed in order to do so.62 Later on, he added, the same
kind of perspective must be adopted concerning physical theories, although there its
application will turn out to be much more difficult than in geometry.

In concluding his treatment of geometry, and before proceeding to discuss the
specific axiomatization of individual physical theories, Hilbert summarized the role
of the axiomatic method in a passage which encapsulates his view of science and of
mathematics as living organisms whose development involves both an expansion in
scope and an ongoing clarification of the logical structure of their existing parts.63

The axiomatic treatment of a discipline concerns the latter; it is an important part of
this growth but—Hilbert emphasized—only one part of it. The passage, reads as fol-
lows:

The edifice of science is not raised like a dwelling, in which the foundations are first
firmly laid and only then one proceeds to construct and to enlarge the rooms. Science
prefers to secure as soon as possible comfortable spaces to wander around and only sub-
sequently, when signs appear here and there that the loose foundations are not able to
sustain the expansion of the rooms, it sets about supporting and fortifying them. This is
not a weakness, but rather the right and healthy path of development.64

This metaphor provides the ideal background for understanding what Hilbert
went on to realize at this point in his lectures, namely, to present his first detailed
account of how the general idea of axiomatization of physical theories would be actu-
ally implemented in each case. But before we can really discuss that detailed account,
it is necessary to broaden its context by briefly describing some relevant develop-
ments in physics just before 1905, and how they were manifest in Göttingen.

5. HILBERT AND PHYSICS IN GÖTTINGEN CIRCA 1905

The previous section described Hilbert’s foundational activities in mathematics
between 1900 and 1905. Those activities constituted the natural outgrowth of the

62 “Das Begriffsfachwerk der Geometrie selbst ist nach Erweisung seiner Widerspruchslosigkeit natür-
lich auch unabhängig von jeder Beobachtung mathematisch existent; der Nachweis seiner Überein-
stimmung mit der Wirklichkeit kann nur durch Beobachtungen geführt werden, und die kleinste
notwendige solche wird durch die Unabhängigkeitsuntersuchungen gegeben.” (Hilbert 1905a, 98)

63 Elsewhere Hilbert called these two aspects of mathematics the “progressive” and “regressive” func-
tions of mathematics, respectively (both terms not intended as value judgments, of course). See (Hil-
bert 1992, 17–18).

64 “Das Gebäude der Wissenschaft wird nicht aufgerichtet wie ein Wohnhaus, wo zuerst die Grundmau-
ern fest fundiert werden und man dann erst zum Auf- und Ausbau der Wohnräume schreitet; die Wis-
senschaft zieht es vor, sich möglichst schnell wohnliche Räume zu verschaffen, in denen sie schalten
kann, und erst nachträglich, wenn es sich zeigt, dass hier und da die locker gefügten Fundamente den
Ausbau der Wohnräume nicht zu tragen vermögen, geht sie daran, dieselben zu stützen und zu befesti-
gen. Das ist kein Mangel, sondern die richtige und gesunde Entwicklung.” (Hilbert 1905a, 102.) Other
places where Hilbert uses a similar metaphor are (Hilbert 1897, 67; Hilbert 1918, 148). 
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seeds planted in Grundlagen der Geometrie and the developments that immediately
followed it. My account is not meant to imply, however, that Hilbert’s focus of inter-
est was limited to, or even particularly focused around, this kind of enquiry during
those years. On 18 September 1901, for instance, Hilbert’s keynote address at the
commemoration of the 150th anniversary of the Göttingen Scientific Society (Gesell-
schaft der Wissenschaften zu Göttingen) was devoted to analyzing the conditions of
validity of the Dirichlet Principle (Hilbert 1904, 1905d). Although thus far he had
published very little in this field, Hilbert’s best efforts from then on would be given to
analysis, and in particular, the theory of linear integral equations. His first publication
in this field appeared in 1902, and others followed, up until 1912. But at the same
time, he sustained his interest in physics, which is directly connected with analysis
and related fields to begin with, and this interest in physics became only more diverse
throughout this period. His increased interest in analysis had a natural affinity with
the courses on potential theory (winter semester, 1901–1902; summer semester,
1902) and on continuum mechanics (winter semester, 1902–1903; summer semester,
1903) that he taught at that time. Perhaps worthy of greater attention, however, is Hil-
bert’s systematic involvement around 1905 with the theories of the electron, on which
I will elaborate in the present section.

Still, a brief remark on Hilbert’s courses on continuum mechanics: The lecture
notes of these two semesters (Hilbert 1902–1903, 1903b) are remarkable for the thor-
oughness with which the subject was surveyed. The presentation was probably the
most systematic and detailed among all physical topics taught by Hilbert so far, and it
comprised detailed examinations of the various existing approaches (particularly
those of Lagrange, Euler and Helmholtz). Back in 1898–1899, in the final part of a
course on mechanics, Hilbert had briefly dealt with the mechanics of systems of an
infinite number of mass-points while stressing that the detailed analysis of such sys-
tems would actually belong to a different part of physics. This was precisely the sub-
ject he would consider in 1902. In that earlier course Hilbert had also discussed some
variational principles of mechanics, without however presenting the theory in any-
thing like a truly axiomatic perspective. Soon thereafter, in 1900 in Paris, Hilbert
publicly presented his call for the axiomatization of physics. But in 1902–1903, in
spite of the high level of detail with which he systematically discussed the physical
discipline of continuum mechanics, the axiomatic presentation was not yet the guid-
ing principle. Hilbert did state that a main task to be pursued was the axiomatic
description of physical theories65 and throughout the text he specifically accorded the
status of axioms to some central statements.66 Still, the notes convey the distinct
impression that Hilbert did not believe that the time was ripe for the fully axiomatic

65 The manuscript shows an interesting hesitation on how this claim was stated: “Das <Als ein wichti-
ges> Ziel der Vorlesung ist <denke ich mir> die mathematische Beschreibung der Axiome der Physik.
Vergl. Archiv der Mathematik und Physik, meine Rede: ‘Probleme der Mathematik’.” However, it is
not clear if this amendment of the text reflects a hesitation on the side of Hilbert, or on the side of
Berkowski, who wrote down the notes. (Hilbert 1902–1903, 2)

66 Thus for instance in (Hilbert 1902–1903).
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treatment of mechanics, or at least of continuum mechanics, in axiomatic terms simi-
lar to those previously deployed in full for geometry.

On the other hand, it is worth stressing that in many places Hilbert set out to
develop a possible unified conception of mechanics, thermodynamics (Hilbert 1903b,
47–91) and electrodynamics (Hilbert 1903b, 91–164) by using formal analogies with
the underlying ideas of his presentation of the mechanics of continua. These ideas,
which were treated in greater detail from an axiomatic point of view in the 1905 lec-
tures, are described more fully below; therefore, at this point I will not give a com-
plete account of them. Suffice it to say that Hilbert considered the material in these
courses to be original and important, and not merely a simple repetition of existing
presentations. In fact, the only two talks he delivered in 1903 at the meetings of the
Göttinger Mathematische Gesellschaft were dedicated to reporting on their con-
tents.67

Still in 1903, Hilbert gave a joint seminar with Minkowski on stability theory.68

He also presented a lecture on the same topic at the yearly meeting of the Gesell-
schaft Deutscher Naturforscher und Ärzte at Kassel,69 sparking a lively discussion
with Boltzmann.70 In the winter semester of 1904–1905 Hilbert taught an exercise
course on mechanics and later gave a seminar on the same topic. The course “Logical
Principles of Mathematical Thinking,” containing the lectures on axiomatization of
physics, was taught in the summer semester of 1905. He then lectured again on
mechanics (winter semester, 1905–1906) and two additional semesters on continuum
mechanics.

The renewed encounter with Minkowski signified a major source of intellectual
stimulation for these two old friends, and it particularly offered a noteworthy impulse
to the expansion of Hilbert’s horizon in physics. As usual, their walks were an oppor-
tunity to discuss a wide variety of mathematical topics, but now physics became a
more prominent, common interest than it had been in the past. Teaching in Zürich
since 1894, Minkowski had kept alive his interest in mathematical physics, and in
particular in analytical mechanics and thermodynamics (Rüdenberg and Zassenhaus
1973, 110–114). Now at Göttingen, he further developed these interests. In 1906
Minkowski published an article on capillarity (Minkowski 1906), commissioned for

67 See the announcements in Jahresbericht der Deutschen Mathematiker-Vereinigung 12 (1903), 226
and 445. Earlier volumes of the Jahresbericht der Deutschen Mathematiker-Vereinigung do not con-
tain announcements of the activities of the Göttinger Mathematische Gesellschaft, and therefore it is
not known whether he also discussed his earlier courses there. 

68 Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 570/1) contains a somewhat random collection of
handwritten notes related to many different courses and seminars of Hilbert. Notes of this seminar on
stability theory appear on pp. 18–24. Additional, related notes appear in (Cod. Ms. D. Hilbert, 696).

69 Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 593) contains what appear to be the handwritten notes
of this talk, with the title “Vortrag über Stabilität einer Flüssigkeit in einem Gefässe,” and includes
some related bibliography.

70 As reported in Naturwissenschaftliche Rundschau, vol. 18, (1903), 553–556 (cf. Schirrmacher 2003,
318, note 63). The reporter of this meeting, however, considered that Hilbert was addressing a sub-
tlety, rather than a truly important physical problem.
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the physics volume of the Encyklopädie, edited by Sommerfeld. At several meetings
of the Göttinger Mathematische Gesellschaft, Minkowski lectured on this as well as
other physical issues, such as Euler’s equations of hydrodynamics and recent work on
thermodynamics by Walter Nernst (1864-1941), (Nernst 1906), who by that time had
already left Göttingen. Minkowski also taught advanced seminars on physical topics
and more basic courses on mechanics, continuum mechanics, and exercises on
mechanics and heat radiation.71 In 1905 Hilbert and Minkowski organized, together
with other Göttingen professors, an advanced seminar that studied recent progress in
the theories of the electron.72 In December 1906, Minkowski reported to the Göttin-
ger Mathematische Gesellschaft on recent developments in radiation theory, and dis-
cussed the works of Hendrik Antoon Lorentz (1853–1928), Max Planck (1858–
1947), Wilhelm Wien (1864–1928) and Lord Rayleigh (1842–1919), (Minkowski
1907, 78). Yet again in 1907, the two conducted a joint seminar on the equations of
electrodynamics, and that semester Minkowski taught a course on heat radiation,
after having studied with Hilbert Planck’s recent book on this topic (Planck 1906).73

Finally, as it is well known, during the last years of his life, 1907 to 1909,
Minkowski’s efforts were intensively dedicated to electrodynamics and the principle
of relativity.

The 1905 electron theory seminar exemplifies the kind of unique scientific event
that could be staged only at Göttingen at that time, in which leading mathematicians
and physicists would meet on a weekly basis in order to intensively discuss current
open issues of the discipline. In fact, over the preceding few years the Göttinger
Mathematische Gesellschaft had dedicated many of its regular meetings to discussing
recent works on electron theory and related topics, so that this seminar was a natural
continuation of a more sustained, general interest for the local scientific community.

71  Cf. Jahresbericht der Deutschen Mathematikervereinigung 13 (1904), 492; 16 (1907), 171; 17
(1908), 116. See also the Vorlesungsverzeichnisse, Universität Göttingen, winter semester, 1903–
1904, 14; summer semester, 1904, 14–16. A relatively large collection of documents and manuscripts
from Minkowski’s Nachlass has recently been made available at the Jewish National Library, at the
Hebrew University, Jerusalem. These documents are yet to be thoroughly studied and analyzed. They
contain scattered notes of courses taught at Königsberg, Bonn, Zurich and Göttingen. The notes of a
Göttingen course on mechanics, winter semester, 1903–1904, are found in Box IX (folder 4) of that
collection. One noteworthy aspect of these notes is that Minkowski’s recommended reading list is
very similar to that of Hilbert’s earlier courses and comprises mainly texts then available at the Lesez-
immer. It included classics such as Lagrange, Kirchhoff, Helmholtz, Mach, and Thomson-Tait,
together with more recent, standard items such as the textbooks by Voigt, Appell, Petersen, Budde and
Routh. Like Hilbert’s list it also included the lesser known (Rausenberg 1888), but it also comprised
two items absent from Hilbert’s list: (Duhamel 1853–1854) and (Föppl 1901). Further, it recom-
mended Voss’s Encyklopädie article as a good summary of the field.

72 Pyenson (1979) contains a detailed and painstaking reconstruction of the ideas discussed in this semi-
nar and the contributions of its participants. This reconstruction is based mainly on Nachlass David
Hilbert, (Cod. Ms. D. Hilbert, 570/9). I strongly relied on this article as a starting point for my account
of the seminar in the next several paragraphs. Still, my account departs from Pyenson’s views in some
respects.

73 The notes of the course appear in (Minkowski 1907).
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Besides Minkowski and Hilbert, the seminar was led by Wiechert and Gustav Her-
glotz (1881–1953). Herglotz had recently joined the Göttingen faculty and received
his Habilitation for mathematics and astronomy in 1904. Alongside Wiechert, he con-
tributed important new ideas to the electron theory and the two would later become
the leading geophysicists of their time. The list of students who attended the seminar
includes, in retrospect, no less impressive names: two future Nobel laureates, Max
von Laue (1879–1960) and Max Born (1882–1970), as well as Paul Heinrich Blasius
(1883–1970) who would later distinguish himself in fluid mechanics, and Arnold
Kohlschütter (1883–1969), a student of Schwarzschild who became a leading astron-
omer himself. Parallel to this seminar, a second one on electrotechnology was held
with the participation of Felix Klein, Carl Runge (1856–1914), Ludwig Prandtl
(1875–1953) and Hermann Theodor Simon (1870–1918), then head of the Göttingen
Institute for Applied Electricity.74

The modern theory of the electron had developed through the 1890s, primarily
with the contributions of Lorentz working in Leiden, but also through the efforts of
Wiechert at Göttingen and—following a somewhat different outlook—of Joseph Lar-
mor (1857–1942) at Cambridge.75 Lorentz had attempted to account for the interac-
tion between ether and matter in terms of rigid, negatively charged, particles: the
electrons. His article of 1895 dealing with concepts such as stationary ether and local
time, while postulating the existence of electrons, became especially influential
(Lorentz 1895). The views embodied in Lorentz’s and Larmor’s theories received fur-
ther impetus from contemporary experimental work, such as that of Pieter Zeeman
(1865–1943) on the effect associated with his name, work by J. J. Thomson (1856–
1940) especially concerning the cathode ray phenomena and their interpretation in
terms of particles, and also work by Wiechert himself, Wien and Walter Kaufmann
(1871–1947). Gradually, the particles postulated by the theories and the particle-
laden explanations stemming from the experiments came to be identified with one
another.76

Lorentz’s theory comprised elements from both Newtonian mechanics and Max-
well’s electrodynamics. While the properties of matter are governed by Newton’s
laws, Maxwell’s equations describe the electric and magnetic fields, conceived as
states of the stationary ether. The electron postulated by the theory provided the con-
necting link between matter and ether. Electrons moving in the ether generate electric
and magnetic fields, and the latter exert forces on material bodies through the elec-
trons themselves. The fact that Newton’s laws are invariant under Galilean transfor-
mations and Maxwell’s are invariant under what came to be known as Lorentz
transformations was from the outset a source of potential problems and difficulties
for the theory, and in a sense, these and other difficulties would be dispelled only with
the formulation of Einstein’s special theory of relativity in 1905. In Lorentz’s theory

74 Cf. (Pyenson 1979, 102). 
75 Cf. (Warwick 1991).
76 Cf. (Arabatzis 1996).
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the conflict with experimental evidence led to the introduction of the famous contrac-
tion hypothesis and in fact, of a deformable electron.77 But in addition it turned out
that, in this theory, some of the laws governing the behavior of matter would be
Lorentz invariant, rather than Galilean, invariant. The question thus arose whether
this formal, common underlying property does not actually indicate a more essential
affinity between what seemed to be separate realms, and, in fact, whether it would not
be possible to reduce all physical phenomena to electrodynamics.78

Initially, Lorentz himself attempted to expand the scope of his theory, as a possi-
ble foundational perspective for the whole of physics, and in particular as a way to
explain molecular forces in terms of electrical ones. He very soon foresaw a major
difficulty in subsuming also gravitation within this explanatory scope. Still, he
believed that such a difficulty could be overcome, and in 1900 he actually published a
possible account of gravitation in terms of his theory. The main difficulty in this
explanation was that, according to existing astronomical data, the velocity of gravita-
tional effects would seem to have to expand much faster than electromagnetic ones,
contrary to the requirements of the theory (Lorentz 1900). This and other related dif-
ficulties are in the background of Lorentz’s gradual abandonment of a more commit-
ted foundational stance in connection with electron theory and the electromagnetic
worldview. But the approach he had suggested in order to address gravitational phe-
nomena in electromagnetic terms was taken over and further developed that same
year by Wilhelm Wien, who had a much wider aim. Wien explicitly declared that his
goal was to unify currently “isolated areas of mechanical and electromagnetic phe-
nomena,” and in fact, to do so in terms of the theory of the electron while assuming
that all mass was electromagnetic in nature, and that Newton’s laws of mechanics
should be reinterpreted in electromagnetic terms.79

One particular event that highlighted the centrality of the study of the connection
and interaction between ether and matter in motion among physicists in the German-
speaking world was the 1898 meeting of the Gesellschaft Deutscher Naturforscher
und Ärzte, held at Düsseldorf jointly with the annual meeting of the Deutsche Mathe-
matiker- Vereinigung. Most likely both Hilbert and Minkowski had the opportunity to
attend Lorentz’s talk, which was the focus of interest. Lorentz described the main
problem facing current research in electrodynamics in the following terms: 

Ether, ponderable matter, and, we may add, electricity are the building stones from which
we compose the material world, and if we could know whether matter, when it moves,
carries the ether with it or not, then the way would be opened before us by which we

77 In Larmor’s theory the situation was slightly different, and so were the theoretical reasons for adopt-
ing the contraction hypothesis, due also to Georg FitzGerald (1851–1901). For details, see (Warwick
2003, 367–376). 

78 For a more detailed explanation, cf. (Janssen 2002).
79 See (Wien 1900). This is the article to which Voss referred in his survey of 1901, and that he took to

be representative of the new foundationalist trends in physics. Cf. (Jungnickel and McCormmach
1986, 2: 236–240).
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could further penetrate into the nature of these building stones and their mutual relations.
(Lorentz 1898, 101)80 

This formulation was to surface again in Hilbert’s and Minkowski’s lectures and
seminars on electrodynamics after 1905.

The theory of the electron itself was significantly developed in Göttingen after
1900, with contributions to both its experimental and theoretical aspects. The experi-
mental side came up in the work of Walter Kaufmann, who had arrived from Berlin in
1899. Kaufmann experimented with Becquerel rays, which produced high-speed
electrons. Lorentz’s theory stipulated a dependence of the mass of the electron on its
velocity  in terms of a second order relation on  (  being, of course, the speed
of light). In order to confirm this relation it was necessary to observe electrons mov-
ing at speeds as close as possible to  and this was precisely what Kaufmann’s
experiments could afford, by measuring the deflection of electrons in electric and
magnetic fields. He was confident of the possibility of a purely electromagnetic phys-
ics, including the solution of open issues such as the apparent character of mass, and
the gravitation theory of the electron. In 1902 he claimed that his results, combined
with the recent developments of the theory, had definitely confirmed that the mass of
the electrons is of “purely electromagnetic nature.”81

The recent developments of the theory referred to by Kaufmann were those of his
colleague at Göttingen, the brilliant Privatdozent Max Abraham (1875–1922). In a
series of publications, Abraham introduced concepts such as “transverse inertia,” and
“longitudinal mass,” on the basis of which he explained where the dynamics of the
electron differed from that of macroscopic bodies. He also developed the idea of a
rigid electron, as opposed to Lorentz’s deformable one. He argued that explaining the
deformation of the electron as required in Lorentz’s theory would imply the need to
introduce inner forces of non-electromagnetic origin, thus contradicting the most fun-
damental idea of a purely electromagnetic worldview. In Abraham’s theory, the kine-
matic equations of a rigid body become fundamental, and he introduced variational
principles to derive them. Thus, for instance, using a Lagrangian equal to the differ-
ence between the magnetic and the electrical energy, Abraham described the transla-
tional motion of the electron and showed that the principle of least action also holds
for what he called “quasi-stationary” translational motion (namely, motion in which
the velocity of the electron undergoes a small variation over the time required for
light to traverse its diameter). Abraham attributed special epistemological signifi-
cance to the fact that the dynamics of the electron could be expressed by means of a
Lagrangian (Abraham 1903, 168),82 a point that will surface interestingly in Hilbert’s
1905 lectures on axiomatization, as we will see in the next section. Beyond the tech-
nical level, Abraham was a staunch promoter of the electromagnetic worldview and
his theory of the electron was explicitly conceived to “shake the foundations of the

80 Translation quoted from (Hirosige 1976, 35). 
81 Cf. (Hon 1995; Miller 1997, 44–51, 57–62).
82 On Abraham’s electron theory, see (Goldberg 1970; Miller 1997, 51–57).
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mechanical view of nature.” Still, in 1905 he conceded that “the electromagnetic
world picture is so far only a program.”83

Among the organizers of the 1905 electron theory seminar, it was Wiechert who
had been more directly involved in research of closely related issues. Early in his
career he became fascinated by the unification of optics and electromagnetism
offered by Maxwell’s theory, and was convinced of the centrality of the ether for
explaining all physical phenomena. In the 1890s, still unaware of Lorentz’s work, he
published the outlines of his own theory of “atoms of electricity,” a theory which he
judged to be still rather hypothetical, however. This work contained interesting theo-
retical and experimental aspects that supported his view that cathode ray particles
were indeed the electric atoms of his theory. After his arrival in Göttingen in 1897,
Wiechert learnt about Lorentz’s theory, and quickly acknowledged the latter’s prior-
ity in developing an electrodynamics based on the concept of the “electron,” the term
that he now also adopted. Like Lorentz, Wiechert also adopted a less committed and
more skeptical approach towards the possibility of a purely electromagnetic founda-
tion of physics.84 Obviously Hilbert was in close, continued contact with Wiechert
and his ideas, but one rather remarkable opportunity to inspect these ideas more
closely came up once again in 1899, when Wiechert published an article on the foun-
dations of electrodynamics as the second half of the Gauss-Weber Festschrift
(Wiechert 1899).

Not surprisingly, Abraham’s works on electron theory were accorded particular
attention by his Göttingen colleagues in the 1905 seminar, yet Abraham himself
seems not to have attended the meetings in person. He was infamous for his
extremely antagonistic and aggressive personality,85 and this background may partly
explain his absence. But one wonders if also his insistence on the foundational impli-
cations of electron theory, and a completely different attitude of the seminar leaders
to this question may provide an additional, partial explanation for this odd situation. I
already mentioned Wiechert’s basic skepticism, or at least caution, in this regard. As
we will see, also Hilbert and Minkowski were far from wholeheartedly supporting a
purely electromagnetic worldview. Kaufmann was closest to Abraham in this point,
and he had anyway left Göttingen in 1903. It is interesting to notice, at any rate, that
Göttingen physicists and mathematicians held different, and very often conflicting,
views on this as well as other basic issues, and it would be misleading to speak of a
“Göttingen approach” to any specific topic. The situation around the electron theory
seminar sheds interesting light on this fact. 

Be that as it may, the organizers relied not on Abraham’s, but on other, different
works as the seminar’s main texts. The texts included, in the first place, Lorentz’s
1895 presentation of the theory, and also his more recently published Encyklopädie

83 Quoted in (Jungnickel and McCormmach 1986, 2: 241). For a recent summary account of the electro-
magnetic worldview and the fate of its program, see (Kragh 1999, 105–199).

