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1. Introduction 

Andrew Wiles’ proof of Fermat’s Last Theorem (FLT), completed in 1994, was a 

landmark of late twentieth century mathematics. It also attracted a great deal of 

attention among both the media and the general public. Indeed, not every day a 

mathematical problem is solved more than 350 years after it was first posed, and not 

every day the work of a pure mathematician makes it to the front page of the New 

York Times. 

On the margins of his own copy of Diophantus’ Arithmetic Fermat had written down 

the result sometime after 1630:  it is not possible to write a cube as the sum of two 

cubes or a bi-square as the sum of two bi-squares, and in general, it is not possible 

that a number that is a power greater than two be written as the sum of two powers of 

the same type.  “I have discovered a truly marvelous proof, which this margin is too 

narrow to contain...”, Fermat famously wrote. The proof of a result so easy to 

enunciate turned out to be enormously elusive. Wiles’ was an extremely complex and 

lengthy proof that used sophisticated mathematical techniques drawing from a wide 

variety of mathematical domains. One can be certain that this is not the proof that 

Fermat thought to have had. 
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The media coverage of Wiles’ work on FLT offered to the nonmathematical public an 

unprecedented opportunity to become acquainted with the arcane world of research in 

number theory.  Doubtlessly, Simon Singh took the lead in this popularization effort 

when presenting his BBC TV program (in collaboration with John Lynch) and his 

best-seller Fermat’s Enigma.  The cover of this book described the history of FLT as 

“the epic quest to solve the world's greatest mathematical problem.” The reader is told 

that the problem “tormented lives” and “obsessed minds” for over three centuries, 

thus constituting “one of the greatest stories imaginable”. On the front flap we read 

that FLT became the Holy Grail of mathematics and that Euler, the most outstanding 

mathematician of century XVIII, “had to admit defeat” in his attempts to find a proof.  

Moreover: 

Whole and colorful lives were devoted, and even sacrified, to finding a proof. … Sophie 

Germain took on the identity of a man to do research in a field forbidden to females … The 

dashing Evariste Galois scribbled down the results of his research deep into the night before 

venturing out to die in a duel in 1832. Yutaka Taniyama … tragically killed himself in 1958. 

Paul Wolfskehl, a famous German industrialist, claimed Fermat had saved him from suicide.  

“The Last Theorem”, we read in the opening passage of the book, “is at the heart of 

an intriguing saga of courage, skullduggery, cunning, and tragedy, involving all the 

greatest heroes of mathematics.” 

Descriptions of this kind have done much to enhance the dramatic qualities of the 

story, and to help attract the attention of the lay public to the discreet charms of 

mathematics. Indeed, for his laudable effort in popularizing the story of FLT in 1999 

Singh was bestowed a special award by the American Mathematical Society.1 But as 

the above quoted passage suggests, even a cursory reading of the book shows that 350 

years of history of FLT were enormously over-dramatized in this account. Of course, 

this over-dramatization may be easily explained away by alluding to its intended 

audience and aim. Still, I think that the historiographical approach underlying Singh’s 

book actually helps identifying some shortcomings that have affected many previous, 
                                                 
1 �otices of the AMS 46 (5), 568-569.  
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both scholarly and popular, accounts of the history FLT (some of which possibly 

provided Singh with sources of information). It is not only that suicides, transvestism, 

duels at dawn and deception were never part of this mathematical tale, and that the 

“great heroes of mathematics” actually devoted very little attention to FLT, if they did 

at all (Galois, to be sure, devoted none). It is that since the time of Euler, when this 

theorem aroused curiosity among prominent mathematicians, it was mainly in a 

passive, and typically ephemeral way that did not elicit their own active participation, 

and thus— after its formulation by Fermat and before the last stage that culminated in 

the work of Wiles—serious work was devoted to it only seldom.  

In the present article I would like to outline the history of FLT from a perspective that 

seems to me to fit the historical record more adequately, by putting forward a down-

to-earth, essentially non-dramatic account.2 This is not intended as a comprehensive 

exposition of the main mathematical results that were accumulated throughout 

generations of research in number theory in either direct, or indirect, or merely 

incidental relation with FLT. Nor is this an attempt to offer a general account of the 

ideas necessary to understand Wiles’ proof and the related mathematics.3 Likewise, in 

this article I do not intend to come up with a personal evaluation of the intrinsic 

mathematical importance of FLT (that would be unimportant and irrelevant).  Rather, 

this historical account analyzes the changing historical contexts within which 

mathematicians paid more or (typically) less attention to FLT as part of their 

professional activities. Some of the facts around which I build the story (especially in 

sections 2,3 and 4, covering the period between Fermat and Kummer) have been 

previously discussed in the secondary literature. Here I revisit those discussions with 

a somewhat different stress, while connecting them as part a specific historical thread 

that is visible from the perspective I suggest. Other facts that are part of this thread 

have been essentially overlooked thus far and I discuss them (especially in sections 

5,6 and 7, covering activity in number theory in the nineteenth and twentieth century.) 

                                                 
2 For a recent discussion of narrative strategies (and dramatic vs. non dramatic 

approaches) in the historiography of mathematics, see [Corry 2008].  

3 Interested readers can consult, among others, [Edwards 1977], [Hellegouarch 2001], 

[Ribenboim 1980, 1997], [Van der Poorten 1995].  
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In particular, section 6 discusses the surprising role of the Wolfskhel prize as a pivotal 

point in the story, while section 7 describes the way in which some deep changes that 

affected the discipline in number theory over the twentieth century offered new 

perspectives from which to consider FLT as part of more general families of problems 

to which increasingly significant research efforts were devoted.  

As already suggested, the reader will not find here entire mathematical lives dedicated 

to the theorem, and only three cases (with varying degrees of intensity and length) of 

“partial-life” dedication: Sophie Germain, Harry Schultz Vandiver, and Wiles. 

Certainly, theorem-related suicides are not part of this story. Rather, we will come 

across ingenious ideas (some of them, but rather few, with broader, long-term 

repercussions on the theory of numbers), intermittent curiosity and, mainly, 

mathematicians occupied with all kinds of problems close to, or sometimes distant 

from, FLT, with occasional incursions and furtive attempts to solve the problem. As 

will be seen here, an important virtue of the history of FLT, simply because of the 

time span it covers, is that it affords a useful point of view from which to follow the 

deep changes undergone by the entire field of number theory from the time of Fermat 

to our days.  