84 Cf. (Darrigol 2000, 344–347). 
85 Cf., e.g., (Born 1978, 91 and 134–137).
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article (Lorentz 1904a), which was to become the standard reference in the field for
many years to come. Like most other surveys published in the Encyklopädie,
Lorentz’s article presented an exhaustive and systematic examination of the known
results and existing literature in the field, including the most recent. The third basic
text used in the seminar was Poincaré’s treatise on electricity and optics (Poincaré
1901), based on his Sorbonne lectures of 1888, 1890 and 1891. This text discussed
the various existing theories of the electrodynamics of moving bodies and criticized
certain aspects of Lorentz’s theory, and in particular a possible violation of the reac-
tion principle due to its separation of matter and ether.86

Alongside the texts of Lorentz, Poincaré and Abraham, additional relevant works
by Göttingen scientists were also studied. In fact, the main ideas of Abraham’s theory
had been recently elaborated by Schwarzschild and by Paul Hertz (1881–1940). The
latter wrote a doctoral dissertation under the effective direction of Abraham, and this
dissertation was studied at the seminar together with Schwarzschild’s paper (Hertz
1904; Schwarzschild 1903). So were several recent papers by Sommerfeld (1904a,
1904b, 1905) who was now at Aachen, but who kept his strong ties to Göttingen
always alive. Naturally, the ideas presented in the relevant works of Herglotz and
Wiechert were also studied in the seminar (Herglotz 1903; Wiechert 1901).

The participants in this seminar discussed the current state of the theory, the rele-
vant experimental work connected with it, and some of its most pressing open prob-
lems. The latter included the nature of the mass of the electron, problems related to
rotation, vibration and acceleration in electron motion and their effects on the electro-
magnetic field, and the problem of faster-than-light motion. More briefly, they also
studied the theory of dispersion and the Zeeman effect. From the point of view of the
immediate development of the theory of relativity, it is indeed puzzling, as Lewis
Pyenson has rightly stressed in his study of the seminar, that the participants were
nowhere close to achieving the surprising breakthrough that Albert Einstein (1879–
1956) had achieved at roughly the same time, and was about to publish (Pyenson 1979,
129–131).87 Nevertheless, from the broader point of view of the development of math-

86 Cf. (Darrigol 2000, 351–366). 
87 According to Pyenson, whereas Einstein “sought above all to address the most essential properties of

nature,” the Göttingen seminarists “sought to subdue nature, as it were, by the use of pure mathemat-
ics. They were not much interested in calculating with experimentally observable phenomena. They
avoided studying electrons in metal conductors or at very low or high temperatures, and they did not
spend much time elaborating the role of electrons in atomic spectra, a field of experimental physics
then attracting the interest of scores of young physicists in their doctoral dissertations.” Pyenson
stresses the fact that Ritz’s experiment was totally ignored at the seminar and adds: “For the seminar
Dozenten it did not matter that accelerating an electron to velocities greater than that of light and even
to infinite velocities made little physical sense. They pursued the problem because of its intrinsic,
abstract interest.” Noteworthy as these points are, it seems to me that by overstressing the question of
why the Göttingen group achieved less than Einstein did, the main point is obscured in Pyenson’s arti-
cle, namely, what and why were Hilbert, Minkowski and their friends doing what they were doing,
and how is this connected to the broader picture of their individual works and of the whole Göttingen
mathematical culture.
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ematics and physics at the turn of the century, and particularly of the account pursued
here, it is all the more surprising to notice the level of detail and close acquaintance
with physical theory and also, to a lesser degree, with experiment, that mathematicians
such as Hilbert and Minkowski had attained by that time. All this, of course, while they
were simultaneously active and highly productive in their own main fields of current,
purely mathematical investigations: analysis, number theory, foundations, etc. Hil-
bert’s involvement in the electron theory seminar clarifies the breadth and depth of the
physical background that underlie his lectures on the axiomatization of physics in
1905, and that had considerably expanded in comparison with the one that prompted
him to formulate, in the first place, his sixth problem back in 1900.

6. AXIOMS FOR PHYSICAL THEORIES: HILBERT’S 1905 LECTURES

Having described in some detail the relevant background, I now proceed to examine
the contents of Hilbert’s 1905 lectures on the “Axiomatization of Physical Theories,”
which devote separate sections to the following topics:

• Mechanics

• Thermodynamics

• Probability Calculus

• Kinetic Theory of Gases

• Insurance Mathematics

• Electrodynamics

• Psychophysics

Here I shall limit myself to discussing the sections on mechanics, the kinetic theory
of gases, and electrodynamics.

6.1 Mechanics

Clearly, the main source of inspiration for this section is Aurel Voss’s 1901 Encyklo-
pädie article (Voss 1901). This is evident in the topics discussed, the authors quoted,
the characterization of the possible kinds of axioms for physics, the specific axioms
discussed, and sometimes even the order of exposition. Hilbert does not copy Voss, of
course, and he introduces many ideas and formulations of his own, and yet the influ-
ence is clearly recognizable.

Though at this time Hilbert considered the axiomatization of physics and of natu-
ral science in general to be a task whose realization was still very distant,88 we can
mention one particular topic for which the axiomatic treatment had been almost com-

88 “Von einer durchgeführten axiomatischen Behandlung der Physik und der Naturwissenschaften ist
man noch weit entfernt; nur auf einzelnen Teilgebieten finden sich Ansätze dazu, die nur in ganz
wenigen Fällen durchgeführt sind. <Die Durchführung ist ein ganzes—grosses—Arbeitsprogramm,
Vgl. Dissertation von Schimmack sowie Schur>.” (Hilbert 1905a, 121)
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pletely attained (and only very recently, for that matter). This is the “law of the paral-
lelogram” or, what amounts to the same thing, the laws of vector-addition. Hilbert
based his own axiomatic presentation of this topic on works by Darboux, by Hamel,
and by one of his own students, Rudolf Schimmack (1881–1912).89

Hilbert defined a force as a three-component vector, and made no additional,
explicit assumptions here about the nature of the vectors themselves, but it is implic-
itly clear that he had in mind the collection of all ordered triples of real numbers.
Thus, as in his axiomatization of geometry, Hilbert was not referring to an arbitrary
collection of abstract objects, but to a very concrete mathematical entity; in this case,
one that had been increasingly adopted after 1890 in the treatment of physical theo-
ries, following the work of Oliver Heaviside (1850–1925) and Josiah Willard Gibbs
(1839–1903).90 In fact, in Schimmack’s article of 1903—based on his doctoral dis-
sertation—a vector was explicitly defined as a directed, real segment of line in the
Euclidean space. Moreover, Schimmack defined two vectors as equal when their
lengths as well as their directions coincide (Schimmack 1903, 318).

The axioms presented here were thus meant to define the addition of two such
given vectors, as the sums of the components of the given vectors. At first sight, this
very formulation could be taken as the single axiom needed to define the sum. But the
task of axiomatic analysis is precisely to separate this single idea into a system of
several, mutually independent, simpler notions that express the basic intuitions
involved in it. Otherwise, it would be like taking the linearity of the equation repre-
senting the straight line as the starting point of geometry.91 Hilbert had shown in his
previous discussion on geometry that this latter result could be derived using all his
axioms of geometry.

Hilbert thus formulated six axioms to define the addition of vectors: the first three
assert the existence of a well-defined sum for any two given vectors (without stating
what its value is), and the commutativity and associativity of this operation. The
fourth axiom connects the resultant vector with the directions of the summed vectors
as follows:

4. Let aA denote the vector  having the same direction as A. Then
every real number a defines the sum:

i.e., the addition of two vectors having the same direction is defined as the algebraic
addition of the extensions along the straight line on which both vectors lie.92

89 The works referred to by Hilbert are (Darboux 1875; Hamel 1905; Schimmack 1903). Schimmak’s
paper was presented to the Königliche Gesellschaft der Wissenschaften zu Göttingen by Hilbert him-
self. An additional related work, also mentioned by Hilbert in the manuscript, is (Schur 1903).

90 Cf. (Crowe 1967, 150 ff.; Yavetz 1995).
91 “... das andere wäre genau dasselbe, wie wenn man in der Geometrie die Linearität der Geraden als

einziges Axiom an die Spitze stellen wollte (vgl. S. 118).” (Hilbert 1905a, 123)
92 “Addition zweier Vektoren derselben Richtung geschieht durch algebraische Addition der Strecken

auf der gemeinsamen Geraden.” (Hilbert 1905a, 123)
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The fifth one connects addition with rotation:

5. If  denotes a rotation of space around the common origin of two forces  and 
then the rotation of the sum of the vectors equals the sum of the two rotated vectors:

i.e., the relative position of sum and components is invariant with respect to rotation.93

The sixth axiom concerns continuity:

6. Addition is a continuous operation, i.e., given a sufficiently small domain  around
the end-point of  one can always find domains  and  around the endpoints
of  and  respectively, such that the endpoint of the sum of any two vectors belonging
to each of these domains will always fall inside 94

These are all simple axioms—Hilbert continued, without having really explained
what a “simple” axiom is—and if we think of the vectors as representing forces, they
also seem rather plausible. The axioms thus correspond to the basic known facts of
experience, i.e., that the action of two forces on a point may always be replaced by a
single one; that the order and the way in which they are added do not change the
result; that two forces having one and the same direction can be replaced by a single
force having the same direction; and, finally, that the relative position of the compo-
nents and the resultant is independent of rotations of the coordinates. Finally, the
demand for continuity in this system is similar and is formulated similarly to that of
geometry.

That these six axioms are in fact necessary to define the law of the parallelogram
was first claimed by Darboux, and later proven by Hamel. The main difficulties for
this proof arose from the sixth axiom. Schimmack proved in 1903 the independence
of the six axioms (in a somewhat different formulation), using the usual technique of
models that satisfy all but one of the axioms. Hilbert also mentioned some possible
modifications of this system. Thus, Darboux himself had showed that the continuity
axiom may be abandoned, and in its place, it may be postulated that the resultant lies
on the same plane as, and within the internal angle between, the two added vectors.
Hamel, on the other hand, following a conjecture of Friedrich Schur, proved that the
fifth axiom is superfluous if we assume that the locations of the endpoints of the
resultants, seen as functions of the two added vectors, have a continuous derivative.
In fact—Hilbert concluded—if we assume that all functions appearing in the natural
sciences have at least one continuous derivative, and take this assumption as an even

93 “Nimmt man eine Drehung  des Zahlenraumes um den gemeinsamen Anfangspunkt vor, so entsteht
aus  die Summe der aus  und  durch  entstehenden Vektoren: 
d.h. die relative Lage von Summe und Komponenten ist gegenüber allen Drehungen invariant.”
(Hilbert 1905a, 124)

94 “Zu einem genügend kleinen Gebiete  um den Endpunkt von  kann man stets um die End-
punkte von  und  solche Gebiete  abgrenzen, daß der Endpunkt der Summe jedes in 
u.  endigenden Vectorpaares nach  fällt.” (Hilbert 1905a, 124)
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more basic axiom, then vector addition is defined by reference to only the four first
axioms in the system.95

The sixth axiom, the axiom of continuity, plays a very central role in Hilbert’s
overall conception of the axiomatization of natural science—geometry, of course,
included. It is part of the essence of things—Hilbert said in his lecture—that the
axiom of continuity should appear in every geometrical or physical system. Therefore
it can be formulated not just with reference to a specific domain, as was the case here
for vector addition, but in a much more general way. A very similar opinion had been
advanced by Hertz, as we saw, who described continuity as “an experience of the
most general kind,” and who saw it as a very basic assumption of all physical science.
Boltzmann, in his 1897 textbook, had also pointed out the continuity of motion as the
first basic assumption of mechanics, which in turn should provide the basis for all of
physical science.96 Hilbert advanced in his lectures the following general formulation
of the principle of continuity:

If a sufficiently small degree of accuracy is prescribed in advance as our condition for the
fulfillment of a certain statement, then an adequate domain may be determined, within
which one can freely choose the arguments [of the function defining the statement], with-
out however deviating from the statement, more than allowed by the prescribed degree.97

Experiment—Hilbert continued—compels us to place this axiom at the top of
every natural science, since it allows us to assert the validity of our assumptions and
claims.98 In every special case, this general axiom must be given the appropriate ver-
sion, as Hilbert had shown for geometry in an earlier part of the lectures and here for
vector addition. Of course there are many important differences between the
Archimedean axiom, and the one formulated here for physical theories, but Hilbert
seems to have preferred stressing the similarity rather than sharpening these differ-
ences. In fact, he suggested that from a strictly mathematical point of view, it would
be possible to conceive interesting systems of physical axioms that do without conti-
nuity, that is, axioms that define a kind of “non-Archimedean physics.” He did not
consider such systems here, however, since the task was to see how the ideas and
methods of axiomatics could be fruitfully applied to physics.99 Nevertheless, this is
an extremely important topic in Hilbert’s axiomatic treatment of physical theories.
When speaking of applying axiomatic ideas and methods to these theories, Hilbert

95 “Nimmt man nun von vornherein als Grundaxiom aller Naturwissenschaft an, daß alle auftretenden
Funktionen einmal stetig differenzierbar sind, so kommt man hier mit den ersten 4 Axiomen aus.”
(Hilbert 1905a, 127)

96 Quoted in (Boltzmann 1974, 228–229). 
97 “Schreibt man für die Erfüllung der Behauptung einen gewissen genügend kleinen Genaugikeitsgrad

vor, so läßt sich ein Bereich angeben, innerhalb dessen man die Voraussetzungen frei wählen kann,
ohne daß die Abweichung der Behauptung jenen vorgeschriebenen Grad überschreitet.” (Hilbert
1905a, 125)

98 “Das Experiment zwingt uns geradezu dazu, ein solches Axiom an die Spitze aller Naturwissenschaft
zu setzen, denn wir können bei ihm stets nur das Ein<Zu>treffen von Voraussetzung und Behauptung
mit einer gewissen beschränkten Genauigkeit feststellen.” (Hilbert 1905a, 125–126)
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meant in this case existing physical theories. But the possibility suggested here, of
examining models of theories that preserve the basic logical structure of classical
physics, except for a particular feature, opens the way to the introduction and system-
atic analysis of alternative theories, close enough to the existing ones in relevant
respects. Hilbert’s future works on physics, and in particular his work on general rel-
ativity, would rely on the actualization of this possibility.

An additional point that should be stressed in relation to Hilbert’s treatment of
vector addition has to do with his disciplinary conceptions. The idea of a vector
space, and the operations with vectors as part of it, has been considered an integral
part of algebra at least since the 1920s.100 This was not the case for Hilbert, who did
not bother here to make any connection between his axioms for vector addition and,
say, the already well-known axiomatic definition of an abstract group. For Hilbert, as
for the other mathematicians he cites in this section, this topic was part of physics
rather than of algebra.101 In fact, the articles by Hamel and by Schur were published
in the Zeitschrift für Mathematik und Physik—a journal that bore the explicit sub-
title: Organ für angewandte Mathematik. It had been established by Oscar Xavier
Schlömilch (1823–1901) and by the turn of the century its editor was Carl Runge, the
leading applied mathematician at Göttingen.

After the addition of vectors, Hilbert went on to discuss a second domain related
to mechanics: statics. Specifically, he considered the axioms that describe the equilib-
rium conditions of a rigid body. The main concept here is that of a force, which can
be described as a vector with an application point. The state of equilibrium is defined
by the following axioms:

I. Forces with a common application point are equivalent to their sum.

II. Given two forces,  with different application points,  if they have the
same direction, and the latter coincides with the straight line connecting  and  then
these forces are equivalent.

III. A rigid body is in a state of equilibrium if all the forces applied to it taken together
are equivalent to 0.102

99 “Rein mathematisch werden natürlich auch <physikalische> Axiomensysteme, die auf <diese> Ste-
tigkeit Verzicht leisten, also eine ‘nicht-Archimedische Physik’ in erweitertem Sinne definieren, von
hohem Interesse sein können; wir werden jedoch zunächst noch von ihrer Betrachtung absehen kön-
nen, da es sich vorerst überhaupt nur darum handelt, die fruchtbaren Ideen und Methoden der Axio-
matik in die Physik einzuführen.” (Hilbert 1905a, 126)

100 Cf. (Dorier 1995; Moore 1995).
101 This point, which helps understanding Hilbert’s conception of algebra, is discussed in detail in (Corry

2003, § 3.4). 
102 “1., Kräfte mit demselben Angriffspunkt sind ihrer Summe (im obigen Sinne) ‘aequivalent.’ 2., 2

Kräfte  mit verschiedenen Angriffspunkten  und dem gleichen (auch gleichgerichteten)
Vektor, deren Richtung in die Verbindung  fällt, heißen gleichfalls aequivalent. … Ein starrer
Körper befindet sich im Gleichgewicht, wenn die an ihm angreifenden Kräfte zusammengenommen
der Null aequivalent sind.” (Hilbert 1905a, 127–128)
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From these axioms, Hilbert asserted, the known formulae of equilibrium of forces
lying on the same plane (e.g., for the case of a lever and or an inclined plane) can be
deduced. As in the case of vector addition, Hilbert’s main aim in formulating the axi-
oms was to uncover the basic, empirical facts that underlie our perception of the phe-
nomenon of equilibrium.

In the following lectures Hilbert analyzed in more detail the principles of
mechanics and, in particular, the laws of motion. In order to study motion, one starts
by assuming space and adds time to it. Since geometry provides the axiomatic study
of space, the axiomatic study of motion will call for a similar analysis of time.

According to Hilbert, two basic properties define time: (1) its uniform passage and
(2) its unidimensionality.103 A consistent application of Hilbert’s axiomatic approach
to this characterization immediately leads to the question: Are these two independent
facts given by intuition,104 or are they derivable the one from the other? Since this
question had very seldom been pursued, he said, one could only give a brief sketch of
tentative answers to it. The unidimensionality of time is manifest in the fact, that,
whereas to determine a point in space one needs three parameters, for time one needs
only the single parameter  This parameter t could obviously be transformed, by
changing the marks that appear on our clocks,105 which is perhaps impractical but
certainly makes no logical difference. One can even take a discontinuous function for
t, provided it is invertible and one-to-one,106 though in general one does not want to
deviate from the continuity principle, desirable for all the natural sciences. Hilbert’s
brief characterization of time would seem to allude to Carl Neumann’s (Neumann
1870), in his attempt to reduce the principle of inertia into simpler ones.

Whereas time and space are alike in that, for both, arbitrarily large values of the
parameters are materially inaccessible, a further basic difference between them is that
time can be experimentally investigated in only one direction, namely, that of its
increase.107 While this limitation is closely connected to the unidimensionality of
time,108 the issue of the uniform passage of time is an experimental fact, which has to
be deduced, according to Hilbert, from mechanics alone.109 This claim was elabo-
rated into a rather obscure discussion of the uniform passage for which, as usual, Hil-
bert gave no direct references, but which clearly harks back to Hertz’s and Larmor’s

103 “... ihr gleichmäßiger Verlauf und ihre Eindimensionalität.” (Hilbert 1905a, 128)
104 “... anschauliche unabhängige Tatsachen.” (Hilbert 1905a, 129)
105 “Es ist ohne weiteres klar, daß dieser Parameter  durch eine beliebige Funktion von sich ersetzt wer-

den kann; das würde etwa nur auf eine andere Benennung der Ziffern der Uhr oder einen unregelmä-
ßigen Gang des Zeigers hinauskommen.” (Hilbert 1905a, 129)

106 One is reminded here of a similar explanation, though in a more general context, found in Hilbert’s
letter to Frege, on 29 December 1899. See (Gabriel et al. 1980, 41). 

107 “Der <Ein> wesentlicher Unterschied von Zeit und Raum ist nur der, daß wir in der Zeit nur in einem
Sinne, dem des wachsenden Parameters experimentieren können, während Raum und Zeit darin über-
einstimmen, daß uns beliebig große Parameterwerte unzugänglich sind.” (Hilbert 1905a, 129)

108 Here Hilbert adds with his own handwriting (p. 130): <Astronomie! Wie wichtig wäre Beobachtun-
gen in ferner Vergangenheit u. Zukunft!>.”

109 “... eine experimentelle nur aus der Mechanik zu entnehmende Tatsache.” (Hilbert 1905a, 130)

t .
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discussions and referred to by Voss as well, as mentioned earlier. I try to reproduce
Hilbert’s account here without really claiming to understand it. In short, Hilbert
argued that if the flow of time were non-uniform then an essential difference between
organic and inorganic matter would be reflected in the laws mechanics, which is not
actually the case. He drew attention to the fact that the differential expression

 characterizes a specific physical situation only when it vanishes,
namely, in the case of inertial motion. From a logical point of view, however, there is
no apparent reason why the same situation might not be represented in terms of a
more complicated expression, e.g., an expression of the form

The magnitudes  and  may depend not only on time, but also on the kind of
matter involved,110 e.g., on whether organic or inorganic matter is involved. By
means of a suitable change of variables,  this latter expression could in turn
be transformed into  which would also depend on the kind of matter
involved. Thus different kinds of substances would yield, under a suitable change of
variables, different values of “time,” values that nevertheless still satisfy the standard
equations of mechanics. One could then use the most common kind of matter in order
to measure time,111 and when small variations of organic matter occurred along large
changes in inorganic matter, clearly distinguishable non-uniformities in the passage
of time would arise.112 However, it is an intuitive (anschauliche) fact, indeed a
mechanical axiom, Hilbert said, that the expression  always appears in
the equations with one and the same parameter  independently of the kind of sub-
stance involved, contrary to what the above discussion would seem to imply. This lat-
ter fact, to which Hilbert wanted to accord the status of axiom, is then the one that
establishes the uniform character of the passage of time. Whatever the meaning and
the validity of this strange argument, one source where Hilbert was likely to have
found it is Aurel Voss’s 1901 Encyklopädie article, which quotes, in this regard, simi-
lar passages of Larmor and Hertz.113

Following this analysis of the basic ideas behind the concept of time, Hilbert
repeated the same kind of reasoning he had used in an earlier lecture concerning the
role of continuity in physics. He suggested the possibility of elaborating a non-
Galilean mechanics, i.e., a mechanics in which the measurement of time would
depend on the kind of matter involved, in contrast to the characterization presented
earlier in his lecture. This mechanics would, in most respects, be in accordance with

110 “... die  von der Zeit, vor allem aber von dem Stoffe abhängig sein können.” (Hilbert 1905a,
130)

111 “... der häufigste Stoff etwa kann dann zu Zeitmessungen verwandt werden.” (Hilbert 1905a, 130–
131)

112 “... für uns leicht große scheinbare Unstetigkeiten der Zeit auftreten.” (Hilbert 1905a, 131)
113 See (Voss 1901, 14). Voss quoted (Larmor 1900, 288) and (Hertz 1894, 165).
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the usual one, and thus one would be able to recognize which parts of mechanics
depend essentially on the peculiar properties of time, and which parts do not. It is
only in this way that the essence of the uniform passage of time can be elucidated, he
thought, and one may thus at last understand the exact scope of the connection
between this property and the other axioms of mechanics.

So much for the properties of space and time. Hilbert went on to discuss the prop-
erties of motion, while concentrating on a single material point. This is clearly the
simplest case and therefore it is convenient for Hilbert’s axiomatic analysis. How-
ever, it must be stressed that Hilbert was thereby distancing himself from Hertz’s pre-
sentation of mechanics, in which the dynamics of single points is not contemplated.
One of the axioms of statics formulated earlier in the course stated that a point is in
equilibrium when the forces acting on it are equivalent to the null force. From this
axiom, Hilbert derived the Newtonian law of motion:

Newton himself, said Hilbert, had attempted to formulate a system of axioms for
his mechanics, but his system was not very sharply elaborated and several objections
could be raised against it. A detailed criticism, said Hilbert, was advanced by Mach in
his Mechanik.114

The above axiom of motion holds for a free particle. If there are constraints, e.g.,
that the point be on a plane  then one must introduce an additional
axiom, namely, Gauss’s principle of minimal constraint. Gauss’s principle establishes
that a particle in nature moves along the path that minimizes the following magni-
tude:

Here  and  denote the components of the acceleration of the particle,
and  the components of the moving force. Clearly, although Hilbert did not
say it in his manuscript, if the particle is free from constraints, the above magnitude
can actually become zero and we simply obtain the Newtonian law of motion. If there
are constraints, however, the magnitude can still be minimized, thus yielding the
motion of the particle.115

114 A detailed account of the kind of criticism advanced by Mach, and before him by Carl Neumann and
Ludwig Lange, appears in (Barbour 1989, chap. 12).

115 For more detail on Gauss’s principle, see (Lanczos 1962, 106–110). Interestingly, Lanczos points out
that “Gauss was much attached to this principle because it represents a perfect physical analogy to the
‘method of least squares’ (discovered by him and independently by Legendre) in the adjustment of
errors.” Hilbert also discussed this latter method in subsequent lectures, but did not explicitly make
any connection between Gauss’s two contributions. 
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In his lectures, Hilbert explained in some detail how the Lagrangian equations of
motion could be derived from this principle. But he also stressed that the Lagrangian
equations could themselves be taken as axioms and set at the top of the whole of
mechanics. In this case, the Newtonian and Galilean principles would no longer be
considered as necessary assumptions of mechanics. Rather, they would be logical
consequences of a distinct principle. Although this is a convenient approach that is
often adopted by physicists, Hilbert remarked, it has the same kinds of disadvantages
as deriving the whole of geometry from the demand of linearity for the equations of
the straight line: many results can be derived from it, but it does not indicate what the
simplest assumptions underlying the considered discipline may be. All the discussion
up to this point, said Hilbert, concerns the simplest and oldest systems of axioms for
the mechanics of systems of points. Beside them there is a long list of other possible
systems of axioms for mechanics. The first of these is connected to the principle of
conservation of energy, which Hilbert associated with the law of the impossibility of
a perpetuum mobile and formulated as follows: “If a system is at rest and no forces
are applied, then the system will remain at rest.”116

Now the interesting question arises, how far can we develop the whole of
mechanics by putting this law at the top? One should follow a process similar to the
one applied in earlier lectures: to take a certain result that can be logically derived
from the axioms and try to find out if, and to what extent, it can simply replace the
basic axioms. In this case, it turns out that the law of conservation alone, as formu-
lated above, is sufficient, though not necessary, for the derivation of the conditions of
equilibrium in mechanics.117 In order to account for the necessary conditions as well,
the following axiom must be added: “A mechanical system can only be in equilibrium
if, in accordance with the axiom of the impossibility of a perpetuum mobile, it is at
rest.”118 The basic idea of deriving all of mechanics from this law, said Hilbert, was
first introduced by Simon Stevin, in his law of equilibrium for objects in a slanted
plane, but it was not clear to Stevin that what was actually involved was the reduction
of the law to simpler axioms. The axiom was so absolutely obvious to Stevin, claimed
Hilbert, that he had thought that a proof of it could be found without starting from
any simpler assumptions.

From Hilbert’s principle of conservation of energy, one can also derive the virtual
velocities of the system, by adding a new axiom, namely, the principle of d’Alembert.
This is done by placing in the equilibrium conditions, instead of the components

116 “Ist ein System in Ruhe und die Kräftefunction konstant (wirken keine Kräfte), so bleibt es in Ruhe.”
(Hilbert 1905a, 137)

117 “Es lässt sich zeigen, daß unter allen den Bedingungen, die die Gleichgewichtssätze der Mechanik lie-
fern, wirklich Gleichgewicht eintritt.” (Hilbert 1905a, 138)

118 “Es folgt jedoch nicht, daß diese Bedingungen auch notwendig für das Gleichgewicht sind, daß nicht
etwa auch unter andern Umständen ein mechanisches System im Gleichgewicht sein kann. Es muß
also noch ein Axiom hinzugenommen werden, des Inhaltes etwa: Ein mechanisches System kann nur
dann im Gleichgewicht sein, wenn es dem Axiom von <der Unmöglichkeit des> Perpetuum mobile
gemäß in Ruhe ist.” (Hilbert 1905a, 138)
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 of a given force-field acting on every mass point, the expressions
. In other words, the principle establishes that motion

takes place in such a way that at every instant of time, equilibrium obtains between
the force and the acceleration. In this case we obtain a very systematic and simple
derivation of the Lagrangian equations, and therefore of the whole of mechanics,
from three axioms: the two connected with the principle of conservation of energy (as
sufficient and necessary conditions) and d’Alembert’s principle, added now.

A third way to derive mechanics is based on the concept of impulse. Instead of
seeing the force field  as a continuous function of  we consider  as first null, or
of a very small value; then, suddenly, as increasing considerably in a very short inter-
val, from  and finally decreasing again suddenly. If one considers this kind
of process at the limit, namely, when  one then obtains an impulse, which does
not directly influence the acceleration, like a force, but rather creates a sudden veloc-
ity-change. The impulse is a time-independent vector, which however acts at a given
point in time: at different points in time, different impulses may take place. The law
that determines the action of an impulse is expressed by Bertrand’s principle. This
principle imposes certain conditions on the kinetic energy, so that it directly yields
the velocity. It states that:

The kinetic energy of a system set in motion as a consequence of an impulse must be
maximal, as compared to the energies produced by all motions admissible under the prin-
ciple of conservation of energy.119

The law of conservation is invoked here in order to establish that the total energy
of the system is the same before and after the action of the impulse.

Bertrand’s principle, like the others, could also be deduced from the elaborated
body of mechanics by applying a limiting process. To illustrate this idea, Hilbert
resorted to an analogy with optics: the impulse corresponds to the discontinuous
change of the refraction coefficients affecting the velocity of light when it passes
through the surface of contact between two media. But, again, as with the other alter-
native principles of mechanics, we could also begin with the concept of impulse as
the basic one, in order to derive the whole of mechanics from it. This alternative
assumes the possibility of constructing mechanics without having to start from the
concept of force. Such a construction is based on considering a sequence of succes-
sive small impulses in arbitrarily small time-intervals, and in recovering, by a limit-
ing process, the continuous action of a force. This process, however, necessitates the
introduction of the continuity axiom discussed above. In this way, finally, the whole
of mechanics is reconstructed using only two axioms: Bertrand’s principle and the
said axiom of continuity. In fact, this assertion of Hilbert is somewhat misleading,
since his very formulation of Bertrand’s principle presupposes the acceptance of the
law of conservation of energy. In any case, Hilbert believed that also in this case, a

119 “Nach einem Impuls muß die kinetische Energie des Systems bei der <wirklich> eintretenden Bewe-
gung ein Maximum sein gegenüber allen mit dem Satze von der Erhaltung der Energie verträglichen
Bewegungen.” (Hilbert 1905a, 141)
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completely analogous process could be found in the construction of geometric optics:
first one considers the process of sudden change of optical density that takes place in
the surface that separates two media; then, one goes in the opposite direction, and
considers, by means of a limiting process, the passage of a light ray through a
medium with continuously varying optical density, seeing it as a succession of many
infinitely small, sudden changes of density.

Another standard approach to the foundations of mechanics that Hilbert discussed
is the one based on the use of the Hamiltonian principle as the only axiom. Consider
a force field  and a potential scalar function  such that  is the gradient of  If

 is the kinetic energy of the system, then Hamilton’s principle requires that the
motion of the system from a given starting point, at time , and an endpoint, at time

 takes place along the path that makes the integral

an extremum among all possible paths between those two points. The Lagrangian
equations can be derived from this principle, and the principle is valid for continuous
as well as for discrete masses. The principle is also valid for the case of additional
constraints, insofar as these constraints do not contain differential quotients that
depend on the velocity or on the direction of motion (non-holonomic conditions).
Hilbert added that Gauss’s principle was valid for this exception.

Hilbert’s presentation of mechanics so far focused on approaches that had specifi-
cally been criticized by Hertz: the traditional one, based on the concepts of time,
space, mass and force, and the energetic one, based on the use of Hamilton’s princi-
ple. To conclude this section, Hilbert proceeded to discuss the approaches to the
foundations of mechanics introduced in the textbooks of Hertz and Boltzmann
respectively. Hilbert claimed that both intended to simplify mechanics, but each from
an opposite perspective.

Expressing once again his admiration for the perfect Euclidean structure of
Hertz’s construction of mechanics,120 Hilbert explained that for Hertz, all the effects
of forces were to be explained by means of rigid connections between bodies; but he
added that this explanation did not make clear whether one should take into account
the atomistic structure of matter or not. Hertz’s only axiom, as described by Hilbert,
was the principle of the straightest path (Das Prinzip von der geradesten Bahn),
which is a special case of the Gaussian principle of minimal constraint, for the force-
free case. According to Hilbert, Hertz’s principle is obtained from Gauss’s by substi-
tuting in the place of the parameter  the arc lengths  of the curve. The curvature

120 “Er liefert jedenfalls von dieser Grundlage aus in abstrakter und präcisester Weise einen wunderbaren
Aufbau der Mechanik, indem er ganz nach Euklidischem Ideale ein vollständiges System von Axio-
men und Definitionen aufstellt.” (Hilbert 1905a, 146)
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of the path is to be minimized, in each of its points, when compared with all the other
possible paths in the same direction that satisfy the constraint. On this path, the body
moves uniformly if one also assumes Newton’s first law.121 In fact, this requirement
had been pointed out by Hertz himself in the introduction to the Principles. As one of
the advantages of his mathematical formulation, Hertz mentioned the fact that he
does not need to assume, with Gauss, that nature intentionally keeps a certain quan-
tity (the constraint) as small as possible. Hertz felt uncomfortable with such assump-
tions.

Boltzmann, contrary to Hertz, intended to explain the constraints and the rigid
connections through the effects of forces, and in particular, of central forces between
any two mass points. Boltzmann’s presentation of mechanics, according to Hilbert,
was less perfect and less fully elaborated than that of Hertz.

In discussing the principles of mechanics in 1905, Hilbert did not explicitly sepa-
rate differential and integral principles. Nor did he comment on the fundamental dif-
ferences between the two kinds. He did so, however, in the next winter semester, in a
course devoted exclusively to mechanics (Hilbert 1905–6, § 3.1.2).122

Hilbert closed his discussion on the axiomatics of mechanics with a very interest-
ing, though rather speculative, discussion involving Newtonian astronomy and con-
tinuum mechanics, in which methodological and formal considerations led him to
ponder the possibility of unifying mechanics and electrodynamics. It should be
remarked that neither Einstein’s nor Poincaré’s 1905 articles on the electrodynamics
of moving bodies is mentioned in any of Hilbert’s 1905 lectures; most likely, Hilbert
was not aware of these works at the time.123 Hilbert’s brief remarks here, on the other
hand, strongly bring to mind the kind of argument, and even the notation, used by
Minkowski in his first public lectures on these topics in 1907 in Göttingen.

Earlier presentations of mechanics, Hilbert said, considered the force—expressed
in terms of a vector field—as given, and then investigated its effect on motion. In

121 “Die Bewegung eines jeden Systemes erfolgt gleichförmig in einer ‘geradesten Bahn’, d.h. für einen
Punkt: die Krümmung

der Bahnkurve soll ein Minimum sein, in jedem Orte, verglichen mit allen andern den Zwangsbedin-
gungen gehorchenden Bahnen derselben Richtung, und auf dieser Bahn bewegt sich der Punkt gleich-
förmig.” (Hilbert 1905a, 146–147)

122 The contents of this course are analyzed in some detail in (Blum 1994).
123 This particular lecture of Hilbert is dated in the manuscript 26 July 1905, whereas Poincaré’s article

was submitted for publication on 23 July 1905, and Einstein’s paper three weeks later. Poincaré had
published a short announcement on 5 June 1905, in the Comptes rendus of the Paris Academy of Sci-
ences. 
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Boltzmann’s and Hertz’s presentations, for the first time, force and motion were con-
sidered not as separate, but rather as closely interconnected and mutually interacting,
concepts. Astronomy is the best domain in which to understand this interaction, since
Newtonian gravitation is the only force acting on the system of celestial bodies. In
this system, however, the force acting on a mass point depends not only on its own
position but also on the positions and on the motions of the other points. Thus, the
motions of the points and the acting forces can only be determined simultaneously.
The potential energy in a Newtonian system composed of two points  and

 equals, as it is well-known,  the denominator of this fraction being

the distance between the two points. This is a symmetric function of the two points,
and thus it conforms to Newton’s law of the equality of action and reaction. Starting
from these general remarks, Hilbert went on to discuss some ideas that, he said, came
from an earlier work of Boltzmann and which might lead to interesting results. Which
of Boltzmann’s works Hilbert was referring to here is not stated in the manuscript.
However, from the ensuing discussion it is evident that Hilbert had in mind a short
article by Boltzmann concerning the application of Hertz’s perspective to continuum
mechanics (Boltzmann 1900).

Hertz himself had already anticipated the possibility of extending his point of
view from particles to continua. In 1900 Richard Reiff (1855–1908) published an
article that developed this direction (Reiff 1900), and soon Boltzmann published a
reply pointing out an error. Boltzmann indicated, however, that Hertz’s point of view
could be correctly extended to include continua, the possibility seemed to arise of
constructing a detailed account of the whole world of observable phenomena.124

Boltzmann meant by this that one could conceivably follow an idea developed by
Lord Kelvin, J.J. Thomson and others, that considered atoms as vortices or other sim-
ilar stationary motion phenomena in incompressible fluids; this would offer a con-
crete representation of Hertz’s concealed motions and could provide the basis for
explaining all natural phenomena. Such a perspective, however, would require the
addition of many new hypotheses which would be no less artificial than the hypothe-
sis of action at a distance between atoms, and therefore—at least given the current
state of physical knowledge—little would be gained by pursuing it.

Boltzmann’s article also contained a more positive suggestion, related to the study
of the mechanics of continua in the spirit of Hertz. Following a suggestion of Brill,
Boltzmann proposed to modify the accepted Eulerian approach to this issue. The lat-
ter consisted in taking a fixed point in space and deriving the equations of motion of
the fluid by studying the behavior of the latter at the given point. Instead of this Bolt-
zmann suggested a Lagrangian approach, deducing the equations by looking at an
element of the fluid as it moves through space. This approach seemed to Boltzmann

124 “... ein detailliertes Bild der gesamten Erscheinungswelt zu erhalten.” (Boltzmann 1900, 668)
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to be the natural way to extend Hertz’s point of view from particles to continua, and
he was confident that it would lead to the equations of motion of an incompressible
fluid as well as to those of a rigid body submerged in such a fluid.125 In 1903 Boltz-
mann repeated these ideas in a seminar taught in Vienna, and one of his students
decided to take the problem as the topic of his doctoral dissertation of 1904: this was
Paul Ehrenfest (1880–1993). Starting from Boltzmann’s suggestion, Ehrenfest stud-
ied various aspects of the mechanics of continua using a Lagrangian approach. In
fact, Ehrenfest in his dissertation used the terms Eulerian and Lagrangian with the
meaning intended here, as Boltzmann in his 1900 article had not (Ehrenfest 1904, 4–
5). The results obtained in the dissertation helped to clarify the relations between the
differential and the integral variational principles for non-holonomic systems, but
they offered no real contribution to an understanding of all physical phenomena in
terms of concealed motions and masses, as Boltzmann and Ehrenfest may have
hoped.126

Ehrenfest studied in Göttingen between 1901 and 1903, and returned there in
1906 for one year, before moving with his mathematician wife Tatyana to St. Peters-
burg. We don’t know the details of Ehrenfest’s attendance at Hilbert’s lectures during
his first stay in Göttingen. Hilbert taught courses on the mechanics of continua in the
winter semester of 1902–1903 and in the following summer semester of 1903, which
Ehrenfest may well have attended. Nor do we know whether Hilbert knew anything
about Ehrenfest’s dissertation when he taught his course in 1905. But be that as it
may, at this point in his lectures, Hilbert connected his consideration of Newtonian
astronomy to the equations of continuum mechanics, while referring to the dichot-
omy between the Lagrangian and the Eulerian approach, and using precisely those
terms. Interestingly enough, the idea that Hilbert pursued in response to Boltzmann’s
article was not that the Lagrangian approach would be the natural one for studying
mechanics of continua, but rather the opposite, namely, that a study of the continua
following the Eulerian approach, and assuming an atomistic world view, could lead to
a unified explanation of all natural phenomena.

Consider a free system subject only to central forces acting between its mass-
points —and in particular only forces that satisfy Newton’s law, as described above.
An axiomatic description of this system would include the usual axioms of mechan-
ics, together with the Newtonian law as an additional one. We want to express this
system, said Hilbert, as concisely as possible by means of differential equations. In
the most general case we assume the existence of a continuous mass distribution in
space, In special cases we have  within a well-delimited region;
the case of astronomy, in which the planets are considered mass-points, can be
derived from this special case by a process of passage to the limit. Hilbert explained
what the Lagrangian approach to this problem would entail. That approach, he added,
is the most appropriate one for discrete systems, but often it is also conveniently used

125 For more details, cf. (Klein 1970, 64–66).
126 For details on Ehrenfest’s dissertation, see (Klein 1970, 66–74).
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in the mechanics of continua. Here, however, he would follow the Eulerian approach
to derive equations of the motion of a unit mass-particle in a continuum. The ideas
discussed in this section, as well as in many other parts of this course, hark back to
those he developed in somewhat greater technical detail in his 1902–1903 course on
continuum mechanics, but here a greater conceptual clarity and a better understand-
ing of the possible, underlying connections across disciplines is attained, thanks to
the systematic use of an axiomatic approach in the discussion.

Let  denote the velocity of the particle at time  and at coordinates  in
the continuum.  has three components  The acceleration
vector for the unit particle is given by  which Hilbert wrote as follows:127

Since the only force acting on the system is Newtonian attraction, the potential
energy at a point  is given by

where  is the mass density at the point  The gradient of this potential
equals the force acting on the particle, and therefore we obtain three equations of
motion that can succinctly be expressed as follows:

One can add two additional equations to these three. First, the Poisson equation,
which Hilbert calls “potential equation of Laplace”:

where  denotes the Laplacian operator (currently written as  Second, the con-
stancy of the mass in the system is established by means of the continuity equa-
tion:128

127 In the manuscript the formula in the leftmost side of the equation appears twice, having a “-” sign in
front of  This is obviously a misprint, as a straightforward calculation readily shows.

128 In his article mentioned above, Reiff had tried to derive the pressure forces in a fluid starting only
from the conservation of mass (Reiff 1900). Boltzmann pointed out that Reiff had obtained a correct
result because of a compensation error in his mathematics. See (Klein 1970, 65).
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We have thus obtained five differential equations involving five functions (the
components  of the four variables  The equations are
completely determined when we know their initial values and other boundary condi-
tions, such as the values of the functions at infinity. Hilbert called the five equations
so obtained the “Newtonian world-functions,” since they account in the most general
way and in an axiomatic fashion for the motion of the system in question: a system
that satisfies the laws of mechanics and the Newtonian gravitational law. It is interest-
ing that Hilbert used the term “world-function” in this context, since the similar ones
“world-point” and “world-postulate,” were introduced in 1908 by Minkowski in the
context of his work on electrodynamics and the postulate of relativity. Unlike most of
the mathematical tools and terms introduced by Minkowski, this particular aspect of
his work was not favorably received, and is hardly found in later sources (with the
exception of “world-line”). Hilbert, however, used the term “world-function” not
only in his 1905 lectures, but also again in his 1915 work on general relativity, where
he again referred to the Lagrangian function used in the variational derivation of the
gravitational field equations as a “world-function.”

Besides the more purely physical background to the issues raised here, it is easy to
detect that Hilbert was excited about the advantages and the insights afforded by the
vectorial formulation of the Eulerian equations. Vectorial analysis as a systematic way
of dealing with physical phenomena was a fairly recent development that had crystal-
lized towards the turn of the century, mainly through its application by Heaviside in
the context of electromagnetism and through the more mathematical discussion of the
alternative systems by Gibbs.129 The possibility of extending its use to disciplines like
hydrodynamics had arisen even more recently, especially in the context of the Ger-
man-speaking world. Thus, for instance, the Encyklopädie article on hydrodynamics,
written in 1901, still used the pre-vectorial notation (Love 1901, 62–63).130 Only one
year before Hilbert’s course, speaking at the International Congress of Mathemati-
cians in Heidelberg, the Göttingen applied mathematician Ludwig Prandtl still had to
explain to his audience how to write the basic equations of hydrodynamics “following
Gibbs’s notation” (Prandtl 1904, 489). Among German textbooks on vectorial analy-
sis of the turn of the century,131 formulations of the Eulerian equations like that
quoted above appear in Alfred Heinrich Bucherer’s textbook of 1903 (Bucherer 1903,
77–84) and in Richard Gans’s book of 1905 (Gans 1905, 66–67). Whether he learnt
about the usefulness of the vectorial notation in this context from his colleague
Prandtl or from one of these textbooks, Hilbert was certainly impressed by the unified
perspective it afforded from the formal point of view. Moreover, he seems also to have
wanted to deduce far-reaching physical conclusions from this formal similarity. Hil-
bert pointed out in his lectures the strong analogy between this formulation of the

129 Cf. (Crowe 1967, 182–224). 
130 The same is the case for (Lamb 1895, 7). This classical textbook, however, saw many later editions in

which the vectorial formulation was indeed adopted.
131 Cf. (Crowe 1967, 226–233).
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equations and Maxwell’s equations of electrodynamics, though in the latter we have
two vectors  and  the electric and the magnetic fields, against only one here, .
He also raised the following question: can one obtain the whole of mechanics starting
from these five partial equations as a single axiom, or, if that is not the case, how far
can its derivation in fact be carried? In other words: if we want to derive the whole of
mechanics, to what extent can we limit ourselves to assuming only Newtonian attrac-
tion or the corresponding field equations?132 It would also be interesting, he said, to
address the question of how far the analogy of gravitation with electrodynamics can
be extended. Perhaps, he said, one can expect to find a formula that simultaneously
encompasses these five equations and the Maxwellian ones together. This discussion
of a possible unification of mechanics and electrodynamics also echoed, of course,
the current foundational discussion that I have described in the preceding sections. It
also anticipates what will turn out to be one of the pillars of Hilbert’s involvement
with general relativity in 1915.

Hilbert’s reference to Hertz and Boltzmann in this context, and his silence con-
cerning recent works of Lorentz, Wien, and others, is the only hint he gave in his
1905 lectures as to his own position on the foundational questions of physics. In fact,
throughout these lectures Hilbert showed little inclination to take a stand on physical
issues of this kind. Thus, his suggestion of unifying the equations of gravitation and
electrodynamics was advanced here mainly on methodological grounds, rather than
expressing, at this stage at least, any specific commitment to an underlying unified
vision of nature. At the same time, however, his suggestion is quite characteristic of
the kind of mathematical reasoning that would allow him in later years to entertain
the possibility of unification and to develop the mathematical and physical conse-
quences that could be derived from it.