The inherent difficulty involved in a prospective proof of FLT is nowadays more 

evident than ever. This provides a possible argument to explain, in retrospect, the 

relative scarcity of evidence indicating significant and lasting activity directly related 

to FLT that I will discuss in what follows. Thus, one possible counterargument to be 

adduced is that mathematicians whose work is discussed here did consider FLT as a 

truly important problem and/or did devote at times much effort to attempt to solve it, 

but since this effort did not lead to any real breakthrough (and now we realize that it 

could not lead to a breakthrough at the time) nothing of this was published, in spite of 

the interest and effort devoted. It might also be claimed that in spite of the intrinsic 

importance conceded by many to the problem, prominent number theorists 

immediately sensed the real magnitude of the difficulty and only for this reason 

decided to redirect their time and efforts towards different, more potentially rewarding 

aims. Lack of evidence, under these arguments, does not indicate lack of interest or 

even lack of activity. Such arguments, I admit, are plausible and they are hard to 

refute. Indeed, I believe that they may perhaps hold true (at least to some extent) for 

some of the mathematicians discussed here or for some whom I did not discuss. And 
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yet, I think that the positive evidence that I do present and the overall picture that 

arises from my account below produce a sufficiently coherent case that supports my 

interpretation that lack of evidence was related to lack of activity, or at least serious 

interest and activity.  

Wiles’ achievement involved a proof of the semi-stable case of the Taniyama-

Shimura conjecture (TS) that by then was known to yield FLT as a corollary. This 

was a truly mathematical tour of force. The story of his own personal quest to prove 

FLT is indeed dramatic at two levels: his interest in the theorem ever since childhood 

that, after a long hiatus of decades, eventually culminated in the great proof, and the 

years of seclusion that led to a proof in which an error was eventually found that 

required extra work before completion several months later. But the earlier chapters 

of the story were much less heroic: the historical record shows that FLT was born on 

the physical margins of a book and that throughout more than 350 years it essentially 

remained at the margins of the theory of numbers, with occasional forays into the 

limelight and a truly amazing grand finale in the work of Wiles.  

 

 

2. Origins – in the margins   

Number-theoretical questions started to occupy the mind of Fermat sometime around 

1635 under the influence of Marin Mersenne (1588-1648). While studying 

Diophantus’ Arithmetica, in a Latin translation prepared in 1621 by Claude Bachet 

(1581-1638), Fermat came across the eighth problem of Book II, typical of those 

formulated and solved by Diophantus. It requires to write a given square number as a 

sum of two square numbers. On the margins of his copy, Fermat wrote down the 

famous claim about the impossibility of doing something similar for cubes, bi-

squares, or any higher power, and about having a remarkable proof of this fact which, 

unfortunately, could not be written in the narrow margins of the book. This is the 

famous origin not only of what became a long mathematical quest, but also of the 

dramatic character often associated with the story. A less dramatic approach for the 

part of the story directly related to Fermat, however, arises from a close reading of 

several existing historical accounts of this mathematician’s overall contribution to 

number theory [Goldstein 1995; Mahoney 1984; Scharlau & Opolka 1985, 5-14; Weil 
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1984, 37-124]. I rely here on these accounts to recount briefly the initial stages of the 

story of FLT within the more relaxed perspective I suggest for the entire narrative 

associated to the history of the theorem.   

It was Fermat’s habit to write on the margins of books, particularly his copy of the 

Arithmetica, unproven results, general ideas, and possible mathematical challenges. 

He also communicated ideas in letters to a group of correspondents with like interests, 

but he never kept copies of such letters. Except for one well-known case, mentioned 

right below, he never explained his method of proof for an arithmetical result. It is 

thus hard to determine with certainty in all cases which results he had really proved, 

and which he had asserted on the basis of accumulated numerical evidence. Most 

likely, in most cases, he did have a clear idea of a proof when he so declared, but 

since he seldom wrote them down, some of these may have been occasionally 

erroneous. The best known example of this is the one related with the so-called 

Fermat integers, of the form 122 +
n

. In letters written between 1640 and 1658, Fermat 

expressed his conviction that such numbers would be prime for any n, but at the same 

time he confessed not to have a proof of that fact. And yet in a letter sent in 1659 to 

Pierre de Carcavi (1600-1684) but actually intended for Huygens, Fermat suggested to 

have a proof of this conjecture based on the “method of infinite descent” [Fermat 

Oeuvres, Vol. 2, 431-436]. Eventually, however, in 1732 Euler famously showed that 

for n = 5, the corresponding Fermat number is not a prime. 

In the case that concerns us here, the marginal note that later became known as FLT 

was written close to the awakening of Fermat’s interest in this kind of questions, and 

there is no evidence that he ever repeated in writing the conjecture for the general 

case. In contrast, he explicitly challenged in 1636 a correspondent to prove (among 

other problems) cases n = 3 and case n = 4 of the conjecture [Oeuvres, Vol. 3, 286-

292]. Also in the 1659 letter to Carcavi, Fermat claimed to have used the method of 

descent for proving several results, among which he mentioned the case n = 3 of his 

conjecture. It seems thus safe to assume that Fermat soon spotted an error in what he 

initially thought to be a correct proof for the general case, and there was no reason to 

publicly correct a statement advanced only privately. At any rate, this was only one of 

many other conjectures he proposed and discussed.  

The method of infinite descent is applied in the one proof of an arithmetical result that 

Fermat indicated in detail, which is another result inspired by Diophantus. This time, 
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the margins of the Arithmetica were wide enough to contain the argument [Oeuvres, 

Vol. I, 340-342]. The result states (symbolically expressed) that there are no three 

integers x,y,z that satisfy the formula  

 x2 + y2 = z2 

and for which, at the same time, xy/2 is a square number.4 Interestingly, Fermat’s 

proof of this fact also proves FLT for case n = 4, since it proves that z4 – x4 cannot be 

a square, and hence certainly not a bi-square [Edwards 1977, 10-14; Weil 1978, 77-

79].  Fermat was certainly aware of this implication [Oeuvres, Vol. 1, 327]. Of course, 

the case n = 4 is important for a fundamental reason: if FLT is true for n = 4, then it is 

clear that in order to prove the general case it is enough that FLT be valid for prime 

numbers.  

In Fermat’s 1659 letter, the impossibility of writing a cube as a sum of two cubes 

appears as part of a list of several number-theoretical, general results that Fermat 

considered worth of attention, and that could be solved using infinite descent. Fermat 

stated that they summarized his “fantasies on the subject of numbers” but at the same 

time he made it clear that is just one of an infinity of questions of this kind. Among 

the most interesting and challenging of these, Fermat singled out the representability 

of any number as a sum of up to four squares, a problem that also Descartes 

considered one of the most beautiful of arithmetic and one whose apparent difficulty 

prevented him from even trying to search for a proof [Scharlau & Opolka 1985, 9]. 

The other items in Fermat’s list were fundamental in leading to the eventual 

development of the theory of quadratic forms. The general case of the conjecture that 

became FLT does not appear in the list. Except for his circle of correspondents 

Fermat felt a total lack of interest on the side of his contemporaries (especially British 

mathematicians) on questions of this kind, and he decided to provide information 

about his method and this list of problems for fear that they be lost to later generations 

as he would not to find “the leisure to write out and expand properly all these proofs 

and methods” [Weil 1984, 118].  