6.2 Kinetic Theory of Gases

A main application of the calculus of probabilities that Hilbert considered is in the
kinetic theory of gases. He opened this section by expressing his admiration for the
remarkable way this theory combined the postulation of far-reaching assumptions
about the structure of matter with the use of probability calculus, a combination that
had been applied in a very illuminating way, leading to new physical results. Several
works that appeared by end of the nineteenth century had changed the whole field of
the study of gases, thus leading to a more widespread appreciation of the value of the
statistical approach. The work of Planck, Gibbs and Einstein attracted a greater inter-
est in and contributed to an understanding of Boltzmann’s statistical interpretation of
entropy.133

132 “Es wäre nun die Frage, ob man mit einem diesen 5 partiellen Gleichungen als einzigem Axiom nicht
auch überhaupt in der Mechanik auskommt, oder wie weit das geht, d.h. wie weit man sich auf New-
tonsche Attraktion bezw. auf die entsprechenden Feldgleichungen beschränken kann.” (Hilbert 1905a,
154)
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It is easy to see, then, why Hilbert would have wished to undertake an axiomatic
treatment of the kinetic theory of gases: not only because it combined physical
hypotheses with probabilistic reasoning in a scientifically fruitful way, as Hilbert said
in these lectures, but also because the kinetic theory was a good example of a physi-
cal theory where, historically speaking, additional assumptions had been gradually
added to existing knowledge without properly checking the possible logical difficul-
ties that would arise from this addition. The question of the role of probability argu-
ments in physics was not settled in this context. In Hilbert’s view, the axiomatic
treatment was the proper way to restore order to this whole system of knowledge, so
crucial to the contemporary conception of physical science.

In stating the aim of the theory as the description of the macroscopic states of a
gas, based on statistical considerations about the molecules that compose it, Hilbert
assumed without any further comment the atomistic conception of matter. From this
picture, he said, one obtains, for instance, the pressure of the gas as the number of
impacts of the gas molecules against the walls of its container, and the temperature as
the square of the sum of the mean velocities. In the same way, entropy becomes a
magnitude with a more concrete physical meaning than is the case outside the theory.
Using Maxwell’s velocity distribution function, Boltzmann’s logarithmic definition
of entropy, and the calculus of probabilities, one obtains the law of constant increase
in entropy. Hilbert immediately pointed out the difficulty of combining this latter
result with the reversibility of the laws of mechanics. He characterized this difficulty
as a paradox, or at least as a result not yet completely well established.134 In fact, he
stressed that the theory had not yet provided a solid justification for its assumptions,
and ever new ideas and stimuli were constantly still being added.

Even if we knew the exact position and velocities of the particles of a gas— Hil-
bert explained—it is impossible in practice to integrate all the differential equations
describing the motions of these particles and their interactions. We know nothing of
the motion of individual particles, but rather consider only the average magnitudes
that are dealt with by the probabilistic kinetic theory of gases. In an oblique reference
to Boltzmann’s replies, Hilbert stated that the combined use of probabilities and
infinitesimal calculus in this context is a very original mathematical contribution,
which may lead to deep and interesting consequences, but which at this stage has in
no sense been fully justified. Take, for instance, one of the well-known results of the
theory, namely, the equations of vis viva. In the probabilistic version of the theory,
Hilbert said, the solution of the corresponding differential equation does not emerge
solely from the differential calculus, and yet it is correctly determined. It might con-
ceivably be the case, however, that the probability calculus could have contradicted
well-known results of the theory, in which case, using that calculus would clearly

133 Kuhn (1978, 21) quotes in this respect the well-known textbook, (Gibbs 1902), and an “almost forgot-
ten” work, (Einstein 1902).

134 “Hier können wir aber bereits ein paradoxes, zum mindesten nicht recht befriedigendes Resultat fest-
stellen.” (Hilbert 1905a, 176)
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yield what would be considered unacceptable conclusions. Hilbert explained this
warning by showing how a fallacious probabilistic argument could lead to contradic-
tion in the theory of numbers.

Take the five classes of congruence module 5 in the natural numbers, and consider
how the prime numbers are distributed among these classes. For any integer  let

 be the number of prime numbers which are less than  and let
 be the corresponding values of the same function, when only the

numbers in each of the five classes are considered. Using the calculus of probabilities
in a similar way to that used in the integration of the equations of motion of gas parti-
cles, one could reason as follows: The distribution of prime numbers is very irregular,
but according to the laws of probability, this irregularity is compensated if we just
take a large enough quantity of events. In particular, the limits at infinity of the quo-
tients  are all equal for  and therefore equal to  But it is
clear, on the other hand, that in the class of numbers of the form  there are no
prime numbers, and therefore  One could perhaps correct the argu-
ment by limiting its validity to the other four classes, and thus conclude that:

Although this latter result is actually correct, Hilbert said, one cannot speak here
of a real proof. The latter could only be obtained through deep research in the theory
of numbers. Had we not used here the obvious number-theoretical fact that  can
never be a prime number, we might have been misled by the probabilistic proof.
Something similar happens in the kinetic theory of gases, concerning the integration
of the vis viva. One assumes that Maxwell’s distribution of velocities obeys a certain
differential equation of mechanics, and in this way a contradiction with the known
value of the integral of the vis viva is avoided. Moreover, according to the theory,
because additional properties of the motion of the gas particles, which are prescribed
by the differential equations, lie very deep and are only subtly distinguishable, they
do not affect relatively larger values, such as the averages used in the Maxwell
laws.135 As in the case of the prime numbers, however, Hilbert did not consider this
kind of reasoning to be a real proof.

All this discussion, which Hilbert elaborated in further detail, led him to formu-
late his view concerning the role of probabilistic arguments in mathematical and

135 “Genau so ist es nun hier in der kinetischen Gastheorie. Indem wir behaupten, daß die Maxwellsche
Geschwindigkeitsverteilung den mechanischen Differentialgleichnungen genügt, vermeiden wir wohl
einen Verstoß gegen das sofort bekannte Integral der lebendigen Kraft; weiterhin aber wird die
Annahme gemacht, daß die durch die Differentialgleichungen geforderten weiteren Eigenschaften der
Gaspartikelbewegung liegen soviel tiefer und sind so feine Unterscheidungen, daß sie so grobe Aus-
sagen über mittlere Werte, wie die des Maxwellschen Gesetzes, nicht berühren.” (Hilbert 1905a, 180–
181)
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physical theories. In this view, surprisingly empiricist and straightforwardly formu-
lated, the calculus of probability is not an exact mathematical theory, but one that
may appropriately be used as a first approximation, provided we are dealing with
immediately apparent mathematical facts. Otherwise it may lead to significant con-
tradictions. The use of the calculus of probabilities is justified—Hilbert concluded—
insofar as it leads to results that are correct and in accordance with the facts of expe-
rience or with the accepted mathematical theories.136

Beginning in 1910 Hilbert taught courses on the kinetic theory of gases and on
related issues, and also published original contributions to this domain. In particular,
as part of his research on the theory of integral equations, which began around 1902,
he solved in 1912 the so-called Boltzmann equation.137.

6.3 Electrodynamics

The manuscript of the lecturer indicates that Hilbert did not discuss electrodynamics
before 14 July 1905. By that time Hilbert must have been deeply involved with the
issues studied in the electron-theory seminar. These issues must surely have appeared
in the lectures as well, although the rather elementary level of discussion in the lec-
tures differed enormously from the very advanced mathematical sophistication char-
acteristic of the seminar. As mentioned above, at the end of his lectures on mechanics
Hilbert had addressed the question of a possible unification of the equations of gravi-
tation and electrodynamics, mainly based on methodological considerations. Now he
stressed once more the similarities underlying the treatment of different physical
domains. In order to provide an axiomatic treatment of electrodynamics similar to
those of the domains discussed above—Hilbert opened this part of his lectures—one
needs to account for the motion of an electron by describing it as a small electrified
sphere and by applying a process of passage to the limit.

One starts therefore by considering a material point  in the classical presenta-
tion of mechanics. The kinetic energy of a mass-point is expressed as 

The derivatives of this expression with respect to the components  of the veloc-
ity  define the respective components of the momentum

136 “… sie ist keine exakte mathematische Theorie, aber zu einer ersten Orientierung, wenn man nur alle
unmittelbar leicht ersichtlichen mathematischen Tatsachen benutzt, häufig sehr geeignet; sonst führt
sie sofort zu groben Verstößen. Am besten kann man wohl immer nachträglich sagen, daß die Anwen-
dung der Wahrscheinlichkeitsrechnung immer dann berechtigt und erlaubt ist, wo sie zu richtigen, mit
der Erfahrung bezw. der sonstigen mathematischen Theorie übereinstimmenden Resultaten führt.”
(Hilbert 1905a, 182–183)

137  In (Hilbert 1912a, chap. XXII).
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If one equates the derivative of the latter with respect to time to the components of
the forces—seen as the negative of the partial derivatives of the potential energy—
one gets the equations of motion:

As was seen earlier in the lectures on mechanics, an alternative way to attain these
equations is to use the functions  and the variational equation characteristic of
the Hamiltonian principle:

This principle can be applied, as Laplace did in his Celestial Mechanics, even
without knowing anything about  except that it is a function of the velocity. In
order to determine the actual form of one must then introduce additional axioms.
Hilbert explained that in the context of classical mechanics, Laplace had done this
simply by asserting what for him was an obvious, intuitive notion concerning relative
motion, namely, that we are not able to perceive any uniform motion of the whole
universe.138 From this assumption Laplace was able to derive the actual value

 This was for Hilbert a classical instance of the main task of the axi-
omatization of a physical science, as he himself had been doing throughout his lec-
tures for the cases of the addition of vectors, thermodynamics, insurance
mathematics, etc.: namely, to formulate the specific axiom or axioms underlying a
particular physical theory, from which the specific form of its central, defining func-
tion may be derived. In this case, Laplace’s axiom is nothing but the expression of the
Galilean invariance, of the Newtonian laws of motion, although Hilbert did not use
this terminology here.

In the case of the electron, as Hilbert had perhaps recently learnt in the electron-
theory seminar, this axiom of Galilean invariance, is no longer valid, nor is the spe-
cific form of the Lagrangian function. Yet—and this is what Hilbert stressed as a
remarkable fact—the equation of motion of the electron can nevertheless be derived

138 “Zur Festlegung von  muß man nun natürlich noch Axiome hinzunehmen, und Laplace kommt da
mit einer allgemeinen, ihm unmittelbar anschaulichen Vorstellung über Relativbewegung aus, daß wir
nämlich eine gleichförmige Bewegung des ganzen Weltalls nicht merken würden. Alsdann läßt sich
die Form  von  bestimmen, und das ist wieder die ganz analoge Aufgabe zu denen, die
das Fundament der Vektoraddition, der Thermodynamik, der Lebensversicherungsmathematik u.a.
bildeten.” (Hilbert 1905a, 187)

∂L v( )
∂vs

-------------- m.vs.=

d
∂

∂vs
-------

dt
-----------

∂U
∂s
------- 0         s x y z, ,( ).==+

L U,

L U–( ) t Minim.=d

t1

t2

∫

L,
L,

L

mv
2

2⁄ L v( )

L v( )
1
2
---mv2.=



194 LEO CORRY

following considerations similar to those applied in Laplace’s case. One need only
find the appropriate axiom to effect the derivation. Without further explanation, Hil-
bert wrote down the Lagrangian that describes the motion of the electron. This may
be expressed as

where  denotes the ratio between the velocity of the electron and the speed of light,
and  is a constant, characteristic of the electron and dependent on its charge. This
Lagrangian appears, for instance, in Abraham’s first article on the dynamics of the
electron, and a similar one appears in the article on Lorentz’s Encyklopädie article.139

If not earlier than that, Hilbert had studied these articles in detail in the seminar,
where Lorentz’s article was used as a main text.

If, as in the case of classical mechanics, one again chooses to consider the differ-
ential equation or the corresponding variational equation as the single, central axiom
of electron theory, taking  as an undetermined function of  whose exact expres-
sion one seeks to derive, then—Hilbert said—in order to do so, one must introduce a
specific axiom, characteristic of the theory and as simple and plausible as possible.
Clearly—he said concluding this section—this theory will require more, or more
complicated, axioms than the one introduced by Laplace in the case of classical
mechanics.140 The electron-theory seminar had been discussing many recent contri-
butions, by people such as Poincaré, Lorentz, Abraham and Schwarzschild, who held
conflicting views on many important issues. It was thus clear to Hilbert that, at that
point in time at least, it would be too early to advance any definite opinion as to the
specific axiom or axioms that should be placed at the basis of the theory. This fact,
however, should not affect in principle his argument as to how the axiomatic
approach should be applied to the theory.

It is noteworthy that in 1905 Hilbert did not mention the Lorentz transformations,
which were to receive very much attention in his later lectures on physics. Lorentz
published the transformations in an article of 1904 (Lorentz 1904b), but this article
was not listed in the bibliography of the electron theory seminar,141and it is likely
that Hilbert was not aware of it by the time of his lectures. In subsequent chapters we
will see how he became aware of the centrality of the transformations mainly through
the work of Minkowski.

139 Respectively, (Abraham 1902, 37; Lorentz 1904a, 184). Lorentz’s Lagrangian is somewhat different,
since it contains two additional terms, involving the inverse of 

140 “Nimmt man nun wieder die Differentialgleichungen bzw. das zugehörige Variationsproblem als
Axiom und läßt  zunächst als noch unbestimmte Funktion von  stehen, so handelt es sich darum,
dafür möglichst einfache und plausible Axiome so zu konstruiren, daß sie gerade jene Form von 
bestimmen. Natürlich werden wir mehr oder kompliciertere Axiome brauchen, als in dem einfachen
Falle der Mechanik bei Laplace.” (Hilbert 1905a, 188)

141 Cf. (Pyenson 1979, 103).
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6.4 A post-1909 addendum

To conclude this account of the 1905 lectures, it is interesting to notice that several
years after having taught the course, Hilbert returned to the manuscript and added
some remarks on the front page in his own handwriting. He mentioned two more
recent works he thought relevant to understanding the use of the axiomatic method in
physics. First, he referred to a new article by Hamel on the principles of mechanics.
Hamel’s article, published in 1909, contained philosophical and critical remarks con-
cerning the issues discussed in his own earlier article of 1905 (the one mentioned by
Hilbert with reference to the axiomatization of vector addition). In particular, it dis-
cussed the concepts of absolute space, absolute time and force, as a priori concepts of
mechanics. The contents of this article are beyond the scope of our discussion here.
Hilbert’s interest in it may have stemmed from a brief passage where Hamel dis-
cussed the significance of Hilbert’s axiomatic method (Hamel 1909, 358). More
importantly perhaps, it also contained an account of a new system of axioms for
mechanics.142

Second, in a formulation that condenses in a very few sentences his understanding
of the principles and goals of axiomatization, as they apply to geometry and to vari-
ous domains of physics, Hilbert also directed attention to what he saw as Planck’s
application of the axiomatic method in the latter’s recent research on quantum theory.
Hilbert thus wrote:

It is of special interest to notice how the axiomatic method is put to use by Planck—in a
more or less consistent and in a more or less conscious manner—even in modern quan-
tum theory, where the basic concepts have been so scantily clarified. In doing this, he sets
aside electrodynamics in order to avoid contradiction, much as, in geometry, continuity
is set aside in order to remove the contradiction in non-Pascalian geometry, or like, in the
theory of gases, mechanics is set aside in favor of the axiom of probability (maximal
entropy), thus applying only the Stossformel or the Liouville theorem, in order to avoid
the objections involved in the reversibility and recurrence paradoxes.143

From this remark we learn not only that Hilbert was aware of the latest advances
in quantum theory (though, most probably, not in great detail) but also that he had a
good knowledge of recent writings of Paul and Tatyana Ehrenfest. Beginning in 1906

142 According to Clifford Truesdell (1968, 336), this article of Hamel, together with the much later (Noll
1959), are the “only two significant attempts to solve the part of Hilbert’s sixth problem that concern
mechanics [that] have been published.” One should add to this list at least another long article (Hamel
1927) that appeared in vol. 5 of the Handbuch der Physik.

143 Hilbert (1905a), added “<Besonders interessant ist es zu sehen, wie die axiomatische Methode von
Planck sogar bei der modernen Quantentheorie, wo die Grundbegriffe noch so wenig geklärt sind, in
mehr oder weniger konsequenter und in mehr oder weniger bewusster Weise zur Anwendung gebracht
werden: dabei Ausschaltung der Elektrodynamik, um Widerspruch zu vermeiden—gerade wie in der
Geometrie Ausschaltung der Stetigkeit, um den Widerspruch gegen die Nichtpaskalsche Geometrie zu
beseitigen, oder in der Gastheorie Ausschaltung der Mechanik (Benutzung allein der Stossformel oder
des Liouvilleschen Satzes) dafür Axiom der Wahrscheinlichkeit—(Entropie Maximum), um den
Widerspruch gegen den Umkehr- oder Wiederkehreinwand zu beseitigen.>”
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the Ehrenfests had made important contributions to clarifying Boltzmann’s ideas in a
series of publications on the conceptual foundations of statistical mechanics. The two
last terms used by Hilbert in his hand-written remark (Umkehr- oder Wiederkehrein-
wand) were introduced only in 1907 by them, and were made widely known only
through their Encyklopädie article that appeared in 1912. Hilbert may have known
the term earlier from their personal contact with them, or through some other col-
league.144 Also, the Stossformel that Hilbert mentioned here referred probably to the
Stossanzahlansatz, whose specific role in the kinetic theory, together with that of the
Liouville theorem (that is the physicists’ Liouville theorem), the Ehrenfests’ article
definitely contributed to clarify.145 Moreover, the clarification of the conceptual inter-
relation between Planck’s quantum theory and electrodynamics—alluded to by Hil-
bert in his added remark—was also one of Paul Ehrenfest’s central contributions to
contemporary physics.146

7. THE AXIOMATIZATION PROGRAM BY 1905 – PARTIAL SUMMARY

Hilbert’s 1905 cycle of lectures on the axiomatization of physics represents the cul-
mination of a very central thread in Hilbert’s early scientific career. This thread com-
prises a highly visible part of his published work, namely that associated with
Grundlagen der Geometrie, but also additional elements that, though perhaps much
less evident, were nevertheless prominent within his general view of mathematics, as
we have seen. Hilbert’s call in 1900 for the axiomatization of physical theories was a
natural outgrowth of the background from which his axiomatic approach to geometry
first developed. Although in elaborating the point of view put forward in the Grundla-
gen der Geometrie Hilbert was mainly driven by the need to solve certain, open foun-
dational questions of geometry, his attention was also attracted in this context by
recent debates on the role of axioms, or first principles in physics. Hertz’s textbook
on mechanics provided an elaborate example of a physical theory presented in strict
axiomatic terms, and—perhaps more important for Hilbert—it also discussed in
detail the kind of requirements that a satisfactory system of axioms for a physical the-
ory must fulfill. Carl Neumann’s analysis of the “Galilean principle of inertia”—ech-
oes of which we find in Hilbert’s own treatment of mechanics— provided a further
example of the kind of conceptual clarity that one could expect to gain from this kind
of treatment. The writings of Hilbert’s senior colleague at Königsberg, Paul Volk-
mann, show that towards the end of the century questions of this kind were also dis-
cussed in the circles he moved in. Also the works of both Boltzmann and Voss
provided Hilbert with important sources of information and inspiration. From his ear-

144 Hilbert was most likely present when, on 13 November 1906, Paul Ehrenfest gave a lecture at the Göt-
tinger Mathematische Gesellschaft on Boltzmann’s H-theorem and some of the objections
(Einwände) commonly raised against it. This lecture is reported in Jahresbericht der Deutschen
Mathematiker-Vereinigung, Vol. 15 (1906), 593.

145 Cf. (Klein 1970, 119–140).
146 Cf. (Klein 1970, 230–257).
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liest attempts to treat geometry in an axiomatic fashion in order to solve the founda-
tional questions he wanted to address in this field, Hilbert already had in mind the
axiomatization of other physical disciplines as a task that could and should be pur-
sued in similar terms.

Between 1900 and 1905 Hilbert had the opportunity to learn much new physics.
The lecture notes of his course provide the earliest encompassing evidence of Hil-
bert’s own picture of physical science in general and, in particular, of how he thought
the axiomatic analysis of individual theories should be carried out. Hilbert’s physical
interests now covered a broad range of issues, and he seems to have been well aware
of the main open questions being investigated in most of the domains addressed. His
unusual mathematical abilities allowed him to gain a quick grasp of existing knowl-
edge, and at the same time to consider the various disciplines from his own idiosyn-
cratic perspective, suggesting new interpretations and improved mathematical
treatments. However, one must exercise great care when interpreting the contents of
these notes. It is difficult to determine with exactitude the extent to which he had
studied thoroughly and comprehensively all the existing literature on a topic he was
pursuing. The relatively long bibliographical lists that we find in the introductions to
many of his early courses do not necessarily mean that he studied all the works men-
tioned there. Even from his repeated, enthusiastic reference to Hertz’s textbook we
cannot safely infer to what extent he had read that book thoroughly. Very often
throughout his career he was content when some colleague or student communicated
to him the main ideas of a recent book or a new piece of research. In fact, the official
assignment of many of his assistants—especially in the years to come—was precisely
that: to keep him abreast of recent advances by studying in detail the research litera-
ture of a specific field. Hilbert would then, if he were actually interested, study the
topic more thoroughly and develop his own ideas.

It is also important to qualify properly the extent to which Hilbert carried out a
full axiomatic analysis of the physical theories he discussed. As we saw in the pre-
ceding sections, there is a considerable difference between what he did for geometry
and what he did for other physical theories. In these lectures, Hilbert never actually
proved the independence, consistency or completeness of the axiomatic systems he
introduced. In certain cases, like vector addition, he quoted works in which such
proofs could be found (significantly, works of his students or collaborators). In other
cases there were no such works to mention, and—as in the case of thermodynam-
ics—Hilbert simply stated that his axioms are indeed independent. In still other
cases, he barely mentioned anything about independence or other properties of his
axioms. Also, his derivations of the basic laws of the various disciplines from the axi-
oms are rather sketchy, when they appear at all. Often, Hilbert simply declared that
such a derivation was possible. What is clear is that Hilbert considered that an axiom-
atization along the lines he suggested was plausible and could eventually be fully per-
formed following the standards established in Grundlagen der Geometrie.

Yet for all these qualifications, the lecture notes of 1905 present an intriguing pic-
ture of Hilbert’s knowledge of physics, notable both for its breadth and its incisive-
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ness. They afford a glimpse into a much less known side of his Göttingen teaching
activity, which must certainly be taken into account in trying to understand the atmo-
sphere that dominated this world center of science, as well as its widespread influ-
ence. More specifically, these notes illustrate in detail how Hilbert envisaged that
axiomatic analysis of physical theories could not only contribute to conceptual clari-
fication but also prepare the way for the improvement of theories, in the eventuality
of future experimental evidence that conflicted with current predictions. If one knew
in detail the logical structure of a given theory and the specific role of each of its
basic assumptions, one could clear away possible contradictions and superfluous
additional premises that may have accumulated in the building of the theory. At the
same time, one would be prepared to implement, in an efficient and scientifically
appropriate way, the local changes necessary to readapt the theory to meet the impli-
cations of newly discovered empirical data, in the eventuality of such discoveries.
Indeed, Hilbert’s own future research in physics, and in particular his incursion into
general relativity, will be increasingly guided by this conception. The details of his
various efforts in this direction will be discussed in the next chapters.

The nature and use of axioms in physical theories was discussed by many of Hil-
bert’s contemporaries, as we have seen. Each had his own way of classifying the var-
ious kinds of axioms that are actually used or should be used. Hilbert himself did not
discuss any possible such classification in detail but in his lectures we do find three
different kinds of axioms actually implemented. This de facto classification is remi-
niscent, above all, of the one previously found in the writings of Volkmann. In the
first place, every theory is assumed to be governed by specific axioms that character-
ize it and only it. These axioms usually express mathematical properties establishing
relations among the basic magnitudes involved in the theory. Secondly, there are cer-
tain general mathematical principles that Hilbert saw as being valid for all physical
theories. In the lectures he stressed above all the “continuity axiom,” providing both a
general formulation and more specific ones for each theory. As an additional general
principle of this kind he suggested the assumption that all functions appearing in the
natural sciences should have at least one continuous derivative. Furthermore, the uni-
versal validity of variational principles as the key to deriving the main equations of
physics was a central underlying assumption of all of Hilbert’s work on physics, and
that kind of reasoning appears throughout these lectures as well. In each of the theo-
ries he considered in his 1905 lectures, Hilbert attempted to show how the exact ana-
lytic expression of a particular function that condenses the contents of the theory in
question could be effectively derived from the specific axioms of the theory, together
with more general principles. On some occasions he elaborated this idea more thor-
oughly, while on others he simply declared that such a derivation should be possible.