                                                 
4 [Goldstein 1995] contains an intreresting and detailed account of the history of this 

result and how it was read, developed and transmitted by contemprary and successive 

generations of mathematicians.  
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This very brief account should suffice to provide a fair idea of the very limited 

interest that the marginal conjecture had within the overall picture of Fermat’s 

arithmetic endeavors. Eventually, a large number of his achievements became 

publicly known thanks to his son, Samuel. In 1670 Samuel Fermat published an 

edited version of Bachet’s Latin translation of Diophantus’ Arithmetica, including 

comments and related letters by his father. Through this edition the world became 

aware not only of what became FLT, but also of many other ideas.  

  

3. Early stages – in the margins as well 

After Samuel Fermat had published in 1630 Diophantus’ Arithmetica with his father’s 

comments, and until the mid-eighteenth century, few mathematicians ever attempted 

to solve any of the problems proposed by Fermat, and possibly no one attempted to 

solve what became FLT. 1753 is the year when Leonhard Euler (1707-1783) enters 

the story. The amount and scope of Euler’s scientific output is astonishing. He was 

involved in, and significantly contributed to, all fields of mathematics and physics in 

which research was conducted at that time. This includes, of course, what we know 

today as the theory of numbers. It is important to stress, however, that in Euler’s time 

there was actually no mathematical field called “number theory”. Rather, there was a 

heterogeneous collection of more or less complex problems and techniques that were 

never fully systematized, and that were associated with the field of “arithmetic”. In 

fact, the term “higher arithmetic” remained in use until the nineteenth century (and 

even thereafter), which is the time when the term “number theory” started to be 

widely adopted. Moreover, the period of time between Fermat and Euler is precisely 

the time of the rise and early development of the calculus. It seems quite evident that 

during this time, it was the new calculus that attracted, above all, most of the energies 

of the leading mathematicians. Relatively little attention was devoted at the time to 

this higher arithmetic.  

This assertion is also true of Euler, but at the same time it is also true that he kept a 

lively interest in arithmetic in stark contrast to his predecessors and contemporaries, 

and that he achieved important results in this field. Fermat’s legacy of unsolved 

problems was no doubt an important factor in directing Euler’s interest to this field 

[Weil 1984, 160-274]. Euler solved many of these open problems, but some others he 
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did not, or could not, solve. FLT was one of the latter class, but definitely not the only 

one. Thus, for instance, in 1770 Joseph Louis Lagrange (1736–1813) solved a 

different open problem proposed by Fermat, and that Euler had unsuccessfully 

attempted to prove, namely, that any integer can be written as the sum of no more 

than four square numbers.  

It was mostly in the correspondence with his friend Christian Goldbach (1690-

1764)—famous for his (still unproven) conjecture on the possibility of writing every 

even number as the sum of two prime numbers—that Euler discussed Fermat’s ideas. 

This correspondence started in late 1729 and lasted thirty-five years. Euler and 

Goldbach discussed above all problems related with mathematical physics and infinite 

series and integration. They also discussed some higher arithmetic, especially 

concerning possible representations of numbers as specific kinds of sums of powers. 

Fermat’s number-theoretical ideas do appear occasionally in these letters, but barely 

in connection with what became FLT. From the first letters, whenever the name 

Fermat appears, it is mainly in connection with the question of the Fermat numbers. 

And 1753, only twenty-four years after the correspondence started, is the first time 

when Fermat’s marginal conjecture comes up, in the last half page of a letter where 

many other ideas were also discussed.  

In that letter, Euler told Goldbach about this “very beautiful” theorem of Fermat. He 

claimed to have found proofs for the cases n = 3 and n = 4, and he added that the 

proofs of these two cases were so essentially different from each other, that he saw no 

possibility to derive from them a general proof. Moreover, it was clear to him that the 

higher one went in the powers, the more clearly impossible the validity of the formula 

xn + yn = zn would appear. Also, he had not been able so far to find the proof for n = 5 

[Fuss 1843, Vol. 1, 618]. That’s all he had to say about this problem. From a further 

letter of 1755, we learn that he was sure that Fermat did have the general proof, and 

stated again that his own efforts in this regard so far had been in vain [Fuss 1843, Vol. 

1, 623]. In 1770 Euler published a textbook on algebra, and his proof for the case n = 

3 appeared there. Although highly ingenious, it contained a non-trivial mistake [Euler 

1770]. The idea needed in order to correct this proof does appear in other places in his 

work [Euler 1760], and thus, it has been common to claim, with some degree of 

justification but not with full historical precision, that Euler was able to solve the case 

n = 3 of FLT. 
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But there is another interesting point to look at in the last few sentences of Euler’s 

letter of 1753. Euler added here his own idea, different to Fermat’s, on how the 

original problem of Diophantus could be generalized. Since the equations a2 + b2 = c2 

and a3 + b3 + c3 = d3 do have integer solutions, then it would seem to appear that a4 + 

b4 + c4 + d4 = e4 should also have such solutions. Euler had not yet found four integers 

that satisfy the equation, but he had found five bi-squares summing up to a bi-square. 

Then, in 1778 he referred once again to FLT and suggested a further generalization 

(quoted in [Dickson 1919, Vol. 2, 648]): 

It has seemed to many Geometers that this theorem may be generalized. Just as there do not 

exist two cubes whose sum or difference is a cube, it is certain that it is impossible to exhibit 

three biquadrates whose sum is a biquadrate, but that at least four biquadrates are needed if 

their sum is to be a biquadrate, although no one has been able up to the present to assign four 

such biquadrates. In the same manner it would seem to be impossible to exhibit four fifth 

powers whose sum is a fifth power, and similarly for higher powers. 

Fermat’s generalization was one way to go, and here Euler simply thought of a 

different possible one. Who could have told at the time which of all of these ideas 

would be the most interesting and fruitful one for mathematics? As a matter of fact, 

this latter conjecture by Euler, on the impossibility of finding three biquadrates whose 

sum is a biquadrate, had a beautiful history of itself, and it was only in 1988 that 

Noam Elkies at Harvard found the following, truly amazing counterexample to the 

conjecture [Elkies 1988]: 

2,682,4404 + 15,365,6394 + 18,796,7604 = 20,615,6734. 

A detached inspection of the historical record thus shows that while Euler may have 

certainly felt challenged by any problem in higher arithmetic that he was not able to 

solve, we can hardly think that FLT represented a pressing question of particular 

mathematical interest that called for an urgent solution on his side. Let us not imagine, 

then, of an Euler calling a press conference to “admit defeat” in proving FLT.  

Nor had Euler many immediate successors that intensively pursued his interests in 

number theory in general. Of the great mathematicians of the following generation, 

only Lagrange, Euler’s successor at the Berlin Academy of Sciences, can be singled 

out as having developed a real interest in the field. To be sure, however, Lagrange 

made no contribution to FLT nor expressed any interest in the problem. In 1786, 

Lagrange moved to Paris, and by that time he was no longer active in number theory. 
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One of the younger colleagues he met there was Adrian Marie Legendre (1752-1833), 

whose earlier work on ballistics Lagrange knew well. Legendre started now to publish 

interesting work on number theory, inspired by that of Euler and Lagrange [Weil 

1984, 309-338]. In 1798 he published a comprehensive treatise on the field as known 

to him at the time, and this treatise would see several re-editions until 1830. The first 

edition included proofs of FLT for the exponents n = 3 and n = 4.  