There is yet a third type of axiom for physical theories that Hilbert, however,
avoided addressing in his 1905 lectures. That type comprises claims about the ulti-
mate nature of physical phenomena, an issue that was particularly controversial dur-
ing the years preceding these lectures. Although Hilbert’s sympathy for the
mechanical worldview is apparent throughout the manuscript of the lectures, his axi-
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omatic analyses of physical theories contain no direct reference to it. The logical
structure of the theories is thus intended to be fully understood independently of any
particular position in this debate. Hilbert himself would later adopt a different stance.
His work on general relativity will be based directly on his adoption of the electro-
magnetic worldview and, beginning in 1913, a quite specific version of it, namely,
Gustav Mie’s electromagnetic theory of matter. On the other hand, Hermann
Minkowski’s work on electrodynamics, with its seminal reinterpretation of Einstein’s
special theory of relativity in terms of space-time geometry, should be understood as
an instance of the kind of axiomatic analysis that Hilbert advanced in his 1905 lec-
tures in which, at the same time, the debate between the mechanical and the electro-
magnetic world views is avoided.

When reading the manuscript of these lectures, one cannot help speculating about
the reaction of the students who attended them. This was, after all, a regular course
offered in Göttingen, rather than an advanced seminar. Before the astonished students
stood the great Hilbert, rapidly surveying so many different physical theories,
together with arithmetic, geometry and even logic, all in the framework of a single
course. Hilbert moved from one theory to the other, and from one discipline to the
next, without providing motivations or explaining the historical background to the
specific topics addressed, without giving explicit references to the sources, without
stopping to work out any particular idea, without proving any assertion in detail, but
claiming all the while to possess a unified view of all these matters. The impression
must have been thrilling, but perhaps the understanding he imparted to the students
did not run very deep. Hermann Weyl’s account of his experience as a young student
attending Hilbert’s course upon his arrival in Göttingen offers direct evidence to sup-
port this impression. Thus, in his obituary of Hilbert, Weyl wrote:

In the fullness of my innocence and ignorance I made bold to take the course Hilbert had
announced for that term, on the notion of number and the quadrature of the circle. Most
of it went straight over my head. But the doors of a new world swung open for me, and I
had not sat long at Hilbert’s feet before the resolution formed itself in my young heart
that I must by all means read and study what this man had written. (Weyl 1944, 614)

But the influence of the ideas discussed in Hilbert’s course went certainly beyond
the kind of general inspiration described here so vividly by Weyl; they had an actual
influence on later contributions to physics. Besides the works of Born and Car-
athéodory on thermodynamics, and of Minkowski on electrodynamics, there were
many dissertations written under Hilbert, as well as the articles written under the
influence of his lectures and seminars. Ehrenfest’s style of conceptual clarification of
existing theories, especially as manifest in the famous Encyklopädie on statistical
mechanics, also bears the imprint of Hilbert’s approach. Still, one can safely say that
little work on physical theories was actually published along the specific lines of axi-
omatic analysis suggested by Hilbert in Grundlagen der Geometrie. It seems, in fact,
that such techniques were never fully applied by Hilbert or by his students and col-
laborators to yield detailed analyses of axiomatic systems defining physical theories.
Thus, for instance, in 1927 Georg Hamel wrote a long article on the axiomatization of
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mechanics for the Handbuch der Physik (Hamel 1927). Hamel did mention Hilbert’s
work on geometry as the model on which any modern axiomatic analysis should be
based. However, his own detailed account of the axioms needed for defining mechan-
ics as known at that time was not followed by an analysis of the independence of the
axioms, based on the construction of partial models, such as Hilbert had carried out
for geometry. Similarly, the question of consistency was discussed only summarily.
Nevertheless, as Hamel said, his analysis allowed for a clearer comprehension of the
logical structure of all the assumptions and their interdependence.

If the 1905 lectures represent the culmination of a thread in Hilbert’s early career,
they likewise constitute the beginning of the next stage of his association with phys-
ics. In the next years, Hilbert himself became increasingly involved in actual research
in mathematical physics and he taught many courses on various topics thus far not
included within his scientific horizons.

8. LECTURES ON MECHANICS AND CONTINUUM MECHANICS

In his early courses on mechanics or continuum mechanics, Hilbert’s support for the
atomistic hypothesis, as the possible basis for a reductionistic, mechanical foundation
of the whole of physics, was often qualified by referring to the fact that the actual
attempts to provide a detailed account of how such a reduction would work in specific
cases for the various physical disciplines had not been fully and successfully realized
by then. Thus for instance, in his 1906 course on continuum mechanics, Hilbert
described the theory of elasticity as a discipline whose subject-matter is the deforma-
tion produced on solid bodies by interaction and displacement of molecules. On first
sight this would seem to be a classical case in which one might expect a direct expla-
nation based on atomistic considerations. Nevertheless Hilbert suggested that, for lack
of detailed knowledge, a different approach should be followed in this case:

We will have to give up going here into a detailed description of these molecular pro-
cesses. Rather, we will only look for those parameters on which the measurable deforma-
tion state of the body depends at each location. The form of the dependence of the
Lagrangian function on these parameters will then be determined, which is actually com-
posed by the kinetic and potential energy of the individual molecules. Similarly, in ther-
modynamics we will not go into the vibrations of the molecules, but we will rather
introduce temperature itself as a general parameter and we will investigate the depen-
dence of energy on it.147

147 “Wir werden hier auf eine eingehende Beschreibung dieser molekularen Vorgänge zu verzichten
haben und dafür nur die Parameter aufsuchen, von denen der meßbare Verzerrungszustand der Körper
an jeder Stelle abhängt. Alsdann wird festzustellen sein, wie die Form der Abhängigkeit der Lagran-
schen Funktion von diesen Parametern ist, die sich ja eigentlich aus kinetischer und potentieller Ener-
gie der einzelnen Molekel zusammensetzen wird. Ähnlich wird man in der Thermodynamik nicht auf
die Schwingungen der Molekel eingehen, sondern die Temperatur selbst als allgemeinen Parameter
einführen, und die Abhängigkeit der Energie von ihr untersuchen.” (Hilbert 1906, 8–9)
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The task of deducing the exact form of the Lagrangian under specific require-
ments postulated as part of the theory was the approach followed in the many exam-
ples already discussed above. This tension between reductionistic and
phenomenological explanations in physics is found in Hilbert’s physical ideas
throughout the years and it eventually led to his abandonment of mechanical reduc-
tionism. The process becomes gradually manifest after 1910, though Hilbert still
stuck to his original conceptions until around 1913.

The course on mechanics in the winter semester of 1910–1911 opened with an
unambiguous statement about the essential role of mechanics as the foundation of
natural science in general (Hilbert 1910–1911, 6). Hilbert praised the textbooks of
Hertz and Boltzmann for their successful attempts to present in similar methodologi-
cal terms, albeit starting from somewhat different premises, a fully axiomatic deriva-
tion of mechanics. This kind of presentation, Hilbert added, was currently being
disputed. The course itself covered the standard topics of classical mechanics.
Towards the end, however, Hilbert spoke about the “new mechanics.” In this context
he neither used the word “relativity” nor mentioned Einstein. Rather, he mentioned
only Lorentz and spoke of invariance under the Lorentz transformations of all differ-
ential equations that describe natural phenomena as the main feature of this new
mechanics. Hilbert stressed that the Newtonian equations of the “old” mechanics do
not satisfy this basic principle, which, like Minkowski, he called the Weltpostulate.
These equations must therefore be transformed, he said, so that they become Lorentz-
invariant.148 Hilbert showed that if the Lorentz transformations are used instead of
the “Newton transformations,” then the velocity of light is the same for every non-
accelerated, moving system of reference.

Hilbert also mentioned the unsettled question of the status of gravitation in the
framework of this new mechanics. He connected his presentation directly to
Minkowski’s sketchy treatment of this topic in 1909, and, like his friend, Hilbert does
not seem to have been really bothered by the difficulties related with it. One should
attempt to modify the Newtonian law in order to make it comply to the world-postu-
late, Hilbert said, but we must exercise special care when doing this since the Newto-
nian law has proved to be in the closest accordance with experience. As Hilbert knew
from Minkowski’s work, an adaptation of gravitation to the new mechanics would
imply that its effects must propagate at the speed of light. This latter conclusion contra-
dicts the “old theory,” while in the framework of the “new mechanics,” on the contrary,
it finds a natural place. In order to adapt the Newtonian equations to the new mechan-
ics, concluded Hilbert, we proceed, “as Minkowski did, via electromagnetism.”149

148 “Alle grundlegenden Naturgesetzen entsprechenden Systeme von Differentialgleichungen sollen
gegenüber der Lorentz-Transformation kovariant sein. ... Wir können durch Beobachtung von irgend
welcher Naturvorgängen niemals entscheiden, ob wir ruhen, oder uns gleichförmig bewegen. Diesen
Weltpostulate genügen die Newtonschen Gleichungen der älteren Mechanik nicht, wenn wir die Lor-
entz Transformation zugrunde legen: wir stehen daher vor die Aufgabe, sich dementsprechend umge-
stalten.” (Hilbert 1910–1911, 292)
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The manuscript of the course does not record whether in the classroom Hilbert
showed how, by proceeding “as Minkowski did, via electromagnetism,” the adapta-
tion of Newton’s law should actually be realized. Perhaps at that time he still believed
that Minkowski’s early sketch could be further elaborated. Be that as it may, the con-
cerns expressed here by Hilbert are not unlike those of other, contemporary physicists
involved in investigating the actual place of the postulate of relativity in the general
picture of physics. It is relevant to recall at this stage, however, that Einstein himself
published nothing on this topic between 1907 and June 1911.

9. KINETIC THEORY

After another standard course on continuum mechanics in the summer of 1911, Hil-
bert taught a course specifically devoted to kinetic theory of gases for the first time in
the winter of 1911–1912. This course marked the starting point of Hilbert’s definitive
involvement with a broader range of physical theories. Hilbert opened the course by
referring once again to three possible, alternative treatments of any physical theory.
First, is the “phenomenological perspective,”150 often applied to study the mechanics
of continua. Under this perspective, the whole of physics is divided into various chap-
ters, each of which can be approached using different, specific assumptions, from
which different mathematical consequences can be derived. The main mathematical
tool used in this approach is the theory of partial differential equations. In fact, much
of what Hilbert had done in his 1905 lectures on the axiomatization of physics, and
then in 1906 on mechanics of continua, could be said to fall within this approach.

The second approach that Hilbert mentioned assumes the validity of the “theory of
atoms.” In this case a “much deeper understanding is reached. ... We attempt to put
forward a system of axioms which is valid for the whole of physics, and which
enables all physical phenomena to be explained from a unified point of view.”151 The
mathematical methods used here are obviously quite different from those of the phe-

149 “Wir können nun an die Umgestaltung des Newtonsches Gesetzes gehen, dabei müssen wir aber Vor-
sicht verfahren, denn das Newtonsche Gesetz ist das desjenige Naturgesetz, das durch die Erfahrung
in Einklang bleiben wollen. Dieses wird uns gelingen, ja noch mehr, wir können verlangen, dass die
Gravitation sich mit Lichtgeschwindigkeit fortpflanzt. Die alte Theorie kann das nicht, eine Fortpflan-
zung der Gravitation mit Lichtgeschwindigkeit widerspricht hier der Erfahrung: Die neue Theorie
kann es, und man ist berechtigt, das als eine Vorzug derselben anzusehen, den eine momentane Fort-
pflanzung der Gravitation passt sehr wenig zu der modernen Physik. Um die Newtonschen Gleichun-
gen für die neue Mechanik zu erhalten, gehen wir ähnlich vor wie Minkowski in der
Elektromagnetik.” (Hilbert 1910–1911, 295)

150 Boltzmann had used the term in this context in his 1899 Munich talk that Hilbert had attended. Cf.
(Boltzmann 1899, 92–96).

151 “Hier ist das Bestreben, ein Axiomensystem zu schaffen, welches für die ganze Physik gilt, und aus
diesem einheitlichen Gesichtspunkt alle Erscheinungen zu erklären. ... Jedenfalls gibt sie unvergleich-
lich tieferen Laufschuhes über Wesen und Zusammenhang der physikalischen Begriffe, ausserdem
auch neue Aufklärung über physikalische Tatsachen, welche weit über die bei ) erhaltene hinaus-
geht.” (Hilbert 1911–1912, 2)

A
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nomenological approach: they can be subsumed, generally speaking, under the meth-
ods of the theory of probabilities. The most salient examples of this approach are
found in the theory of gases and in radiation theory. From the point of view of this
approach, the phenomenological one is a palliative, indispensable as a primitive stage
on the way to knowledge, which must however be abandoned “as soon as possible, in
order to penetrate the real sanctuary of theoretical physics.”152 Unfortunately, Hilbert
said, mathematical analysis is not yet developed sufficiently to provide for all the
demands of the second approach. One must therefore do without rigorous logical
deductions and be temporarily satisfied with rather vague mathematical formulae.153

Hilbert considered it remarkable that by using this method one nevertheless obtains
ever new results that are in accordance with experience. He thus declared that the
“main task of physics,” embodied in the third possible approach, would be “the molec-
ular theory of matter” itself, standing above the kinetic theory, as far as its degree of
mathematical sophistication and exactitude is concerned. In the present course, Hil-
bert intended to concentrate on kinetic theory, yet he promised to consider the molec-
ular theory of matter in the following semester. He did so, indeed, a year later.

Many of the important innovations implied by Hilbert’s solution of the Boltzmann
equation are already contained in this course of 1911–1912.154 It was Maxwell in
1860 who first formulated an equation describing the distribution of the number of
molecules of a gas, with given energy at a given point in time. Maxwell, however,
was able to find only a partial solution which was valid only for a very special
case.155 In 1872 Boltzmann reformulated Maxwell’s equation in terms of a single,
rather complex, integro-differential equation, that has remained associated with his
name ever since. The only exact solution Boltzmann had been able to find, however,
was still valid for the same particular case that Maxwell had treated in his own model
(Boltzmann 1872). By 1911, some progress had been made on the solution of the
Boltzmann equation. The laws obtained from the partial knowledge concerning those
solutions, which described the macroscopic movement and thermal processes in
gases, seemed to be qualitatively correct. However, the mathematical methods used in
the derivations seemed inconclusive and sometimes arbitrary. It was quite usual to
rely on average magnitudes and thus the calculated values of the coefficients of heat
conduction and friction appeared to be dubious. A more accurate estimation of these
values remained a main concern of the theory, and the techniques developed by Hil-
bert apparently offered the means to deal with it.156

152 “Wenn man auf diesem Standpunkt steht, so wird man den früheren nur als einer Notbehelf bezeich-
nen, der nötig ist als eine erste Stufe der Erkenntnis, über die man aber eilig hinwegschreiten muss,
um in die eigentlichen Heiligtümer der theoretischen Physik einzudringen.” (Hilbert 1911–1912, 2)

153 “... sich mit etwas verschwommenen mathematischen Formulierungen zufrieden geben muss.”
(Hilbert 1911–1912, 2)

154  In fact, in December 1911 Hilbert presented to the Göttinger Mathematische Gesellschaft an over-
view of his recent investigations on the theory, stating that he intended to publish them soon. Cf. Jah-
resbericht der Deutschen Mathematiker-Vereinigung 21 (1912), 58. 

155 Cf. (Brush 1976, 432–446).
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Very much as he had done with other theories in the past, Hilbert wanted to show
how the whole kinetic theory could be developed starting from one basic formula,
which in this case would be precisely the Boltzmann equation. His presentation
would depart from the phenomenological approach by making some specific assump-
tions about the molecules, namely that they are spheres identical to one another in
size. In addition he would focus, not on the velocity of any individual such molecule,
but rather on their velocity distribution  over a small element of volume.

In the opening lectures of the course, a rather straightforward discussion of the
elementary physical properties of a gas led Hilbert to formulate a quite complicated
equation involving  Hilbert asserted that a general solution of this equation was
impossible, and it was thus necessary to limit the discussion to certain specific cases
(Hilbert 1911–1912, 21). In the following lectures he added some specific, physical
assumptions concerning the initial and boundary conditions for the velocity distribu-
tion in order to be able to derive more directly solvable equations. These assump-
tions, which he formulated as axioms of the theory, restricted the generality of the
problem to a certain extent, but allowed for representing the distribution function as a
series of powers of a certain parameter. In a first approximation, the relations between
the velocity distributions yielded the Boltzmann distribution. In a second approxima-
tion, they yielded the propagation of the average velocities in space and time. Under
this representation the equation appeared as a linear symmetric equation of the sec-
ond type, where the velocity distribution  is the unknown function, thus allowing
the application of Hilbert’s newly developed techniques. Still, he did not prove in
detail the convergence of the power series so defined, nor did he complete the evalua-
tion of the transport coefficient appearing in the distribution formula.

Hilbert was evidently satisfied with his achievement in kinetic theory. He was
very explicit in claiming that without a direct application of the techniques he had
developed in the theory of integral equations, and without having formulated the
physical theory in terms of such integral equations, it would be impossible to provide
a solid and systematic foundation for the theory of gases as currently known (Hilbert
1912a, 268; 1912b, 562). And very much as with his more purely mathematical
works, also here Hilbert was after a larger picture, searching for the underlying con-
nections among apparently distant fields. Particularly interesting for him were the
multiple connections with radiation theory, which he explicitly mentioned at the end
of his 1912 article, thus opening the way for his forthcoming courses and publica-
tions. In his first publication on radiation theory he explained in greater detail and
with unconcealed effusiveness the nature of this underlying connection. He thus said: 

In my treatise on the “Foundations of the kinetic theory of gases,” I have shown, using
the theory of linear integral equations, that starting alone from the Maxwell-Boltzmann

fundamental formula —the so-called collision formula— it is possible to construct sys-
tematically the kinetic theory of gases. This construction is such, that it requires only a
consistent implementation of the methods of certain mathematical operations prescribed

156 Cf. (Born 1922, 587–589).

ϕ
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in advance, in order to obtain the proof of the second law of thermodynamics, of Boltz-
mann’s expression for the entropy of a gas, of the equations of motion that take into
account both the internal friction and the heat conduction, and of the theory of diffusion
of several gases. Likewise, by further developing the theory, we obtain the precise condi-
tions under which the law of equipartition of energies over the intermolecular parameter
is valid. Concerning the motion of compound molecules, a new law is also obtained
according to which the continuity equation of hydrodynamics has a much more general
meaning than the usual one. ...

Meanwhile, there is a second physical domain whose principles have not yet been inves-
tigated at all from the mathematical point of view, and for the establishment of whose
foundations—as I have recently discovered—the same mathematical tools provided by
the integral equations are absolutely necessary. I mean by this the elementary theory of
radiation, understanding by it the phenomenological aspect of the theory, which at the
most immediate level concerns the phenomena of emission and absorption, and on top of
which stand Kirchhoff’s laws concerning the relations between emission and absorption.
(Hilbert 1912b, 217–218)

Hilbert could boast now two powerful mathematical tools that allowed him to
address the study of a broad spectrum of physical theories. On the one hand, the axi-
omatic method would help dispel conceptual difficulties affecting established theo-
ries—thus fostering their continued development—and also open the way for a
healthy establishment of new ones. In his earlier courses he had already explored
examples of the value of the method for a wide variety of disciplines, but
Minkowski’s contributions to electrodynamics and his analysis of the role of the prin-
ciple of relativity offered perhaps, from Hilbert’s point of view, the most significant
example so far of the actual realization of its potential contribution. On the other
hand, the theory of linear integral equations had just proven its value in the solution
of such a central, open problem of physics. As far as he could see from his own, idio-
syncratic perspective, the program for closing the gap between physical theories and
mathematics had been more successful so far than he may have actually conceived
when posing his sixth problem back in 1900. Hilbert was now prepared to attack yet
another central field of physics and he would do so by combining once again the two
mathematical components of his approach. The actual realization of this plan, how-
ever, was less smooth than one could guess from the above-quoted, somewhat pomp-
ous, declaration. As will be seen in the next section, although Hilbert’s next incursion
into the physicists’ camp led to some local successes, as a whole they were less
impressive in their overall significance than Hilbert would have hoped.

But even though Hilbert was satisfied with what his mastery of integral equations
had allowed him to do thus far, and with what his usual optimism promised to achieve
in other physical domains in the near future, there was an underlying fundamental
uneasiness that he was not able to conceal behind the complex integral formulas and
he preferred to explicitly share this uneasiness with his students. It concerned the
possible justification of using probabilistic methods in physics in general and in
kinetic theory in particular. Hilbert’s qualms are worth quoting in some detail:

If Boltzmann proves … that the Maxwell distribution … is the most probable one from
among all distributions for a given amount of energy, this theorem possesses in itself a
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certain degree of interest, but it does not allow even a minimal inference concerning the
velocity distribution that actually occurs in any given gas. In order to lay bare the core of
this question, I want to recount the following example: in a raffle with one winner out of
1000 tickets, we distribute 998 tickets among 998 persons and the remaining two we give
to a single person. This person thus has the greatest chance to win, compared to all other
participants. His probability of winning is the greatest, and yet it is highly improbable
that he will win. The probability of this is close to zero. In the same fashion, the probabil-
ity of occurrence of the Maxwell velocity distribution is greater than that of any other
distribution, but equally close to zero, and it is therefore almost absolutely certain that
the Maxwell distribution will not occur.

What is needed for the theory of gases is much more than that. We would like to prove
that for a specified distribution, there is a probability very close to 1 that distribution is
asymptotically approached as the number of molecules becomes infinitely large. And in
order to achieve that, it is necessary to modify the concept of “velocity distribution” in
order to obtain some margin for looseness. We should formulate the question in terms
such as these: What is the probability for the occurrence of a velocity distribution that
deviates from Maxwell’s by no more than a given amount? And moreover: what allowed
deviation must we choose in order to obtain the probability 1 in the limit?157

Hilbert discussed in some detail additional difficulties that arise in applying prob-
abilistic reasoning within kinetic theory. He also gave a rough sketch of the kind of
mathematical considerations that could in principle provide a way out to the dilem-
mas indicated. Yet he made clear that he could not give final answers in this
regard.158 This problem would continue to bother him in the near future. In any case,
after this brief excursus, Hilbert continued with the discussion he had started in the

157 “Wenn z.B. Boltzmann beweist—übrigens auch mit einigen Vernachlässigungen—dass die Maxwell-
sche Verteilung (die nach dem Exponentialgesetz) unter allen Verteilungen von gegebener Gesamten-
ergie die wahrscheinlichste ist, so besitzt dieser Satz ja an und für sich ein gewisses Interesse, aber er
gestattet auch nicht der geringsten Schluss auf die Geschwindigkeitsverteilung, welche in einem
bestimmten Gase wirklich eintritt. Um den Kernpunkt der Frage klar zu legen, will ich an folgendes
Beispiel erinnern: In einer Lotterie mit einem Gewinn und von 1000 Losen seien 998 Losen auf 998
Personen verteilt, die zwei übrigen Lose möge eine andere Person erhalten. Dann hat diese Person im
Vergleich zu jeder einzelnen andern die grössten Gewinnchancen. Die Wahrscheinlichkeit des Gewin-
nen ist für sie am grössten, aber es ist immer noch höchst unwahrscheinlich, dass sie gewinnt. Denn
die Wahrscheinlichkeit ist so gut wie Null.
Ganz ebenso ist die Wahrscheinlichkeit für den Eintritt der Maxwellschen Geschwindigkeitsvertei-
lung zwar grösser als die für das Eintreten einer jeden bestimmten andern, aber doch noch so gut wie
Null, und es ist daher fast mit absoluter Gewissheit sicher, dass die Maxwellsche Verteilung nicht ein-
tritt.
Was wir für die Gastheorie brauchen, ist sehr viel mehr. Wir wünschen zu beweisen, dass für eine
gewisse ausgezeichnete Verteilung eine Wahrscheinlichkeit sehr nahe an 1 besteht, derart, dass sie
sich mit Unendliche wachsende Molekülzahl der 1 asymptotisch annähert. Und um das zu erreichen,
müssen wir den Begriff der „Geschwindigkeitsverteilung” etwas modifizieren, indem wir einen
gewissen Spielraum zulassen. Wir hätten die Frage etwa so zu formulieren: Wie gross ist die Wahr-
scheinlichkeit dafür, dass eine Geschwindigkeitsverteilung eintritt, welche von der Maxwellschen nur
um höchstens einen bestimmten Betrag abweicht—und weiter: wie gross müssen wir die zugelasse-
nen Abweichungen wählen, damit wir im limes die Wahrscheinlichkeit eins erhalten?” (Hilbert 1911–
1912, 75–76)
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first part of his lectures and went on to generalize the solutions already obtained to
the cases of mixtures of gases or of polyatomic gases.