Legendre’s treatise is an interesting source of information not just about the specific 

number theoretical results known at the time of publication of its various editions, but 

even more so about the evolving, overall image of the discipline with its main open 

problems, its internal organization into sub-topics, and its relevant techniques and 

tools along the years. The preface to the first edition [Legendre 1798], for instance, 

provides a clear roadmap of the field, updated to the end of the eighteenth century. 

Fermat appears here as a main hero, and Legendre stresses that if he had concealed 

proofs of the results he achieved, this was not only in order to secure his own personal 

successes, but also for that of his nation, because “there was a rivalry above all 

between the French and English geometers”. Euler’s contributions, of course, were 

also central, and especially since they led to the proof of two of Fermat’s “principal 

theorems”. By this Legendre did not mean FLT, but rather the following: “(1) that if a 

is a prime number, and x is any number not divisible by a, then the formula  xa-1 -1 is 

always divisible by a; (2) that every prime number of the form 4n + 1 is the sum of 

two squares.” Legendre also mentioned the other remarkable results found in Euler’s 

works, among which the proofs of two cases of FLT are just one more item. In the 

entire list: 

One finds the theory of divisors of the quantity an ± bn; the treatise Partitione numerorum …; 

the use of imaginary and irrational factors in the solution of indeterminate equations; the 

general solution of indeterminate equations of second degree, under the assumption that a 

particular solution is known, the proof of various theorems about the powers of numbers and, 

in particular, of those negative propositions advanced by Fermat that the sum or difference of 

two cubes cannot be a cube and that the sum or difference of two bi-squares cannot be a bi-

square.  

Legendre also praised Lagrange for his achievements, and the only one that related 

Fermat’s legacy was the proof of the solvability of the equation x2 – Ay2 = 1, and the 

techniques developed around it. In Legendre’s view, the most remarkable of 

Lagrange’s discoveries in this field was a general and “singularly fecund” method, 
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from which “an infinity” of other results would follow, and that related the treatment 

of linear and quadratic forms as applied to questions of prime numbers. 

As for his own works, Legendre mentioned various results concerning quadratic 

forms, the reciprocity law, and the application of these two to perfecting Lagrange’s 

techniques. One application of his results that Legendre singled out as being 

particularly important was the solution of “the famous theorem by Fermat”, that any 

number can be written as the sum of three triangular numbers, and another theorem by 

the same author stating that every prime number of the form 8n + 7 is of the form p2 + 

q2 + 2r2. Indeed, in the body of the book, when Legendre speaks about “Fermat’s 

general theorem” he means the “polygonal number theorem”, a polygonal number of 

order m + 2 being a number of the form xxxm +− )( 2
2 . Fermat had conjectured around 

1638 that every integer n can be written as the sum of at most m + 2 polygonal 

numbers of order m + 2. This is the conjecture that Euler did not succeed in proving 

and for which Lagrange provided in 1770 a proof of the simplest case (i.e., that every 

non-negative integer is the sum of four squares). In 1816 Cauchy would prove the 

conjecture for m > 2, and Legendre would eventually include in the third edition of 

his treatise a refinement of Cauchy’s proof [Nathanson 1987]. In the first edition 

Legendre just sketched a proof for triangular numbers.5 Interestingly, he speaks in this 

section about Fermat’s putative proof of this conjecture in a way similar to that used 

only much later to speak about FLT. Thus, Legendre explained why, in his view, it is 

clear that if Fermat were aware of ideas such as developed later by Lagrange, he 

would have most likely formulated his conjecture in a different way [Legendre 1830, 

350]. Immediately after the section devoted to this theorem, which for Legendre was 

the most important one in Fermat’s legacy, he presented the proof of FLT for n = 3 

and did not add much comments to it. 

It was only gradually, as more and more open problems related with Fermat’s legacy 

were solved, and as FLT progressively became his “last” unproven conjecture, that 

this problem started to receive some specific attention, even though this attention did 

not derive from any special, intrinsic importance that could evidently be associated 

with the problem. Little by little, the fact that the problem had not been solved by 

                                                 
5 A full proof of this case appeared in 1801 in Gauss’s Disquisitiones Arithmeticae.  
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others added increased mathematical charm to it. More than one hundred and fifty 

years after the famous marginal remark, then, very few efforts had been actually 

devoted to solve it. By the end of the eighteenth century little importance was yet 

attributed to FLT, even within the framework of a book like Legendre’s that was 

entirely devoted to the field of number theory, this field being of relatively little 

importance within the overall economy of mathematics at the time.  

 

4. FLT between 1800 and 1855 – still in the margins  

The first great codification and systematization of number theory at the beginning of 

nineteenth century was the monumental Disquisitiones Arithmeticae published in 

1801 by Carl Friedrich Gauss (1777-1855). This book presented for the first time in a 

truly systematic fashion a great amount of results that were theretofore seen (even in 

Legendre’s presentation) as a somewhat haphazard collection of separate problems 

and diverse techniques. Disquisitiones soon rendered Legendre’s book obsolete. It had 

a momentous, though far form straightforward, influence over what the discipline of 

number theory would become over the nineteenth century and beyond [Goldstein &  

Schappacher 2007]. It is for this reason natural that any account of FLT will raise the 

question of Gauss’ attitude towards the problem. Gauss indeed gave some thought to 

the problem: in a letter posthumously published, he drafted a possible proof for the 

case n = 5, while stressing that the method he suggested might possibly be used also 

in the case n = 7 [Gauss Werke, Vol. 2, 390-391]. But at the same time, he was clear 

in his opinion about FLT, and this opinion he expressed, for instance, in a letter on 

1816 to his friend, the astronomer Wilhelm Olbers (1758-1840) [Gauss Werke, Vol. 2, 

629]: “I confess that Fermat’s Last Theorem—he wrote—as an isolated proposition 

has very little interest for me, for I could easily lay down a multitude of such 

propositions, which one could neither prove nor disprove”.  

One of the main mathematical themes developed in the Disquisitiones pertains to the 

problem of “quadratic reciprocity”, which for Gauss would provide a classical 

example of what is a truly important mathematical problem. Gauss devised no less 

than eight different proofs of the theorem of quadratic reciprocity [Lemmermeyer 

2000, 9-11]. Indeed, there was an important reason for bothering that much with one 

and the same problem as in each of the  proofs, Gauss hoped to find a way that will 
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allow generalizing the problem to powers higher than two, and, indeed, he himself 

successfully solved the problem for the cubic and bi-quadratic cases [Collison 1977; 

Goldstein & Schappacher 2007].  

Of special importance in his many attempts to deal with reciprocity was Gauss’s 

introduction and study of a new kind of numbers, the so-called “Gaussian integers”, 

namely, complex numbers of the form a + ib, where a, b are any two integers. In 

many respects, these Gaussian integers behave like standard integers (or “rational 

integers” as they became known starting with the work of Dedekind). While 

introducing this idea as a tool for investigating reciprocity properties, Gauss was also 

interested in investigating how far the analogy between rational integers and Gaussian 

ones could be extended. The first to use arguments involving complex numbers in 

order to prove theorems about integers was Euler, precisely in investigating the kind 

of questions mentioned above, and in particular in his alleged proof of case n = 3 of 

FTL. But it was Gauss who systematized it and who made this possibility widely 

known among mathematicians while developing the Gaussian integers. Further 

attempts to generalize this idea would play an important role in the later development 

of number theory, and in particular of FLT as we will see in what follows. In his 

already mentioned letter to Olbers, Gauss claimed that developing a theory that would 

generalize the idea of Gaussian integers would no doubt lead to important 

breakthroughs and that FLT “would appear only among one of the less interesting 

corollaries” of such a theory. Nevertheless, in the letter to Olbers, Gauss does say that 

FLT caused him “to return to some old ideas for a great extension of higher 

arithmetic.” What he meant by this is not really clear, given that by this time he was 

not involved anymore in research on number theory. One may conjecture, though, that 

he was referring to his correspondence, especially between 1804 and 1809, with 

Sophie Germain (1776-1831), a remarkable figure in this story.  

The limitations that prevented at the time a woman from pursuing her intellectual 

interests in the framework of the leading academic institutions did not deter Germain 

from valiantly educating herself at home, using his father’s well-equipped library, in a 

broad range of scientific topics. Aware that she would not be accepted into the newly 

founded Ecole Polytechnique, Germain sent a paper on analysis to Lagrange using the 

name of an acquaintance who was a registered student at the institution, Antoine-

August Le Blanc. Positively impressed by the work, Lagrange asked to meet M. Le 
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Blanc. The surprise upon meeting the person behind the name did not diminish 

Lagrange’s enthusiasm for the author’s talents, and he continued to support Germain 

for many years. This kind of surprise would repeat itself in the near future with two 

other important mathematicians, as Germain developed an interest in number theory 

and initiated a correspondence with both Legendre and Gauss after studying in detail 

their treatises and coming up with new and original ideas in the field [Bucciarelli & 

Dworsky 1980].  

The Le Blanc episode has repeatedly been rehearsed as part of the dramatizing trends 

associated with the FLT story. Singh, for instance, typically points out that Germain 

“had to take on the identity of a man to conduct research in a field forbidden to 

females”. He does not qualify this statement by explaining that the field “forbidden to 

females” at the time was science in general, rather than anything specific connected 

with FLT. Another way in which the Germain story is seldom qualified is by duly 

pointing out that—for all the admiration she deserves as a woman who challenged 

contemporary social conventions in relation to gender, science and learning—when 

compared to other great feminine figures in the history of mathematics, her biography 

lacks the social or political interest of a Sofia Kovalevskaia (1850-1891) and by all 

means the mathematical brilliance and impact of an Emmy Noether (1882-1935) 

[Dauben 1985]. Still, she is certainly central to the FLT story as will be seen now. 

Indeed, she was the first person to devote sustained efforts to FLT and to come up 

with a reasonably elaborated strategy to attack the problem in its generality. This 

situation, however, only stresses the point I am trying to pursue in this article, and not 

because the intrinsic limitations of her strategy that become evident with the benefit 

of hindsight. Rather, my point is that Germain’s focus on FLT is both a result of her 

institutional isolation and a strong evidence of the lack of systematic training and 

interaction with the main topics of contemporary research in higher arithmetic. Let me 

explain this point is greater detail.   

As already said, a first stage of her correspondence on arithmetic with Gauss took 

place between 1804 and 1809. In 1808 Germain’s scientific attention was diverted to 

a different field in which she gained recognition, even if in retrospective her work was 

essentially flawed: the theory of vibrations for elastic surfaces. The French Academy 

offered a prize for original research in this very difficult problem, and Germain 

presented three memories between 1811 and 1816. For the last one, in spite of some 
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mistakes affecting it, she was awarded the prize. At the same time, in 1815 and then 

again in 1818 the French Academy in Paris offered a minor prize for the proof of 

FLT. This prize was never awarded, but apparently it brought Germain again to 

research in number theory. After more than ten years of silence she wrote to Gauss 

again in 1819 presenting some new ideas on FLT, and explaining that she had never 

stopped to think about number theory. Actually, she stated, she had been thinking on 

FLT long before the Academy established this new prize [del Centina 2005].  

Gauss’s replies to Germain’s letters of 1804-1809 reflect admiration and respect, and 

these only grew upon his realizing the gender of his correspondent. We also know that 

he spoke to others about her with great esteem. Indeed, shortly before her death in 

1831, Gauss convinced the University of Göttingen to award her an honorary degree, 

but unfortunately it turned out to be late. In her letters of 1804 to 1909, Germain 

mentioned some ideas about possible ways to solve FLT but she wrote mainly about 

the two main topics treated in Disquisitiones, namely reciprocity and quadratic as well 

as higher forms. In all of his replies to her, Gauss never ever referred to the points she 

raised in relation with FLT (see [Boncompagni 1880]). In her detailed letter of 1819 

Germain stressed how she had used ideas taken from the Disquisitiones as the basis of 

her strategy to prove FLT. As soon as she had read this book, she wrote to him now, 

the connection between the Fermat equation and the theory of residues vaguely 

appeared to her. She also pointed out that she had already mentioned this idea to him 

a long time ago. Germain explained her ideas in detail in the letter and specifically 

asked Gauss about their possible importance. She was obviously anxious to hear 

Gauss’s reply soon, when she entrusted this letter to his friend Schumacher who had 

come to visit. And yet, Gauss never answered her letter [del Centina 2008]. There 

may be many explanations for this, including lack of time and the fact that Gauss had 

estranged himself for many years from direct involvement with number theory. It 

seems to me, however, that Gauss’ specific lack of interest towards FLT must have 

played a significant role as well.  

Her interaction with Legendre was also rather complex and indicative of an 

ambiguous evaluation of the importance of her work. On the one hand, it was 

Legendre who published and stressed the value of some of her ideas, and thanks to his 

action her results sensibly influenced subsequent research on FLT. On the other hand, 

much of Germain’s work remained unpublished and it is possible that even Legendre 
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did not read it or at least did not attribute sufficient interest to them.6 It is remarkable 

that in a letter of 1819 Legendre, possibly as a reply to a letter by her at that time, also 

wrote discouragingly [Stupuy 1896, 311]:  

I warn you that since I spoke to you for the first time about your approach, the opinion I had 

about its chances of success has now considerable weakened, and that, all things considered, 

I believe that it will be as sterile as many others. This is why I think you will make very well 

not to occupy yourself more with this, out of fear of wasting time which can be employed 

much more usefully with other research. 