In spite of its very high level of technical sophistication of his approach to kinetic
theory, it is clear that Hilbert did not want his contribution to be seen as a purely
mathematical, if major, addition to the solution of just one central, open problem of
this theory. Rather, his aim was to be directly in touch with the physical core of this
and other, related domains. The actual scope of his physical interests at the time
becomes more clearly evident in a seminar that he organized in collaboration with
Erich Hecke (1887–1947), shortly after the publication of his article on kinetic the-
ory.159 The seminar was also attended by the Göttingen docents Max Born, Paul
Hertz, Theodor von Kármán (1881–1963), and Erwin Madelung (1881–1972), and
the issues discussed included the following:160

• the ergodic hypothesis and its consequences;

• on Brownian motion and its theories;

• electron theory of metals in analogy to Hilbert’s theory of gases;

• report on Hilbert’s theory of gases;

• on dilute gases;

• theory of dilute gases using Hilbert’s theory;

• on the theory of chemical equilibrium, including a reference to the

• related work of Sackur;

• dilute solutions.

The names of the participants and younger colleagues indicate that these deep
physical issues, related indeed with kinetic theory but mostly not with its purely
mathematical aspects, could not have been discussed only superficially. Especially
indicative of Hilbert’s surprisingly broad spectrum of interests is the reference to the
work of Otto Sackur (1880–1914). Sackur was a physical chemist from Breslau
whose work dealt mainly with the laws of chemical equilibrium in ideal gases and on
Nernst law of heat. He also wrote a widely used textbook on thermochemistry and
thermodynamics (Sackur 1912). His experimental work was also of considerable sig-
nificance and, more generally, his work was far from the typical kind of purely tech-
nical, formal mathematical physics that is sometimes associated with Hilbert and the
Göttingen school.161

158 “Ich will Ihnen nun auseinandersetzen, wie ich mir etwa die Behandlung dieser Frage denke. Es sind
da sicher noch grosse Schwierigkeiten zu überwinden, aber die Idee nach wird man wohl in folgender
Weise vorgehen müssen: ... ” (Hilbert 1911–1912, 77)

159  Hecke had also taken the notes of the 1911–1912 course. 
160 References to this seminar appear in (Lorey 1916, 129). Lorey took this information from the German

student’s journal Semesterberichte des Mathematischen Verereins. The exact date of the seminar, how-
ever, is not explicitly stated.
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10. RADIATION THEORY

Already in his 1911–1912 lectures on kinetic theory, Hilbert had made clear his inter-
est in investigating, together with this domain and following a similar approach, the
theory of radiation.162 Kirchhoff’s laws of emission and absorption had traditionally
stood as the focus of interest of this theory. These laws, originally formulated in late
1859, describe the energetic relations of radiation in a state of thermal equilib-
rium.163 They assert that in the case of purely thermal radiation (i.e., radiation pro-
duced by thermal excitation of the molecules) the ratio between the emission and
absorption capacities of matter,  and  respectively, is a universal function of the
temperature  and the wavelength ,

and is therefore independent of the substance and of any other characteristics of the
body in question. One special case that Kirchhoff considered in his investigations is
the case  which defines a “black body,” namely, a hypothetical entity that com-
pletely absorbs all wavelengths of thermal radiation incident in it.164

In the original conception of Kirchhoff’s theory the study of black-body radiation
may not have appeared as its most important open problem, but in retrospect it turned
out to have the farthest-reaching implications for the development of physics at large.
In its initial phases, several physicists attempted to determine over the last decades of
the century the exact form of the spectral distribution of the radiation  for a
black body. Prominent among them was Wilhelm Wien, who approached the problem
by treating this kind of radiation as loosely analogous to gas molecules. In 1896 he
formulated a law of radiation that predicted very accurately recent existing measure-
ments. Planck, however, was dissatisfied with the lack of a theoretical justification for
what seemed to be an empirically correct law. In searching for such a justification
within classical electromagnetism and thermodynamics, he modeled the atoms at the
inside walls of a black-body cavity as a collection of electrical oscillators which
absorbed and emitted energy at all frequencies. In 1899 he came forward with an
expression for the entropy of an ideal oscillator, built on an analogy with Boltz-
mann’s kinetic theory of gases, that provided the desired theoretical justification of

161 See Sackur’s obituary in Physikalische Zeitschrift 16 (1915), 113–115. According to Reid’s account
(1970, 129), Ewald succinctly described Hilbert’s scientific program at the time of his arrival in Göt-
tingen with the following, alleged quotation of the latter: “We have reformed mathematics, the next
thing to reform is physics, and then we’ll go on to chemistry.” Interest in Sackur’s work, as instanti-
ated in this seminar would be an example of an intended, prospective attack on this field. There are
not, however, many documented, further instances of this kind.

162 Minkowski and Hilbert even had planned to have a seminar on the theory of heat radiation as early as
1907 (Minkowski 1907).

163 Cf., e.g., (Kirchhoff 1860). 
164 Cf. (Kuhn 1978, 3–10).
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Wien’s law (Planck 1899). Later on, however, additional experiments produced val-
ues for the spectrum at very low temperatures and at long wavelengths that were not
anymore in agreement with this law.

Another classical attempt was advanced by John William Strutt, Lord Rayleigh
(1842–1919), and James Jeans (1877–1946), also at the beginning of the century.165

Considering the radiation within the black-body cavity to be made up of a series of
standing waves, they derived a law that, contrary to Wien’s, approximated experimen-
tal data very well at long wavelengths but failed at short ones. In the latter case, it pre-
dicted that the spectrum would rise to infinity as the wavelength decreased to zero.166

In a seminal paper of 1900, Planck formulated an improved law that approxi-
mated Wien’s formula in the case of short wavelengths and the Rayleigh-Jeans law in
the case of long wavelengths. The law assumed that the resonator entropy is calcu-
lated by counting the number of distributions of a given number of finite, equal
“energy elements” over a set of resonators, according to the formula:

where  is an integer,  is the oscillators’ frequency, and  is the now famous Planck
constant, h = 6.55 x 10 -27 erg-sec. (Planck 1900). Based on this introduction of
energy elements, assuming thermal equilibrium and applying statistical methods of
kinetic theory, Planck derived the law that he had previously obtained empirically and
that described the radiant energy distribution of the oscillators:

Planck saw his assumption of energy elements as a convenient mathematical
hypothesis, and not as a truly physical claim about the way in which matter and radi-
ation actually interchange energy. In particular, he did not stress the significance of
the finite energy elements that entered his calculation and he continued to think about
the resonators in terms of a continuous dynamics. He considered his assumption to be
very important since it led with high accuracy to a law that had been repeatedly con-
firmed at the experimental level, but at the same time he considered it to be a provi-
sional one that would be removed in future formulations of the theory. In spite of its
eventual revolutionary implications on the developments of physics, Planck did not
realize before 1908 that his assumptions entailed any significant departure from the
fundamental conceptions embodied in classical physics. As a matter of fact, he did
not publish any further research on black-body radiation between 1901 and 1906.167

The fundamental idea of the quantum discontinuity was only slowly absorbed into
physics, first through the works of younger physicists such as Einstein, Laue and

165 Cf. (Kuhn 1978, 144–152). 
166 Much later Ehrenfest (1911) dubbed this phenomenon “ultraviolet catastrophe.”
167 This is the main claim developed in detail in the now classic (Kuhn 1978). For a more recent, sum-

mary account of the rise of quantum theory, see (Kragh 1999, chap. 5).
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Ehrenfest, then by leading ones such as Planck, Wien and Lorentz, and finally by
their readers and followers. The details pertaining to this complex process are well
beyond the scope of my account here. Nonetheless, it is worth mentioning that a very
significant factor influencing Planck’s own views in this regard was his correspon-
dence with Lorentz in 1908. Lorentz had followed with interest since 1901 the
debates around black-body radiation, and he made some effort to connect them with
his own theory of the electron. At the International Congress of Mathematicians held
in Rome in 1908, Lorentz was invited to deliver one of the plenary talks, which he
devoted to this topic. This lecture was widely circulated and read thereafter and it
represented one of the last attempts at interpreting cavity radiation in terms of a clas-
sical approach (Lorentz 1909). But then, following critical remarks by several col-
leagues, Lorentz added a note to the printed version of his talk where he
acknowledged that his attempt to derive the old Rayleigh-Jeans radiation law from
electron theory was impracticable unless the foundations of the latter would be
deeply modified. A letter to Lorentz sent by Planck in the aftermath of the publication
contains what may be the latter’s first acknowledgment of the need to introduce dis-
continuity as a fundamental assumption. Lorentz himself, at any rate, now unambigu-
ously adopted the idea of energy quanta and he stressed it explicitly in his lectures of
early 1909 in Utrecht.168 Later, in his 1910 Wolfskehl cycle in Göttingen, Lorentz
devoted one of the lectures to explaining why the classical Hamilton principle would
not work for radiation theory. An “entirely new hypothesis,” he said, needed to be
introduced. The new hypothesis he had in mind was “the introduction of the energy
elements invented by Planck” (Lorentz 1910, 1248). Hilbert was of course in the
audience and he must have attentively listened to his guest explaining the innovation
implied by this fundamental assertion.

Starting in 1911 research on black-body radiation became less and less prominent
and at the same time the quantum discontinuity hypothesis became a central issue in
other domains such as thermodynamics, specific heats, x-rays, and atomic models.
The apparent conflicts between classical physics and the consequences of the hypoth-
esis stood at the focus of discussions in the first Solvay conference organized in Brus-
sels in 1911.169 These discussion prompted Poincaré, who until then was reticent to
adopt the discontinuity hypothesis, to elaborate a mathematical proof that Planck’s
radiation law necessarily required the introduction of quanta (Poincaré 1912). His
proof also succeeded in convincing Jeans in 1913, who thus became one of the latest
prominent physicists to abandon the classical conception in favor of discontinuity
(Jeans 1914).170

The notes of Hilbert’s course on radiation theory in the summer semester of 1912,
starting in late April, evince a clear understanding and a very broad knowledge of all
the main issues of the discipline. In his previous course on kinetic theory, Hilbert had

168 Cf. (Kuhn 1978, 189–197). 
169 Cf. (Barkan 1993). 
170 Cf. (Kuhn 1978, 206–232).
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promised to address “the main task of physics,” namely, the molecular theory of mat-
ter itself, a theory he described as having a greater degree of mathematical sophistica-
tion and exactitude than kinetic theory. To a certain extent, teaching this course meant
fulfilling that promise. Hilbert declared that he intended to address now the “domain
of physics properly said,” which is based on the point of view of the atomic theory.
Hilbert was clearly very much impressed by recent developments in quantum theory.
“Never has there been a more proper and challenging time than now,” he said, “to
undertake the research of the foundations of physics.” What seems to have impressed
Hilbert more than anything else were the deep interconnections recently discovered
in physics, “of which formerly no one could have even dreamed, namely, that optics
is nothing but a chapter within the theory of electricity, that electrodynamics and
thermodynamics are one and the same, that energy also possesses inertial properties,
that physical methods have been introduced into chemistry as well.”171 And above
all, the “atomic theory,” the “principle of discontinuity,” which was not a hypothesis
anymore, but rather, “like Copernicus’s theory, a fact confirmed by experiment.”172

Hilbert opened with a summary account of four-vector analysis173 and of Special
Theory of Relativity. Taking the relativity postulate to stand “on top” of physics as a
whole, he then formulated the basics of electrodynamics as currently conceived,
including Born’s concept of a rigid body. This is perhaps Hilbert’s first systematic
discussion of Special Theory of Relativity in his lecture courses. As in the case of
kinetic theory, Hilbert already raised here some of the ideas that he would later
develop in his related, published works. But again, the course was far from being just
an exercise in applying integral equations techniques to a particularly interesting,
physical case. Rather, Hilbert covered most of the core, directly relevant, physical
questions. Thus, among the topics discussed in the course we find the energy distribu-
tion of black-body radiation (including a discussion of Wien’s and Rayleigh’s laws)
and Planck’s theory of resonators under the effect of radiation. Hilbert particularly
stressed the significance of recent works by Ehrenfest and Poincaré, as having shown
the necessity of a discontinuous form of energy distribution (Hilbert 1912c, 94).174

Hilbert also made special efforts to have Sommerfeld invited to give the last two lec-
tures in the course, in which important, recent topics in the theory were discussed.175

171 “Nun kommen wir aber zu eigentlicher Physik, welche sich auf der Standpunkt der Atomistik stellt
und da kann man sagen, dass keine Zeit günstiger ist und keine mehr dazu herausfordert, die Grundla-
gen dieser Disziplin zu untersuchen, wie die heutige. Zunächst wegen der Zusammenhänge, die man
heute in der Physik entdeckt hat, wovon man sich früher nichts hätte träumen lassen, dass die Optik
nur ein Kapitel der Elektrizitätslehre ist, dass Elektrodynamik und Thermodynamik dasselbe sind,
dass auch die Energie Trägheit besitzt, dann dass auch in der Chemie (Metalchemie, Radioaktivität)
physikalische Methoden in der Vordergrund haben.” (Hilbert 1912c, 2)

172 “... wie die Lehre des Kopernikus, eine durch das Experimente bewiesene Tatsache.” (Hilbert
1912c, 2)

173 A hand-written addition to the typescript (Hilbert 1912c, 4) gives here a cross-reference to Hilbert’s
later course, (Hilbert 1916, 45–56), where the same topic is discussed in greater detail. 

174 He referred to (Ehrenfest 1911) and (Poincaré 1912). Hilbert had recently asked Poincaré for a reprint
of his article. See Hilbert to Poincaré, 6 May 1912. (Hilbert 1932–1935, 546)
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However, as with all other physical theories, what Hilbert considered to be the
main issue of the theory of radiation as a whole was the determination of the precise
form of a specific law that stood at its core. In this case the law in question was
Kirchhoff’s law of emission and absorption, to which Hilbert devoted several lec-
tures. Of particular interest for him was the possibility of using the techniques of the
theory of integral equations for studying the foundations of the law and providing a
complete mathematical justification for it. This would also become the main task pur-
sued in his published articles on the topic, which I discuss in detail in the next four
sections. In fact, just as his summer semester course was coming to a conclusion, Hil-
bert submitted for publication his first paper on the “Foundations of the Elementary
Theory of Radiation.”

11. STRUCTURE OF MATTER AND RELATIVITY: 1912–1914

After this account of Hilbert’s involvement with kinetic theory and radiation theory, I
return to 1912 in order to examine his courses in physics during the next two
years.176 The structure of matter was the focus of attention here, and Hilbert now
finally came to adopt electromagnetism as the fundamental kind of phenomena to
which all others should be reduced. The atomistic hypothesis was a main physical
assumption underlying all of Hilbert’s work from very early on, and also in the period
that started in 1910. This hypothesis, however, was for him secondary to more basic,
mathematical considerations of simplicity and precision. A main justification for the
belief in the validity of the hypothesis was the prospect that it would provide a more
accurate and detailed explanation of natural phenomena once the tools were devel-
oped for a comprehensive mathematical treatment of theories based on it. Already in
his 1905 lectures on the axiomatization of physics, Hilbert had stressed the problems
implied by the combined application of analysis and the calculus of probabilities as
the basis for the kinetic theory, an application that is not fully justified on mathemati-
cal grounds. In his physical courses after 1910, as we have seen, he again expressed
similar concerns. The more Hilbert became involved with the study of kinetic theory
itself, and at the same time with the deep mathematical intricacies of the theory of
linear integral equations, the more these concerns increased. This situation, together
with his growing mastery of specific physical issues from diverse disciplines, helps to
explain Hilbert’s mounting interest in questions related to the structure of matter that
occupied him in the period I discuss now. The courses described below cover a wide
range of interesting physical questions. In this account, for reasons of space, I will

175 Cf. Hilbert to Sommerfeld, 5 April 1912 (Nachlass Arnold Sommerfeld, Deutsches Museum, Munich.
HS1977–28/A, 141). 

176  The printed version of the Verzeichnis der Vorlesungen an der Georg-August-Universität zu Göttin-
gen registers several courses for which no notes or similar documents are extant, and about which I
can say nothing here: summer semester, 1912 - Mathematical Foundations of Physics; winter semes-
ter, 1912–1913 - Mathematical Foundations of Physics.
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comment only on those aspects that are more directly connected with the questions of
axiomatization, reductionism and the structure of matter.

11.1 Molecular Theory of Matter - 1912–1913

Hilbert’s physics course in the winter semester of 1912–1913 was devoted to describ-
ing the current state of development of the molecular theory of matter (Hilbert 1912–
1913),177 and particularly the behavior of systems of huge quantities of particles
moving in space, and affecting each other through collisions and other kinds of inter-
acting forces.178 The first of the course’s three parts deals with the equation of state,
including a section on the principles of statistical mechanics. The second part is char-
acterized as “phenomenological” and the third part as “kinetic,” in which entropy and
the quantum hypothesis are discussed. This third part also includes a list of axioms
for the molecular theory of matter. Hilbert was thus closing a circle initiated with the
course on kinetic theory taught one year earlier.

Hilbert suggested that the correct way to come to terms with the increasingly deep
mathematical difficulties implied by the atomistic hypothesis would be to adopt a
“physical point of view.” This means that one should make clear, through the use of
the axiomatic method, those places in which physics intervenes into mathematical
deduction. This would allow separating three different components in any specific
physical domain considered: first, what is arbitrarily adopted as definition or taken as
an assumption of experience; second, what a-priori expectations follow from these
assumptions, which the current state of mathematics does not yet allow us to con-
clude with certainty; and third, what is truly proven from a mathematical point of
view.179 This separation interestingly brings to mind Minkowski’s earlier discussion
on the status of the principle of relativity. It also reflects to a large extent the various
levels of discussion evident in Hilbert’s articles on radiation theory, and it will resur-
face in his reconsideration of the view of mechanics as the ultimate explanation of
physical phenomena.

In the first part of the course, Hilbert deduced the relations between pressure, vol-
ume and temperature for a completely homogenous body. He considered the body as

177 A second copy of the typed notes in found in Nachlass Max Born, Staatsbibliothek Berlin, Preussi-
scher Kulturbesitz #1817.

178 “Das Ziel der Vorlesung ist es, die Molekulartheorie der Materie nach dem heutigen Stande unseres
Wissens zu entwickeln. Diese Theorie betrachtet die physikalischen Körper und ihre Veränderungen
unter dem Scheinbilde eines Systems ungeheuer vieler im Raum bewegter Massen, die durch die
Stösse oder durch andere zwischen ihnen wirkenden Kräfte einander beeinflussen.” (Hilbert 1912–
1913, 1)

179 “Dabei werden wir aber streng axiomatisch die Stellen, in denen die Physik in die mathematische
Deduktion eingreift, deutlich hervorheben, und das voneinander trennen, was erstens als logisch will-
kürliche Definition oder Annahme der Erfahrung entnommen wird, zweitens das, was a priori sich aus
diesen Annahmen folgern liesse, aber wegen mathematischer Schwierigkeiten zur Zeit noch nicht
sicher gefolgert werden kann, und dritten, das, was bewiesene mathematische Folgerung ist.” (Hilbert
1912–1913, 1)
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a mechanical system composed of molecules, and applied to it the standard laws of
mechanics. This is a relatively simple case, he said, that can be easily and thoroughly
elucidated. However, deriving the state equation and explaining the phenomenon of
condensation covers only a very reduced portion of the empirically manifest proper-
ties of matter. Thus the second part of the lectures was devoted to presenting certain,
more complex physical and chemical phenomena, the kinetic significance of which
would then be explained in the third part of the course.180 The underlying approach
was to express the basic facts of experience in mathematical language, taking them as
axioms in need of no further justification. Starting from these axioms one would then
deduce as many results as possible, and the logical interdependence of these axioms
would also be investigated. In this way, Hilbert declared, the axiomatic method, long
applied in mathematics with great success, can also be introduced into physics.181

A main task that Hilbert had pursued in his 1905 lectures on axiomatization was
to derive, from general physical and mathematical principles in conjunction with the
specific axioms of the domain in question, an equation that stands at the center of
each discipline and that accounts for the special properties of the particular system
under study. Hilbert explicitly stated this as a main task for his system of axioms also
in the present case.182 A first, general axiom he introduced was the “principle of equi-
librium,” which reads as follows:

In a state of equilibrium, the masses of the independent components are so distributed
with respect to the individual interactions and with respect to the phases, that the charac-
teristic function that expresses the properties of the system attains a minimum value.183

180 “Wir haben bisher das Problem behandelt, die Beziehung zwischen  und  an einem chemisch
völlig homogenen Körper zu ermitteln. Unser Ziel war dabei, diese Beziehung nach den Gesetzen der
Mechanik aus der Vorstellung abzuleiten, dass der Körper ein mechanisches System seiner Molekele
ist. In dem bisher behandelten, besonders einfache Falle, in dem wir es mit einer einzigen Molekel zu
tun hatten, liess sich dies Ziel mit einer gewissen Vollständigkeit erreichen. Eine in einem bestimmten
Temperaturintervall mit der Erfahrung übereinstimmende Zustandsgleichung geht nämlich aus der
Kinetischen Betrachtung hervor. Mit der Kenntnis der Zustandsgleichung und der Kondensationser-
scheinungen ist aber nur ein sehr kleiner Teil, der sich empirisch darbietenden Eigenschaften der
Stoffe erledigt. Wir werden daher in diesem zweiten Teile diejenigen Ergebnisse der Physik und Che-
mie zusammenstellen, deren kinetische Deutung wir uns später zur Aufgabe machen wollen.” (Hilbert
1912–1913, 50)

181 “Die reinen Erfahrungstatsachen werden dabei in mathematischer Sprache erscheinen und als Axiome
auftreten, die hier keiner weiteren Begründung bedürfen. Aus diesen Axiomen werden wir soviel als
möglich, rein mathematische Folgerungen ziehen, und dabei untersuchen, welche unter den Axiomen
voneinander unabhängig sind und welche zum Teil auseinander abgeleitet werden können. Wir wer-
den also den axiomatischen Standpunkt, der in der modernen Mathematik schon zur Geltung gebracht
ist, auf die Physik anwenden.” (Hilbert 1912–1913, 50)

182 “Um im einzelnen Falle die charakteristische Funktion in ihrer Abhängigkeit von der eigentlichen
Veränderlichen und den Massen der unabhängigen Bestandteile zu ermitteln, müssen verschiedenen
neue Axiome hinzugezogen werden.” (Hilbert 1912–1913, 60)

183 “Im Gleichgewicht verteilen sich die Massen der unabhängigen Bestandteile so auf die einzelnen Ver-
bindungen und Phasen, dass die charakteristische Funktion, die den Bedingungen des Systems ent-
spricht, ein Minimum wird.” (Hilbert 1912–1913, 60)
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Hilbert declared that such an axiom had not been explicitly formulated before and
claimed that its derivation from mechanical principles should be done in terms of
purely kinetic considerations, such as would be addressed in the third part of the
course.184 At the same time he stated that, in principle, this axiom is equivalent to the
second law of thermodynamics, which Hilbert had usually formulated in the past as 
the impossibility of the existence of a “perpetuum mobile.”

The topics for which Hilbert carried out an axiomatic analysis included the equa-
tion of state and the third law of thermodynamics. Hilbert’s three axioms for the
former allowed him a derivation of the expression for the thermodynamical potential
of a mixture of gases that was followed by a discussion of the specific role of each of
the axioms involved.185 Concerning the third law of thermodynamics, Hilbert intro-
duced five axioms meant to account for the relationship between the absolute zero
temperature, specific heats and entropy. Also in this case he devoted some time to dis-
cussing the logical and physical interdependence of these axioms. Hilbert explained
that the axiomatic reduction of the most important theorems into independent compo-
nents (the axioms) is nevertheless not yet complete. The relevant literature, he said, is
also full of mistakes, and the real reason for this lies at a much deeper layer. The basic
concepts seem to be defined unclearly even in the best of books. The problematic use
of the basic concepts of thermodynamics went back in some cases even as far as
Helmholtz.186

The third part of the course contained, as promised, a “kinetic” section especially
focusing on a discussion of rigid bodies. Hilbert explained that the results obtained in
the previous sections had been derived from experience and then generalized by
means of mathematical formulae. In order to derive them a-priori from purely
mechanical considerations, however, one should have recourse to the “fundamental
principle of statistical mechanics,”187 presumably referring to the assumption that all
accessible states of a system are equally probable. Hilbert thought that the task of the

184 “Es muss kinetischen Betrachtung überlassen bleiben, es aus den Prinzipien der Mechanik abzuleiten
und wir werden im dritten Teil der Vorlesung die erste Ansätze an solchen kinetischen Theorie kennen
lernen.” (Hilbert 1912–1913, 61)

185 “Die drei gegebenen Axiome reichen also hin, um das thermodynamische Potential der Mischung zu
berechnen. Aber sind nicht in vollem Umfange dazu Notwendig. Nimmt man z.B. das dritte Axiom
für eine bestimmte Temperatur gültig an, so folgt es für jede beliebige Temperatur aus den beiden
ersten Axiomen. Ebensowenig ist das erste und zweite Axiom vollständig voneinander unabhängig.”
(Hilbert 1912–1913, 66)

186 “Die axiomatische Reduktion der vorstehenden Sätze auf ihre unabhängigen Bestandteile ist demnach
noch nicht vollständig durchgeführt, und es finden sich auch in der Literatur hierüber verschiedene
Ungenauigkeiten. Was den eigentlichen Kern solcher Missverständnisse anlangt, so glaube ich, dass
er tiefer liegt. Die Grundbegriffe scheinen mir selbst in den besten Lehrbüchern nicht genügend klar
dargestellt zu sein, ja, in einem gleich zu erörternden Punkte geht die nicht ganz einwandfreie Anwen-
dung der thermodynamischen Grundbegriffe sogar auch Helmholtz zurück.” (Hilbert 1912–1913, 80)

187 “Um die empirisch gegebenen und zu mathematischen Formeln verallgemeinerten Ergebnisse des
vorigen Teiles a priori und zwar auf rein mechanischem Wege abzuleiten, greifen wir wieder auf des
Grundprinzip des statistischen Mechanik zurück, von der wir bereits im ersten Teil ausgegangen
waren.” (Hilbert 1912–1913, 88)
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course would be satisfactorily achieved if those results that he had set out to derive
were indeed reduced to the theorems of mechanics together with this principle.188 At
any rate, the issues he discussed in this section included entropy, thermodynamics
laws and the quantum hypothesis.

It is noteworthy that, although in December 1912, Born himself lectured on Mie’s
theory of matter at the Göttinger Mathematische Gesellschaft,189 and that this theory
touched upon many of the issues taught by Hilbert in this course, neither Mie’s name
nor his theory are mentioned in the notes. Nor was the theory of relativity theory
mentioned in any way.

11.2 Electron Theory: 1913

In April of 1913 Hilbert organized a new series of Wolfskehl lectures on the current
state of research in kinetic theory, to which he invited the leading physicists of the
time. Planck lectured on the significance of the quantum hypothesis for kinetic the-
ory. Peter Debye (1884–1966), who would become professor of physics in Göttingen
the next year, dealt with the equation of state, the quantum hypothesis and heat con-
duction. Nernst, whose work on thermodynamics Hilbert had been following with
interest,190 spoke about the kinetic theory of rigid bodies. Von Smoluchowski came
from Krakow and lectured on the limits of validity of the second law of thermody-
namics, a topic he had already addressed at the Münster meeting of the Gesellschaft
Deutscher Naturforscher und Ärzte. Sommerfeld came from Munich to talk about
problems of free trajectories. Lorentz was invited from Leiden; he spoke on the appli-
cations of kinetic theory to the study of the motion of the electron. Einstein was also
invited, but he could not attend.191 Evidently this was for Hilbert a major event and
he took pains to announce it very prominently on the pages of the Physikalische
Zeitschrift, including rather lengthy and detailed abstracts of the expected lectures for
the convenience of those who intended to attend.192 After the meeting Hilbert also
wrote a detailed report on the lectures in the Jahresbericht der Deutschen Mathemati-
ker-Vereiningung193as well as the introduction to the published collection (Planck et
al. 1914). Hilbert expressed the hope that the meeting would stimulate further inter-

188 “Auf die Kritik dieses Grundprinzipes und die Grenzen, die seiner Anwendbarkeit gesteckt sind, kön-
nen wir hier nicht eingehen. Wir betrachten vielmehr unser Ziel als erreicht, wenn die Ergebnisse, die
abzuleiten wir uns zur Aufgabe stellen, auf die Sätze der Mechanik und auf jenes Prinzip zurückge-
führt sind.” (Hilbert 1912–1913, 88)

189 Jahresbericht der Deutschen Mathematikervereinigung 22 (1913), 27.
190 In January 1913, Hilbert had lectured on Nernst’s law of heat at the Göttingen Physical Society

(Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 590). See also a remark added in Hilbert’s handwrit-
ing in (Hilbert 1905a, 167).

191 Cf. Einstein to Hilbert, 4 October 1912 (CPAE  5, Doc. 417).
192 Physikalische Zeitschrift 14 (1913), 258–264. Cf. also (Born 1913). 
193 Jahresbericht der Deutschen Mathematiker-Vereinigung 22 (1913), 53–68, which includes abstract of

all the lectures. Cf. also Jahresbericht der Deutschen Mathematiker-Vereinigung 23 (1914), 41. 
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est, especially among mathematicians, and lead to additional involvement with the
exciting world of ideas created by the new physics of matter.

That semester Hilbert also taught two courses on physical issues, one on the the-
ory of the electron and another on the principles of mathematics, quite similar to his
1905 course on the axiomatic method and including a long section on the axiomatiza-
tion of physics as well. Hilbert’s lectures on electron theory emphasized throughout
the importance of the Lorentz transformations and of Lorentz covariance, and contin-
ually referred back to the works of Minkowski and Born. Hilbert stressed the need to
formulate unified theories in physics, and to explain all physical processes in terms of
motion of points in space and time.194 From this reductionistic point of view, the the-
ory of the electron would appear as the most appropriate foundation of all of phys-
ics.195 However, given the difficulty of explicitly describing the motion of, and the
interactions among, several electrons, Hilbert indicated that the model provided by
kinetic theory had to be brought to bear here. He thus underscored the formal similar-
ities between mechanics, electrodynamics and the kinetic theory of gases. In order to
describe the conduction of electricity in metals, he developed a mechanical picture
derived from the theory of gases, which he then later wanted to substitute by an elec-
trodynamical one.196 Hilbert stressed the methodological motivation behind his quest
after a unified view of nature, and the centrality of the demand for universal validity
of the Lorentz covariance, in the following words:

But if the relativity principle [i.e., invariance under Lorentz transformations] is valid,
then it is so not only for electrodynamics, but for the whole of physics. We would like to
consider the possibility of reconstructing the whole of physics in terms of as few basic
concepts as possible. The most important concepts are the concept of force and of rigid-
ity. From this point of view the electrodynamics would appear as the foundation of all of
physics. But the attempt to develop this idea systematically must be postponed for a later
opportunity. In fact, it has to start from the motion of one, of two, etc. electrons, and
there are serious difficulties on the way to such an undertaking. The corresponding prob-
lem for Newtonian physics is still unsolved for more than two bodies.197

When looking at the kind of issues raised by Hilbert in this course, one can hardly
be surprised to discover that somewhat later Gustav Mie’s theory of matter eventually

194 “Alle physikalischen Vorgänge, die wir einer axiomatischen Behandlung zugängig machen wollen,
suchen wir auf Bewegungsvorgänge an Punktsystem in Zeit und Raum zu reduzieren.” (Hilbert
1913b, 1)

195 “Die Elektronentheorie würde daher von diesem Gesichtpunkt aus das Fundament der gesamten Phy-
sik sein.” (Hilbert 1913b, 13)

196 “Unser nächstes Ziel ist, eine Erklärung der Elektrizitätsleitung in Metallen zu gewinnen. Zu diesem
Zwecke machen wir uns von der Elektronen zunächst folgendes der Gastheorie entnommene mecha-
nische Bild, das wir später durch ein elektrodynamisches ersetzen werden.” (Hilbert 1913b, 14)

197 “Die wichtigsten Begriffe sind die der Kraft und der Starrheit. Die Elektronentheorie würde daher
von diesem Gesichtspunkt aus das Fundament der gesamten Physik sein. Den Versuch ihres systema-
tischen Aufbaues verschieben wir jedoch auf später; er hätte von der Bewegung eines, zweier Elektro-
nen u.s.w. auszugehen, und ihm stellen sich bedeutende Schwierigkeiten in der Weg, da schon die
entsprechenden Probleme der Newtonschen Mechanik für mehr als zwei Körper ungelöst sind.”
(Hilbert 1913a, 1913c)
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attracted his attention. Thus, for instance, Hilbert explained that in the existing theory
of electrical conductivity in metals, only the conduction of electricity—which itself
depends on the motion of electrons—has been considered, while assuming that the
electron satisfies both Newton’s second law,  and the law of collision as a
perfectly elastic spherical body (as in the theory of gases).198 This approach assumes
that the magnetic and electric interactions among electrons are described correctly
enough in these mechanical terms as a first approximation.199 However, if we wish to
investigate with greater exactitude the motion of the electron, while at the same time
preserving the basic conception of the kinetic theory based on colliding spheres, then
we should also take into account the field surrounding the electron and the radiation
that is produced with each collision. We are thus led to investigate the influence of the
motion of the electron on the distribution of energy in the free ether, or in other
words, to study the theory of radiation from the point of view of the mechanism of
the motion of the electron. In his 1912 lectures on the theory of radiation, Hilbert had
already considered this issue, but only from a “phenomenological” point of view.
This time he referred to Lorentz’s work as the most relevant one.200 From Lorentz’s
theory, he said, we can obtain the electrical force induced on the ether by an electron
moving on the x-axis of a given coordinate system.

Later on, Hilbert returned once again to the mathematical difficulties implied by
the basic assumptions of the kinetic model. When speaking of clouds of electrons, he
said, one assumes the axioms of the theory of gases and of the theory of radiation.
The n-electron problem, he said, is even more difficult than that of the n-bodies, and
in any case, we can only speak here of averages. Hilbert thus found it more conve-
nient to open his course by describing the motion of a single electron, and, only later
on, to deal with the problem of two electrons.

In discussing the behavior of the single electron, Hilbert referred to the possibility
of an electromagnetic reduction of all physical phenomena, freely associating ideas
developed earlier in works by Mie and by Max Abraham. The Maxwell equations and

198 “In der bisherigen Theoire der Elektricitätsleitung in Metallen haben wir nur den Elektrizitätstrans-
port, der durch die Bewegung der Elektronen selbst bedingt wird, in Betracht gezogen; unter der
Annahme, dass die Elektronen erstens dem Kraftgesetz  gehorchen und zweitens dasselbe
Stossgesetz wie vollkommen harten elastischen Kugeln befolgen (wie in der Gastheorie).” (Hilbert
1913b, 14)

199 “Auf die elektrischen und magnetische Wirkung der Elektronen aufeinander und auf die Atome sind
wir dabei nicht genauer eingegangen, vielmehr haben wir angenommen, dass die gegenseitige Beein-
flussung durch das Stossgesetz in erster Annäherung hinreichend genau dargestellt würde.” (Hilbert
1913b, 14)

200 “Wollte man die Wirkung der Elektronenbewegung genauer verfolgen—jedoch immer noch unter
Beibehaltung des der Gastheorie entlehnten Bildes stossender Kugeln—so müsste man das umge-
bende Feld der Elektronen und die Strahlung in Rechnung setzen, die sie bei jedem Zusammenstoß
aussenden. Man wird daher naturgemäß darauf geführt, den Einfluss der Elektronenbewegung auf die
Energieverteilung im freien aether zu untersuchen. Ich gehe daher dazu über, die Strahlungstheorie,
die wir früher vom phänomenologischen Standpunkt aus kennen gelernt haben (summer semester,
1912), aus dem Mechanismus der Elektronenbewegung verständlich zu machen. Eine diesbezügliche
Theorie hat H. A. Lorentz aufgestellt.” (Hilbert 1913b, 14)
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the concept of energy, Hilbert said, do not suffice to provide a foundation of electro-
dynamics; the concept of rigidity has to be added to them. Electricity has to be
attached to a steady scaffold, and this scaffold is what we denote as an electron. The
electron, he explained to his students, embodies the concept of a rigid connection of
Hertz’s mechanics. In principle at least it should be possible to derive all the forces of
physics, and in particular the molecular forces, from these three ideas: Maxwell’s
equations, the concept of energy, and rigidity. However, he stressed, one phenomenon
has so far evaded every attempt at an electrodynamic explanation: the phenomenon of
gravitation.201 Still, in spite of the mathematical and physical difficulties that he con-
sidered to be associated with a conception of nature based on the model underlying
kinetic theory, Hilbert did not fully abandon at this stage the mechanistic approach as
a possible one, and in fact he asserted that the latter is a necessary consequence of the
principle of relativity.202

11.3 Axiomatization of Physics: 1913

In 1913 Hilbert gave a course very similar to the one taught back in 1905, and bearing
the same name: “Elements and Principles of Mathematics.”203 The opening page of
the manuscript mentions three main parts that the lectures intended to cover:

A. Axiomatic Method.
B. The Problem of the Quadrature of the Circle.
C. Mathematical Logic.

In the actual manuscript, however, one finds only two pages dealing with the problem
of the quadrature of the circle. Hilbert explained that, for lack of time, this section
would be omitted in the course. Only a short sketch appears, indicating the stages
involved in dealing with the problem. The third part of the course, “Das mathema-
tisch Denken und die Logik,” discussed various issues such as the paradoxes of set
theory, false and deceptive reasoning, propositional calculus (Logikkalkül), the con-
cept of number and its axioms, and impossibility proofs. The details of the contents

201 “Auf die Maxwellschen Gleichungen und den Energiebegriff allein kann man die Elektrodynamik
nicht gründen. Es muss noch der Begriff der Starrheit hinzukommen; die Elektrizität muss an ein
festes Gerüst angeheftet sein. Dies Gerüst bezeichnen wir als Elektron. In ihm ist der Begriff der star-
rer Verbindung der Hertzschen Mechanik verwirklicht. Aus den Maxwellschen Gleichungen, dem
Energiebegriff und dem Starrheitsbegriff lassen sich, im Prinzip wenigstens, die vollständigen Sätze
der Mechanik entnehmen, auf sie lassen sich die gesamten Kräfte der Physik, im Besonderen die
Molekularkräfte zurückzuführen. Nur die Gravitation hat sich bisher dem Versuch einer elektrodyna-
mischen Erklärung widersetzt.” (Hilbert 1913b, 61–62)

202 “Es sind somit die zum Aufbau der Physik unentbehrlichen starren Körper nur in den kleinsten Teilen
möglich; man könnte sagen: das Relativitätsprinzip ergibt also als notwendige Folge die Atomistik.”
(Hilbert 1913b, 65)

203 The lecture notes of this course, (Hilbert 1913c), are not found in the Göttingen collections. Peter
Damerow kindly allowed me to consult the copy of the handwritten notes in his possession. The notes
do not specify who wrote them. In Nachlass David Hilbert, (Cod. Ms. D. Hilbert, 520, 5), Hilbert
wrote that notes of the course were taken by Bernhard Baule.
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of this last part, though interesting, are beyond our present concern here. In the first
part Hilbert discussed in detail, like in 1905, the axiomatization of several physical
theories.

Like in 1905, Hilbert divided his discussion of the axiomatic method into three
parts: the axioms of algebra, the axioms of geometry, and the axioms of physics. In
his first lecture Hilbert repeated the definition of the axiomatic method:

The axiomatic method consists in choosing a domain and putting certain facts on top of
it; the proof of these facts does not occupy us anymore. The classical example of this is
provided by geometry.204

Hilbert also repeated the major questions that should be addressed when studying a
given system of axioms for a determined domain: Are the axioms consistent? Are they
mutually independent? Are they complete?205 The axiomatic method, Hilbert declared,
is not a new one; rather it is deeply ingrained in the human way of thinking.206

Hilbert’s treatment of the axioms of physical theories repeats much of what he
presented in 1905 (the axioms of mechanics, the principle of conservation of energy,
thermodynamics, calculus of probabilities, and psychophysics), but at the same time
it contains some new sections: one on the axioms of radiation theory, containing Hil-
bert’s recently published ideas on this domain, and one on space and time, containing
an exposition of relativity. I comment first on one point of special interest appearing
in the section on mechanics.

In his 1905 course Hilbert had considered the possibility of introducing alterna-
tive systems of mechanics defined by alternative sets of axioms. As already said, one
of the intended aims of Hilbert’s axiomatic analysis of physical theories was to allow
for changes in the existing body of certain theories in the eventuality of new empiri-
cal discoveries that contradict the former. But if back in 1905, Hilbert saw the possi-
bility of alternative systems of mechanics more as a mathematical exercise than as a
physically interesting task, obviously the situation was considerably different in
1913. This time Hilbert seriously discussed this possibility in the framework of his
presentation of the axioms of Newtonian mechanics. As in geometry, Hilbert said,
one could imagine for mechanics a set of premises different from the usual ones and,
from a logical point of view, one could think of developing a “non-Newtonian
Mechanics.”207 More specifically, he used this point of view to stress the similarities
between mechanics and electrodynamics. He had already done something similar in
1905, but now his remarks had a much more immediate significance. I quote them
here in some extent:

204 “Die axiomatische Methode besteht darin, daß man ein Gebiet herausgreift und bestimmte Tatsachen
an die Spitze stellt u. nun den Beweis dieser Tatsachen sich nicht weiter besorgt. Das Musterbeispiel
hierfür ist die Geometrie.” (Hilbert 1913c, 1)

205 Again, Hilbert is not referring here to the model-theoretical notion of completeness. See § 2.1. 
206 “Die axiomatische Methode ist nicht neu, sondern in der menschlichen Denkweise tief begründet.”

(Hilbert 1913c, 5)
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One can now drop or partially modify particular axioms; one would then be practicing a
non-Newtonian, non-Galileian, or non-Lagrangian mechanics.

This has a very special significance: electrodynamics has compelled us to adopt the view
that our mechanics is only a limiting-case of a more general one. Should anyone in the
past have thought by chance of defining the kinetic energy as:

he would have then obtained the [equation of] motion of the electron, where  is con-
stant and depends on the electron’s mass. If one ascribes to all of them [i.e., to the elec-
trons] kinetic energy, then one obtains the theory of the electron, i.e., an essential part of
electrodynamics. One can then formulate the Newtonian formula:

But now the mass depends essentially on the velocity and it is therefore no more a physi-
cal constant. In the limit case, when the velocity is very small, we return to the classical
physics....

Lagrange’s equations show how a point moves when the conditions and the forces are
known. How these forces are created and what is their nature, however, this is a question
which is not addressed.

Boltzmann attempted to build the whole of physics starting from the forces; he investi-
gated them, and formulated axioms. His idea was to reduce everything to the mere exist-
ence of central forces of repulsion or of attraction. According to Boltzmann there are
only mass-points, mutually acting on each other, either attracting or repelling, over the
straight line connecting them. Hertz was of precisely of the opposite opinion. For him
there exist no forces at all; rigid bonds exist among the individual mass-points. Neither
of these two conceptions has taken root, and this is for the simple reason that electrody-
namics dominates all.

The foundations of mechanics, and especially its goal, are not yet well established.
Therefore it has no definitive value to construct and develop these foundations in detail,
as has been done for the foundations of geometry. Nevertheless, this kind of foundational
research has its value, if only because it is mathematically very interesting and of an
inestimably high value.208

This passage illuminates Hilbert’s conceptions by 1913. At the basis of his
approach to physics stands, as always, the axiomatic method as the most appropriate
way to examine the logical structure of a theory and to decide what are the individual
assumptions from which all the main laws of the theory can be deduced. This deduc-
tion, however, as in the case of Lagrange’s equation, is independent of questions con-
cerning the ultimate nature of physical phenomena. Hilbert mentions again the

207 “Logisch wäre es natürlich auch möglich andere Def. zu Grunde zu liegen und so eine ‘Nicht-New-
tonsche Mechanik’ zu begründen.” An elaborate formulation of a non-Newtonian mechanics had been
advanced in 1909 by Gilbert N. Lewis (1875–1946) and Richard C. Tolman (1881–1948), in the
framework of an attempt to develop relativistic mechanics independently of electromagnetic theory
(Lewis and Tolman 1909). Hilbert did not give here a direct reference to that work but it is likely that
he was aware of it, perhaps through the mediation of one of his younger colleagues. (Hilbert
1913c, 91)
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mechanistic approach promoted by Hertz and Boltzmann, yet he admits explicitly,
perhaps for the first time, that it is electromagnetism that pervades all physical phe-
nomena. Finally, the introduction of Lagrangian functions from which laws of motion
may be derived that are more general than the usual ones of classical mechanics was
an idea that in the past might have been considered only as a pure mathematical exer-
cise; now—Hilbert cared to stress—it has become a central issue in mechanics, given
the latest advances in electrodynamics.