The central point in Germain’s line of attack on FLT that turned out to be of signal 

importance for many subsequent attempts to prove the conjecture until the 1980s 

(though not for Wiles’ eventual strategy) is related to the theorem that bears her name 

and the related, well-know separation of the problem into two cases. As already 

pointed out, a direct consequence of the proof of FLT for n = 4, is that the conjecture 

is proved once it is proved for all odd prime exponents. Also, it is easily seen that, 

without loss of generality, one may assume that x, y, and z are relatively prime. 

Germain divided the possible solutions to be investigated into two separate cases that 

were to become standard in the treatment of the problem thereafter, namely:   

Case I – there are no three positive integer numbers x,y,z that satisfy xn + yn = zn, 

and such that no one of them is divisible by n. 

Case II – there are no three positive integer numbers x,y,z that satisfy xn + yn = zn, 

and such that one and only one of them is divisible by n. 

Germain’s theorem can be formulated as follows: 

Case I of FLT is true for an exponent n, if there is an auxiliary odd prime p for 

which the following two conditions hold: 

 (1) xn + yn + zn ≡ 0 (mod p) implies either x ≡ 0 (mod p), or y ≡ 0 (mod p), or 

z ≡ 0 (mod p) 

 (1.2) xn ≡ n  (mod p) is impossible for any value of x 

Based on this result, Germain proved that Case I holds whenever n and 2n+1 are both 

prime. She also proved additional conditions involving congruences among primes of 

                                                 
6 Forthcoming - HM.  
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various forms and, based on these, performed detailed calculations, generating among 

other things values of the auxiliary prime l. She was thus able to prove that case I of 

FLT is valid for all prime exponents p smaller than 197.7  

Case II turned out to be much more difficult. For n = 5, case II was proved only in 

1825 in separate, complementary proofs of Legendre and Peter Lejeune Dirichlet 

(1805-1859). Dirichlet also proved in 1832 case II for n = 14, and he did so while 

trying to prove it for n = 7. This latter case turned out to be especially difficult, and it 

was finally proved in 1839 by Gabriel Lamé (1795-1870). 

 

At this point in the story, we find ourselves two hundred years after Fermat wrote his 

marginal remark. Scattered efforts have been made to solve the problem. Sophie 

Germain is the only one to have devoted focused efforts, and some work has been 

done in the wake of her theorem leading to interesting results. Some new techniques 

were developed for dealing with problems similar to FLT but not FLT itself, and there 

is a growing realization that there may be some real mathematical challenge in this 

problem, after all, if it has not been solved so far. In 1815 and then again in 1818 the 

French Academy in Paris offered a minor prize for the proof, which was not awarded 

[Legendre 1823, 2], but FLT was included in the Academy’s Grand Prix only in 1849 

(more on this below). Lamé’s proof for n = 7 was a difficult one, and it was perhaps 

the first one that comprised the development of new techniques specifically devoted 

to solving the problem. The same Lamé was involved in the most important 

                                                 
7 Since only a part of Germain’s work became public through Legendre’s book, it was 

common until now to attribute her only with the proof for p < 100, whereas Legendre 

was attributed with its extension for all values up to p <  197. [Del Centina 2008] is 

based on a detailed analysis of many of her unpublished manuscripts, and it 

convincingly shows that Germain actually proved case I of FLT for all values of to p 

< 197.  
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nineteenth-century mathematical crossroad directly related with FTL, that took place 

in Paris in 1847, and that deserves a broader discussion here.8  

In 1847 we find the first instance of a group of leading mathematicians devoting 

serious, focused discussions to the possibility of proving this by now well-known 

conjecture. The group, gathered at the Paris Academy, included such stars as 

Augustin Louis Cauchy (1789-1857) and Joseph Liouville (1809-1882). In order to 

get a correct picture of the situation, however, one should constantly keep in mind that 

while discussing FLT in the Academy and trying new ideas on this question, these 

mathematicians were simultaneously devoting their efforts to several other 

mathematical problems, especially those related with analysis and mathematical 

physics.  

On March 1, 1847, Lamé presented his colleagues with what he thought to be a 

possible way to solve the general case. Lamé used an idea originally suggested to him 

by Liouville, which involved a factorization of a sum of integers into linear complex 

factors, as follows: 

xn + yn = (x + y) (x + ry) (x + r2y) … (x + rn-1y) 

Here n is an odd natural number, and r is a primitive root of unity, namely, a complex 

number (r ≠ 1) satisfying the condition  rn = 1 (n being the lowest such power). 

Starting from this factorization, Lamé would apply an argument based on the method 

of infinite descent in order to lead to a contradiction that would prove FLT. Thus, 

combining ideas of several mathematicians like Fermat himself, Gauss, and Liouville, 

Lamé thought to be on the right track to solve the problem.  

There were from the beginning some doubts about the logical validity of Lamé’s 

argument, and Liouville himself was among those who manifested such doubts. 

Interesting and sometimes personally loaded discussion followed this presentation. 

Two main issues were at stake. On the one hand, the discussants addressed the very 

pressing question of who was the first to introduce what idea which was decisive for 

the putative proof. On the other hand, there was a more technical, and more crucial 

                                                 
8 In this section I followed the presentation of [Edwards 1977, 59-75]. This seminal 

book can be consulted for details about the theorems and proofs menioned here. 
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matter, namely the question whether the factorization on the right-hand side of the 

above equation is unique, as in the case of decomposition into prime factors for 

rational integers. As already mentioned, the introduction of Gaussian integers 

immediately raised the question of how far the properties of rational integers might 

extend to this new kind of numbers, and it turned out that, essentially, most known 

properties would indeed apply. A similar question was at stake here for this more 

general domain, and it is here that the disappointing news came in, on May 24. That 

day Liouville read to his friends a letter sent from Germany by Kummer, who had 

also sent an article published in 1844 and that retrospectively invalidated Lamé’s 

alleged proof in spite of the brilliant idea it involved. Kummer’s article directly 

showed that the factorization in question was not unique, as tacitly assumed by Lamé. 

Kummer also informed that he had developed a theory of “ideal complex numbers” 

meant to restore a kind of unique prime factorization in domains of numbers in which, 

as he had noticed, uniqueness may fail. The theory also led to the definition of a 

certain class of prime numbers (within the domain of the rational integers), later to be 

called “regular primes”. Kummer noticed the relevance of this kind of primes to FLT 

and proved that the theorem is valid for all regular primes. Later on he found an 

operational criterion for telling whether or not a given prime is regular, using the so-

called “Bernoulli numbers”. It turned out, for instance, that the only irregular primes 

under 164 are 37, 59, 67, 101, 103, 131, 149, and 157. After 164, the calculations 

became prohibitively complex. Further, Kummer developed criteria to prove, given an 

irregular prime, if FLT is valid for it. In this way he proved FLT separately for 37, 59 

and 67, thus achieving the very impressive result that FLT is valid for all exponents 

under 100 [Kummer 1857].9 

Kummer’s results opened a broad and clearly defined avenue for a possible, continued 

investigation of FLT. All what was needed now was to continue the search for 

irregular primes, for which separate proofs could then be worked out, according to 

Kummer’s criteria. These criteria, moreover, could be further elaborated and refined 

in order to enable more efficient and precise procedures of verification that FLT was 

                                                 
9 Kummer’s proof contained some mistakes that were later corrected by successive 

mathematicians, culminating in [Vandiver 1926]. 
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valid for the individual cases in question. Apparently, Kummer assumed but did not 

prove that there are infinitely many regular primes and that there would be a very 

limited proportion of irregular primes. These assumptions continued to be shared by 

many. But the interesting point, from the perspective of the present account, is that 

this broad avenue was followed by very few number theorist in the following decades 

and relatively little work was done on FLT until the early twentieth century along 

these lines.  

This is not to say that Kummer’s ideas were completely abandoned. On the contrary, 

they did lead to important mathematical developments, but following a somewhat 

different direction wherein attempts to prove FLT played no role whatsoever. 

Through the combined efforts of prominent number-theorists like Richard Dedekind 

(1831-1916) and Leopold Kronecker (1823-1891) the full elaboration of the important 

insights contained in Kummer’s theory of “ideal complex numbers” led to a complete 

redefinition of how factorization properties are to be investigated (and even to a 

redefinition of “integers” in the more general domains that were now investigated). 

The mathematical discipline that in the early twentieth century became known as 

“algebraic number theory” actually arose from the works of Dedekind and Kronecker, 

and eventually, especially under the influence of Dedekind’s approach, gave rise to 

what became known as modern commutative algebra of pervasive impact in 

twentieth-century mathematics [Corry 2004, 129-136]. 

The important work of Kummer and the influence it had in leading to the 

development of so many central ideas in modern algebra is often mentioned when 

explaining the importance of FLT for the history of mathematics. Kummer’s attempt 

to solve FLT—so the typical argument goes—motivated him to launch a significant 

line of research that yield seminal ideas of lasting and pervasive importance in 

mathematics.10 This would indeed be a strong argument supporting the view of FLT 

as a “historically important mathematical problem”, were it not for the fact that the 

historical record leads us to add important qualifications to it. 

                                                 
10 Two prominent places where this opinion is presented are the introduction to 

[Hilbert 1902] and [Hensel 1910]. The latter became an often quoted source for 

stressing the historical importance of FLT. See below note 14. 
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In his 1847 letter to Liouville Kummer stated, indeed, that the application of the 

theory of ideal complex numbers to the proof of FTL had occupied him for some time 

now. On the other hand, he clearly stated his opinion that FLT was “a curiosity in 

number theory, rather than a major item.” In fact, very much like Gauss, Kummer 

declared that the problem of higher reciprocity was the “central task and the pinnacle 

of achievement in number-theoretical research.” He conducted important research in 

this field, following on the footsteps of Carl Gustav Jacobi (1804-1851). In his 

research Kummer even adopted the notation originally used by Jacobi when dealing 

with reciprocity. It was only after many efforts, especially after having performed 

lengthy and detailed calculations with numbers in domains that generalized the idea of 

the Gaussian integers, that Kummer realized that the tacit assumption of unique 

factorization would break down. He published only two, relatively short, articles 

where ideal complex numbers were applied to FLT: the first in 1847 and the second, 

containing his interesting proof of FLT for regular primes, as late as 1858. At the 

same time, between 1844 and 1859 he published a long list of dense, significant 

papers on higher reciprocity. Higher reciprocity, rather than FLT, was Kummer’s true 

motivation for developing the theory of ideal complex numbers [Edwards 1977, 

1977a]. 

 

5. Marginality within diversification in number theory 
(1855-1908) 

The story of the development of number theory in the second part of the nineteenth 

century is a complex one. On the one hand, there are important achievements of long-

standing impact such as embodied in the works of Dedekind and Kronecker, or such 

as those derived from the use of analytic approaches introduced in the work of 

Dirichlet. On the other hand, actual interest in the field on the side of broader 

audiences of mathematicians (and especially of prominent mathematicians) was 

definitely reduced. It is well know, for instance, that Dedekind’s theory of ideals was 

hardly read at the time of its publication, both in its German original and then in its 

French translation of 1876-77.11 This is not to say, however, that there was no actual 

                                                 
11 See [Goldstein & Schappacher 2007a, 68-70].  
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research being done in number theory. Rather, there was a reorganization of the field 

into several clusters of interest. These clusters grouped mathematicians who shared 

common interests within number theory, used similar techniques and pursued similar 

objectives. They published in similar journals and quoted each other. As a rule, they 

represented self-contained fields of research that hardly intercommunicated with each 

other.12 

During this period, the cluster where most of the actual activity in number theory 

developed was not connected to those trends that eventually led to the main foci of 

number theoretical research at the turn of the twentieth century, such as the 

“algebraic” and the “analytic” traditions. Rather, this cluster focused on questions 

directly connected with some of the basic topics discussed in Gauss’s Disquisitiones, 

such as reciprocity, and cyclotomic and Diophantine equations. It explicitly avoided 

the use of techniques involving complex numbers and analysis. At the same time, it 

showed a clear inclination towards historical accounts of the discipline. Contributors 

to this cluster included in a visible way not only mathematicians, but also engineers, 

high-school teachers and university professors from other disciplines. They came 

from various countries including places without well-developed research traditions in 

the field. Remarkably, very few Germans were among them. More than any other 

cluster or sub-discipline in number theory, works belonging to this cluster as a rule 

did not involve highly sophisticate mathematical knowledge. Still, some of them 

comprised very ingenuous and innovative ideas, appearing mostly in the work of the 

more prominent mathematicians that contributed here. The latter included James 

Joseph Sylvester (1814-1897), Angelo Gennochi (1817-1889), and Edouard Lucas 

(1842-1891). This cluster did not evolve into a full-fledged, school of mathematical 

research that trained students and was systematically thought. Most research on FLT 

during this period can be easily associated with this cluster of activity in number 

theory, and indeed, even here it counted as a rather marginal trend in terms of 

attention devoted to it, as we will see in this section. 

                                                 
12 Detailed analyses of these processes appear in [Goldstein 1994], [Goldstein 2007a, 

71-74]. 
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But even before discussing some of the relevant research in this period it is interesting 

to asses the status of FLT within some contemporary expository presentations of the 

field. Indeed, textbooks on the theory of numbers written after 1855 do mention FLT 

in various ways, usually with some didactic message in mind, but they never describe 

the problem as an outstandingly important one. In more research-oriented texts, FLT 

is hardly mentioned. I illustrate this point by looking at three prominent texts of this 

kind.  

I start with the influential and comprehensive Report on the Theory of �umbers 

presented between 1859 and 1866 to the British Association for the Advancement of 

Science by Henry J.S. Smith (1826-1883). Smith, Savillian professor of geometry at 

Oxford since 1860, was the foremost, perhaps the only, mathematician of his time in 

the English-speaking world truly knowledgeable with current developments in 

number theory. He also made important contributions of his own to the discipline 

[Macfarlane 1916, 58-68]. The Report aimed at bringing to his fellow mathematicians 

in the English-speaking world an updated picture of the field, which he described as 

rather neglected in the British context. This updated picture would comprise a 

systematic presentation of the contributions in the field as it had been established by 

Gauss, and then further developed by Jacobi, Eisenstein, Legendre and Dirichlet, and 

also more recently by the contributions of Kummer, Kronecker and Dedekind. 