The last section of Hilbert’s discussion of the axiomatization of physics addressed
the issue of space and time, and in fact it was a discussion of the principle of relativ-
ity.209 What Hilbert did in this section provides the most detailed evidence of his con-
ceptions concerning the principle of relativity, mechanics and electrodynamics before
his 1915 paper on the foundations of physics. His presentation did not really incorpo-
rate any major innovations, yet Hilbert attempted to make the “new mechanics”
appear as organically integrated into the general picture of physics that he was so
eager to put forward at every occasion, and in which all physical theories appear as in

208 “Man kann nun gewisse Teile der Axiome fallen lassen oder modifizieren; dann würde man also
“Nicht-Newtonsche,” od. “Nicht-Galileische”, od. “Nicht-Lagrangesche” Mechanik treiben.
Das hat ganz besondere Bedeutung: Durch die Elektrodynamik sind wir zu der Auffassung gezwun-
gen worden, daß unsere Mechanik nur eine Grenzfall einer viel allgemeineren Mechanik ist. Wäre
jemand früher zufällig darauf gekommen die kinetisch Energie zu definieren als:

so hatte er die Bewegung eines Elektrons, wo  eine Constante der elektr. Masse ist. Spricht man
ihnen allen kinetisch Energie zu, dann hat man die Elektronentheorie d.h. einen wesentlichen Teil der
Elektrodynamik. Dann kann man die Newtonschen Gleichungen aufstellen:

Nun hängt aber die Masse ganz wesentlich von der Geschwindigkeit ab und ist keine physikalische
Constante mehr. Im Grenzfall, daß die Geschwindigkeit sehr klein ist, kommt man zu der alten
Mechanik zurück. (Cf. H. Stark “Experimentelle Elektrizitätslehre,” S. 630).
Die Lagrangesche Gleichungen geben die Antwort wie sich ein Punkt bewegt, wenn man die Bedin-
gungen kennt und die Kräfte. Wie diese Kräfte aber beschaffen sind und auf die Natur die Kräfte
selbst gehen sie nicht ein.
Boltzmann hat versucht die Physik aufzubauen indem er von der Kräften ausging; er untersuchte
diese, stellte Axiome auf u. seine Idee war, alles auf das bloße Vorhandensein von Kräften, die zentral
abstoßend oder anziehend wirken sollten, zurückzuführen. Nach Boltzman gibt es nur Massenpunkte
die zentral gradlinig auf einander anzieh. od. abstoßend wirkend.
Hertz hat gerade den entgegengesetzten Standpunkt. Für ihn gibt es überhaupt keine Kräfte; starre
Verbindungen sind zwischen den einzelnen Massenpunkten.
Beide Auffassungen haben sich nicht eingebürgert, schon aus dem einfachen Grunde, weil die Elek-
trodynamik alles beherrscht.
Die Grundlagen der Mechanik und besonders die Ziele stehen noch nicht fest, so daß es auch noch
nicht definitiven Wert hat die Grundlagen in den einzelnen Details so auf- und ausbauen wie die
Grundlagen der Geometrie. Dennoch behalten die axiomatischen Untersuchungen ihren Wert, schon
deshalb, weil sie mathematisch sehr interessant und von unschätzbar hohen Werte sind.” (Hilbert
1913c, 105–108)
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principle axiomatized (or at least axiomatizable). Back in 1905, Hilbert had sug-
gested, among the possible ways to axiomatize classical dynamics, defining space
axiomatically by means of the already established axioms of geometry, and then
expanding this definition with some additional axioms that define time. He suggested
that something similar should be done now for the new conception of space and time,
but that the axioms defining time would clearly have to change. He thus assumed the
axioms of Euclidean geometry and proceeded to redefine the concept of time using a
“light pendulum.” Hilbert then connected the axiomatically constructed theory with
the additional empirical consideration it was meant to account for, namely, the out-
come of the Michelson-Morley experiment when the values  are mea-
sured in the formula describing the velocity of the ray-light in the pendulum:

Hilbert stressed the similarities between the situation in this case, and in the case
in geometry, when one invokes Gauss’s measurement of angles in the mountain trian-
gle for determining the validity of Euclidean geometry in reality. In his earlier lec-
tures, Hilbert had repeatedly mentioned this experiment as embodying the empirical
side of geometry. The early development of relativity theory had brought about a
deep change in the conception of time, but Hilbert of course could not imagine that
the really significant change was still ahead. To the empirical discovery that triggered
the reformulation of the concept of time, Hilbert opposed the unchanged conception
of space instantiated in Gauss’s experiment. He thus said:

Michelson set out to test the correctness of these relations, which were obtained working
within the old conception of time and space. The [outcome of his] great experiment is
that these formulas do not work, whereas Gauss had experimentally confirmed (i.e., by
measuring the Hoher Hagen, the Brocken, and the Inselsberg) that in Euclidean geome-
try, the sum of the angles of a triangle equals two right angles.210

Although he spoke here of an old conception of space and time, Hilbert was refer-
ring to a change that actually affected only time. From the negative result of Michel-
son’s experiment, one could conclude that the assumption implied by the old
conception—according to which, the velocity of light measured in a moving system
has different values in different directions—leads to contradiction. The opposite

209  The following bibliographical list appears in the first page of this section (Hilbert 1913c, 119):
M. Laue Das Relativitätsprinzip 205 S.
M. Planck 8 Vorlesungen über theoretische Physik 8. Vorlesung S. 110–127
A. Brill Das Relativitätsprinzip: ein Einführung in die Theorie 28 S.
H. Minkowski Raum und Zeit XIV Seiten
Beyond this list, together with the manuscript of the course, in the same binding, we find some addi-
tions, namely, (1) a manuscript version of Minkowski’s famous work (83 pages in the same handwrit-
ing as the course itself), (2) the usual preface of A. Gutzmer, appearing as an appendix, and (3) two
pages containing a passage copied form Planck’s Vorlesungen.

ϑ 0 π 2⁄ ,π,,=
γ ϑ

γ ϑ
ξ2 η2+

t2
----------------- ϑ ϑ 2v ϑ v2+cos–

2
sin+

2
cos 1 2v ϑ v2+cos–[ ]

1
2
---

.= = =



224 LEO CORRY

assumption was thus adopted, namely that the velocity of light behaves with respect
to moving systems as it had been already postulated for stationary ones. Hilbert
expresses this as a further axiom:

Also in a moving system, the velocity of light is identical in all directions, and in fact,
identical to that in a stationary system. The moving system has no priority over the first
one.211

Now the question naturally arises: what is then the true relation between time as mea-
sured in the stationary system and in the moving one,  and  respectively? Hilbert
answered this question by introducing the Lorentz transformations, which he dis-
cussed in some detail, including the limiting properties of the velocity of light,212 and
the relations with a third system, moving with yet a different uniform velocity.

11.4 Electromagnetic Oscillations: 1913–1914

In the winter semester of 1913–1914, Hilbert lectured on electromagnetic oscilla-
tions. As he had done many times in the past, Hilbert opened by referring to the
example of geometry as a model of an experimental science that has been trans-
formed into a purely mathematical, and therefore a “theoretical science,” thanks to
our thorough knowledge of it. Foreshadowing the wording he would use later in his
axiomatic formulation of the general theory of relativity, Hilbert said:

From antiquity the discipline of geometry is a part of mathematics. The experimental
grounds necessary to build it are so suggestive and generally acknowledged, that from
the outset it has immediately appeared as a theoretical science. I believe that the highest
glory that such a science can attain is to be assimilated by mathematics, and that theoret-
ical physics is presently on the verge of attaining this glory. This is valid, in the first place
for the relativistic mechanics, or four-dimensional electrodynamics, which belong to
mathematics, as I have been already convinced for a long time.213

210 “Diese aus der alten Auffassung von Raum und Zeit entspringende Beziehung hat Michelson auf ihre
Richtigkeit geprüft. Das große Experiment ist nun das, daß diese Formel nicht stimmt, während bei
der Euklidischen Geometrie Gauss durch die bestimmte Messung Hoher Hagen, Brocken, Inselsberg
bestätigte, daß die Winkelsumme im Dreieck 2 Rechte ist.”
On p. 128 Hilbert explained the details of Michelson’s calculations, namely, the comparison of veloc-
ities at different angles via the formula:

where the remaining terms are of higher orders. (Hilbert 1913c, 124)
211 “Es zeigt sich also, daß unsere Folgerung der alten Auffassung, daß die Lichtgeschwindigkeit im

bewegtem System nach verschiedenen Richtungen verschieden ist, auf Widerspruch führt. Wir neh-
men deshalb an: Auch im bewegtem System ist die Lichtgeschwindigkeit nach allem Seiten gleich
groß, und zwar gleich der im ruhenden. Das bewegte System hat vor dem alten nicht voraus.” (Hilbert
1913c, 128–129)

212 “Eine größen Geschwindigkeit als die Lichtgeschwindigkeit kann nicht vorkommen.” (Hilbert 1913c,
132)

1
γ ϑ
----- 1

γ ϑ π+
-------------+ 1 2v ϑ ϑ2

+cos–( )

1
2
---–

1 2v ϑ ϑ2
+cos+( )

1
2
---–

+ 2 v
2

3 ϑ 1–
2

cos( ) …+ += =

t τ



THE ORIGIN OF HILBERT’S AXIOMATIC METHOD 225

Hilbert’s intensive involvement with various physical disciplines over the last
years had only helped to strengthen an empirical approach to geometry rather than
promoting some kind of formalist views. But as for his conceptions about physics
itself, by the end of 1913 his new understanding of the foundational role of electrody-
namics was becoming only more strongly established in his mind, at the expense of
his old mechanistic conceptions. The manuscript of this course contains the first doc-
umented instance where Hilbert seems to allude to Mie’s ideas and, indeed, it is
among the earliest explicit instances of a more decided adoption of electrodynamics,
rather than mechanics, as the possible foundation for all physical theories. At the
same time, the whole picture of mathematics was becoming ever more hierarchical
and organized into an organic, comprehensive edifice, of which theoretical physics is
also an essential part. Hilbert thus stated:

In the meantime it looks as if, finally, theoretical physics completely arises from electro-
dynamics, to the extent that every individual question must be solved, in the last instance,
by appealing to electrodynamics. According to what method each mathematical disci-
pline more predominantly uses, one could divide mathematics (concerning contents
rather than form) into one-dimensional mathematics, i.e., arithmetic; then function the-
ory, which essentially limits itself to two dimensions; then geometry, and finally four-
dimensional mechanics.214

In the course itself, however, Hilbert did not actually address in any concrete way
the kind of electromagnetic reduction suggested in its introduction, but rather, it con-
tinued, to a certain extent, his previous course on electron theory. In the first part Hil-
bert dealt with the theory of dispersion of electrons, seen as a means to address the n-
electron problem. Hilbert explained that the role of this problem in the theory of rela-
tivity is similar to that of the n-body problem in mechanics. In the previous course he
had shown that the search for the equations of motion for a system of electrons leads
to a very complicated system of integro-differential equations. A possibly fruitful
way to address this complicated problem would be to integrate a certain simplified
version of these equations and then work on generalizing the solutions thus obtained.
In classical mechanics the parallel simplification of the n-body problem is embodied

213 “Seit Alters her ist die Geometrie eine Teildisziplin der Mathematik; die experimentelle Grundlagen,
die sie benutzen muss, sind so naheliegend und allgemein anerkannt, dass sie von vornherein und
unmittelbar als theoretische Wissenschaft auftrat. Nun glaube ich aber, dass es der höchste Ruhm
einer jeden Wissenschaft ist, von der Mathematik assimiliert zu werden, und dass auch die theoreti-
sche Physik jetzt im Begriff steht, sich diesen Ruhm zu erwerben. In erster Linie gilt dies von der
Relativitätsmechanik oder vierdimensionalen Elektrodynamik, von deren Zuhörigkeit zur Mathema-
tik ich seit langem überzeugt bin.” (Hilbert 1913–1914, 1)

214 “Es scheint indessen, als ob die theoretische Physik schliesslich ganz und gar in der Elektrodynamik
aufgeht, insofern jede einzelne noch so spezielle Frage in letzter Instanz an die Elektrodynamik appel-
lieren muss. Nach den Methoden, die die einzelnen mathematischen Disziplinen vorwiegend benut-
zen, könnte man alsdann – mehr entgeltlich als formel – die Mathematik einteilen in die
eindimensionale Mathematik, die Arithmetik, ferner in die Funktionentheorie, die sich im wesentli-
chen auf zwei Dimensionen beschränkt, in die Geometrie, und schliesslich in die vierdimensionale
Mechanik.” (Hilbert 1913–1914, 1)
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in the theory of small oscillations, based on the idea that bodies cannot really attain a
state of complete rest. This idea offers a good example of a possible way forward in
electrodynamics, and Hilbert explained that, indeed, the elementary theory of disper-
sion was meant as the implementation of that idea in this field. Thus, this first part of
the course would deal with it.215

In the second part of the course Hilbert dealt with the magnetized electron. He did
not fail to notice the difficulties currently affecting his reductionist program. At the
same time he stressed the value of an axiomatic way of thinking in dealing with such
difficulties. He thus said:

We are really still very distant from a full realization of our leading idea of reducing all
physical phenomena to the n-electron problem. Instead of a mathematical foundation
based on the equations of motion of the electrons, we still need to adopt partly arbitrary
assumptions, partly temporary hypothesis, that perhaps one day in the future might be
confirmed. We also must adopt, however, certain very fundamental assumptions that we
later need to modify. This inconvenience will remain insurmountable for a long time.
What sets our presentation apart from that of others, however, is the insistence in making
truly explicit all its assumptions and never mixing the latter with the conclusions that fol-
low from them.216

Hilbert did not specify what assumptions he meant to include under each of the
three kinds mentioned above.Yet it would seem quite plausible to infer that the “very
fundamental assumptions,” that must be later modified, referred in some way or
another to physical, rather than purely mathematical, assumptions, and more specifi-
cally, to the atomistic hypothesis, on which much of his own physical conceptions
had hitherto been based. An axiomatic analysis of the kind he deemed necessary for
physical theories could indeed compel him to modify even his most fundamental
assumptions if necessary. The leading principle should remain, in any case, to sepa-
rate as clearly as possible the assumptions of any particular theory from the theorems
that can be derived in it. Thus, the above quotation suggests that if by this time Hil-

215 “So wenig man schon mit dem n-Körperproblem arbeiten kann, so wäre es noch fruchtloser, auf die
Behandlung des n-Elektronenproblemes einzugehen. Es handelt sich vielmehr für uns darum, das n-
Elektronenproblem zu verstümmeln, die vereinfachte Gleichungen zu integrieren und von ihren
Lösungen durch Korrekturen zu allgemeineren Lösungen aufzusteigen. Die gewöhnliche Mechanik
liefert uns hierfür ein ausgezeichnetes Vorbild in der Theorie der kleinen Schwingungen; die Vereinfa-
chung des n-Körperproblems besteht dabei darin, dass die Körper sich nur wenig aus festen Ruhela-
gen entfernen dürfen. In der Elektrodynamik gibt es ein entsprechendes Problem, und zwar würde ich
die Theorie der Dispersion als das dem Problem der kleinen Schwingungen analoge Problem anspre-
chen.” (Hilbert 1913–1914, 2)

216 “Von der Verwirklichung unseres leitenden Gedankens, alle physikalischen Vorgänge auf das n-Elek-
tronenproblem zurückzuführen, sind wir freilich noch sehr weit entfernt. An Stelle einer mathemati-
schen Begründung aus den Bewegungsgleichungen der Elektronen müssen vielmehr noch teils
willkürliche Annahmen treten, teils vorläufige Hypothesen, die später einmal begründet werden dürf-
ten, teils aber auch Annahmen ganz prinzipieller Natur, die sicher später modifiziert werden müssen.
Dieser Übelstand wird noch auf lange Zeit hinaus unvermeidlich sein. Unsere Darstellung soll sich
aber gerade dadurch auszeichnen, dass die wirklich nötigen Annahmen alle ausdrücklich aufgeführt
und nicht mit ihren Folgerungen vermischt werden.” (Hilbert 1913–1914, 87–88)
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bert had not yet decided to abandon his commitment to the mechanistic reductionism
and its concomitant atomistic view, he was certainly preparing the way for that possi-
bility, should the axiomatic analysis convince him of its necessity.

In the subsequent lectures in this course, Hilbert referred more clearly to ideas of
the kind developed in Mie’s theory, without however explicitly mentioning his name
(at least according to the record of the manuscript). Outside ponderable bodies,
which are composed of molecules, Hilbert explained, the Maxwell equations are
valid. He formulated them as follows:

This is also how the equations are formulated in Born’s article of 1910, the text on
which Hilbert was basing this presentation. But Hilbert asserted here for the first time
that the equations are valid also inside the body. And he added:

Inside the body, however, the vectors e and M are very different, since the energy density
is always different from zero inside the sphere of the electron, and these spheres undergo
swift oscillations. It would not help us to know the exact value of the vector fields inside
the bodies, since we can only observe mean values.217

Hilbert thus simply stated that the Maxwell equations inside the body should be
rewritten as:

where overstrike variables indicate an average value over a space region.
Hilbert went on to discuss separately and in detail specific properties of the con-

duction-, polarization- and magnetization-electrons. He mentioned Lorentz as the
source for the assumption that these three kinds of electrons exist. This assumption,
he said, is an “assumption of principle” that should rather be substituted by a less
arbitrary one.218 By saying this, he was thus not only abiding by his self-imposed
rules that every particular assumption must be explicitly formulated, but he was also
implicitly stressing once again that physical assumptions about the structure of matter

217 “Diese Gleichungen gelten sowohl innerhalb wie ausserhalb des Körpers. Im innern des Körpers wer-
den aber die Vektoren  und  sich räumlich und zeitlich sehr stark ändern, da die Dichte der Elek-
trizität immer nur innerhalb der Elektronenkugeln von Null verschieden ist und diese Kugeln rasche
Schwingungen ausführen. Es würde uns auch nicht helfen, wenn wir innerhalb des Körpers die
genauen Werte der Feldvektoren kennen würden; denn zur Beobachtung gelangen doch nur Mittel-
werte.” (Hilbert 1913–1914, 89)

218 “Wir machen nur eine reihe von Annahmen, die zu den prinzipiellen gehören und später wohl durch
weniger willkürlich scheinende ersetzt werden können.” (Hilbert 1913–1914, 90)
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are of a different kind than merely mathematical axioms, that they should be avoided
whenever possible, and that they should eventually be suppressed altogether.

In a later section of his lecture, dealing with diffuse radiation and molecular
forces, Hilbert addressed the problem of gravitation from an interesting point of view
that, once again, would seem to allude to the themes discussed by Mie, without how-
ever explicitly mentioning his name. Hilbert explained that the problem that had orig-
inally motivated the consideration of what he called “diffuse electron oscillations” (a
term he did not explain) was the attempt to account for gravitation. In fact, he added,
it would be highly desirable—from the point of view pursued in the course—to
explain gravitation based on the assumption of the electromagnetic field and the Max-
well equations, together with some auxiliary hypotheses, such as the existence of rigid
bodies. The idea of explaining gravitation in terms of “diffuse radiation of a given
wavelength” was, according to Hilbert, closely related to an older idea first raised by
Georges-Louis Le Sage (1724–1803). The latter was based on the assumption that a
great number of particles move in space with a very high speed, and that their impact
with ponderable bodies produces the phenomenon of weight.219 However, Hilbert
explained, more recent research has shown that an explanation of gravitation along
these lines is impossible.220 Hilbert was referring to an article published by Lorentz in
1900, showing that no force of the form  is created by “diffuse radiation”
between two electrical charges, if the distance between them is large enough when
compared to the wavelength of the radiation in question (Lorentz 1900).221

And yet in 1912, Erwin Madelung had readopted Lorentz’s ideas in order to cal-
culate the force produced by radiation over short distances and, eventually, to account
for the molecular forces in terms of radiation phenomena (Madelung 1912). Made-
lung taught physics at that time in Göttingen and, as we saw, he had attended Hil-
bert’s 1912 advanced seminar on kinetic theory. Hilbert considered that the
mathematical results obtained by him were very interesting, even though their conse-
quences could not be completely confirmed empirically. Starting from the Maxwell
equations and some simple, additional hypotheses, Madelung determined the value of

219 LeSage’s corpuscular theory of gravitation, originally formulated in 1784, was reconsidered in the
late nineteenth century by J.J. Thomson. On the Le Sage-Thomson theory see (North 1965, 38–40;
Roseaveare 1982, 108–112). For more recent discussions, cf. also (Edwards 2002). 

220 “Das Problem, das zunächst die Betrachtung diffuser Elektronenschwingungen anregte, war die
Erklärung der Gravitation. In der Tat muss es ja nach unserem leitenden Gesichtspunkte höchst wün-
schenswert erscheinen, die Gravitation allein aus der Annahme eines elektromagnetischen Feldes
sowie er Maxwellschen Gleichungen und gewisser einfacher Zusatzhypothesen, wie z.B. die Existenz
starrer Körper eine ist, zu erklären. Der Gedanke, den Grund für die Erscheinung der Gravitation in
einer diffusen Strahlung von gewisser Wellelänge zu suchen, ähnelt entfernt einer Theorie von Le
Sage, nach der unzählige kleine Partikel sich mit grosser Geschwindigkeit im Raume bewegen sollen
und durch ihren Anprall gegen die ponderablen Körper die Schwere hervorbringen. Wie in dieser
theorie ein Druck durch bewegte Partikel auf die Körper ausgeübt wird, hat man jetzt den modernen
Versuch unternommen, den Strahlungsdruck für die Erklärung der Gravitation dienstbar zu machen.”
(Hilbert 1913–1914, 107–108)

221 On this theory, see (McCormmach 1970, 476–477).

1 r2⁄
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an attraction force that alternatively attains positive and negative values as a function
of the distance.222

As a second application of diffuse radiation, Hilbert mentioned the possibility of
deriving Planck’s radiation formula without recourse to quantum theory. Such a deri-
vation, he indicated, could be found in two recent articles of Einstein, one of them
(1910) with Ludwig Hopf (1884–1939) and the second one (1913) with Otto Stern
(1888–1969).

Hilbert’s last two courses on physics, before he began developing his unified the-
ory and became involved with general relativity, were taught in the summer semester
of 1914 (statistical mechanics) and the following winter semester, 1914–1915 (lec-
tures on the structure of matter).223

12. BROADENING PHYSICAL HORIZONS - CONCLUDING REMARKS

The present chapter has described Hilbert’s intense and wide-ranging involvement
with physical issues between 1910 and 1914. His activities comprised both published
work and courses and seminars. In the published works, particular stress was laid on
considerably detailed axiomatic analysis of theories, together with the application of
the techniques developed by Hilbert himself in the theory of linear integral equations.
The courses and seminars, however, show very clearly that Hilbert was not just look-
ing for visible venues in which to display the applicability of these mathematical
tools. Rather, they render evident the breadth and depth of his understanding of, and
interest in, the actual physical problems involved.

Understanding the mixture of these two components—the mathematical and the
physical—helps us to understand how the passage from mechanical to electromag-
netic reductionism was also the basis of Hilbert’s overall approach to physics, and
particularly of his fundamental interest in the question of the structure of matter. In
spite of the technical possibilities offered by the theory of integral equations in the
way to solving specific, open problems in particular theories, Hilbert continued to be
concerned about the possible justification of introducing probabilistic methods in
physical theories at large. If the phenomenological treatment of theories was only a
preliminary stage on the way to a full understanding of physical processes, it turned
out that also those treatments based on the atomistic hypothesis, even where they
helped reach solutions to individual problems, raised serious foundational questions
that required further investigation into the theory of matter as such. Such consider-

222 “Die mathematischen Ergebnisse dieser Arbeit sind von grossem Interesse, auch wenn sich die Folge-
rungen nicht sämtlich bewähren sollten. Es ergibt sich nämlich allein aus den Maxwellschen Glei-
chungen und einfachen Zusatzhypothese eine ganz bestimmte Attraktionskraft, die als Funktion der
Entfernung periodisch positiv und negativ wird.” (Hilbert 1913–1914, 108)

223 The winter semester, 1914–1915 course is registered in the printed version of the Verzeichnis der Vor-
lesungen an der Georg-August-Universität zu Göttingen (1914–1915, on p. 17) but no notes seem to
be extant.
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ations were no doubt a main cause behind Hilbert’s gradual abandonment of mechan-
ical reductionism as a basic foundational assumption.

This background should suffice to show the extent to which his unified theory of
1915 and the concomitant incursion into general theory of relativity were organically
connected to the life-long evolution of his scientific horizon, and were thus anything
but isolated events. In addition to this background, there are two main domains of
ideas that constitute the main pillars of Hilbert’s theory and the immediate catalysts
for its formulation. These are the electromagnetic theory of matter developed by
Gustav Mie starting in 1912, on the one hand, and the efforts of Albert Einstein to
generalize the principle of relativity, starting roughly at the same time.
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