Following along the lines of Gauss’ Disquisitiones, Smith described the field as 

composed by two main branches, and to them he devoted the bulk of his book: the 

theory of congruences and the theory of homogeneous forms. He described the 

reasons for the immediate appeal of this part of mathematics, quoting directly from 

Gauss, in the following terms [Smith 1894, Vol. 1, 38]: 

The higher arithmetic presents us with an inexhaustible storehouse of interesting truths – of 

truths, too, which are not isolated, but stand in the closest relation to one another, and 

between which, with each successive advance of the science, we continually discover new 

and sometimes wholly unexpected points of contact. A great part of the theories of 

Arithmetic derive an additional charm from the particularity that we easily arrive by 

induction at important propositions, which have the simplicity upon them, but the 

demonstration of which lies so deep as not to be discovered until after many fruitless efforts; 

and even then it is obtained by some tedious and artificial process, while the simpler methods 

of proof long remain hidden for us. 
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One might think that FLT could be a very good example that fitted this description 

and that it might used by Smith to encourage the interest of fellow mathematicians not 

working in the field. Smith describes FLT as a “celebrated proposition”, and he 

devoted lengthy footnotes to describe its history. But in terms of mathematical ideas, 

he devoted very little space to it. In a few pages he explained the principles of 

Kummer’s criteria for proving the validity of FLT for any given irregular prime. 

Indeed, Smith stated his belief that it would probably be difficult to find an irregular 

prime for which Kummer’s criteria would not hold [Smith 1894, Vol. I, 131-137]. 

Fermat’s result that Smith did discuss in detail and that he consistently used 

throughout what he called in his book simply “Fermat’s theorem”, which is what we 

usually call nowadays “Fermat’s little theorem”.  

In November 1876, Smith delivered his retiring presidential address to the London 

Mathematical Society, under the title “On the Present State and Prospects of Some 

Branches of Pure Mathematics”. Once again he intended to present the theory of 

numbers (apparently still neglected among his colleagues) and to encourage young 

mathematicians to undertake research in the field. He repeated the basic ideas and 

quotations appearing in his Report and this time he also added what he considered to 

be a third branch of the discipline not previously mentioned, namely the analytic 

approach to number theory (which he called here, “the determination of mean or 

asymptotic values of arithmetical functions”). He also described the current, active 

efforts, originating with an idea of Liouville, to investigate whether numbers like e 

and π are algebraic or transcendental. The problems and achievements that Smith 

described in his speech should in his view convince about the importance and deep 

interest that research in the field would offer to aspiring mathematicians. He thus said 

[Smith 1876, 167]: 

I do not know that the great achievements of such men as Tchebychef and Riemann can 
fairly be cited to encourage less highly gifted investigators; but at least they may serve to 
show two things – first, that nature has placed no insuperable barrier against the further 
advance of mathematical science in this direction; and that the boundaries of our present 
knowledge lie so close at hand that the inquirer has no very long journey to take before he 
finds himself in the unknown land. It is this peculiarity, perhaps, which gives such perpetual 
freshness to higher arithmetic. 

In this festive occasion, however, when he used this important podium with the 

explicitly purpose in mind of promoting research in numbers theory, it is remarkable 

that Smith did not even mention FLT.  
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The second prominent text worthy of consideration here is the Zahlbericht, published 

in 1897 by David Hilbert (1862-1943), then one of the foremost number theorists of 

the world. The Zahlbericht was initially commissioned by the Association of German 

Mathematicians as an up-to-date report on the state of the art in the discipline. Hilbert 

indeed summarized the work of his predecessors but he also added many new results 

and sophisticate techniques and opened new avenues for research in the fields that 

many would indeed follow in the decades to come. It was the most comprehensive 

and systematic compendium of the theory of algebraic number fields composed at the 

end of the nineteenth century. The role played by the Zahlbericht for the discipline is 

very similar to that played by Disquisitiones one hundred years earlier. However, the 

impact of this book goes well beyond the specific significance of this or that result 

that it presents, and relates to broader trends of development in mathematics at the 

time, and these merit a brief discussion here. 

In developing the theory of algebraic number fields on the wake of Kummer’s work 

on ideal complex numbers, Kronecker and Dedekind had mutually complemented the 

theorems, proofs and techniques elaborated by each other. Nevertheless, they 

represented two very different, and in some sense opposed, approaches to the very 

essence of mathematical practice. Kronecker represented what may be called a more 

“algorithmic” approach, whereas Dedekind was the quintessential representative of 

the so-called “conceptual” approach. This is not intended to mean that Kronecker 

introduced no new, abstract and general concepts or that he derived no results from an 

adequate use of them. Nor do I mean to say that one finds no computations in 

Dedekind. Rather, the point is that Dedekind’s perspective allowed for the 

indiscriminate use of infinite collections of numbers defined by general abstract 

properties, whereas Kronecker insisted on the need to prescribe the specific 

procedures needed to generate the elements of such collections and to determine 

whether or not two given elements were one and the same. Dedekind did not seek or 

require such procedures and Kronecker did not consider it legitimate to ignore them. 

The choices made by Hilbert in preparing the Zahlbericht gave a clear emphasis to the 

“conceptual” perspective embodied in Dedekind’s work, as opposed to the 

“calculational” one of Kronecker. The Zahlbericht thus became a decisive factor in 

transforming Dedekind’s approach into the dominant one in algebraic number theory 
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and related fields. Eventually it spread to all of algebra, via the influential work of 

Emmy Noether (1882-1935), and from there to many other mathematical domains. 

Indeed it became a mainstream characteristic of the entire discipline of mathematics 

throughout the twentieth century. 

In the introduction to his compendium Hilbert stated his views on what is the most 

important task of his field of enquiry. Like Kummer, he stressed the primacy of the 

problem of reciprocity. Unlike Kummer, however, Hilbert suggested to avoid the 

complex, straightforward calculation of the kind that had originally led to his 

discoveries. Hilbert thus wrote [Hilbert 1998, ix]:  

It is clear that the theory of these Kummer fields represents the highest peak reached on the 

mountain of today’s knowledge of arithmetic; from it we look out on the wide panorama of 

the whole explored domain since almost all essential ideas and concepts of field theory, at 

least in a special setting, find an application in the proof of the higher reciprocity laws. I have 

tried to avoid Kummer’s elaborate computational machinery, so that here too Riemann’s 

principle may be realised and the proof completed not by calculations but purely by ideas.  

Hermann Minkowski (1864-1909) – who was Hilbert’s close friend and no less 

prominent number-theorist than him – systematically promoted a similar perspective 

in his work. He spoke of “the other Dirichlet principle”, embodying the view that in 

mathematics “problems should be solved through a minimum of blind calculations 

and through a maximum of forethought” [Minkowski 1905]. The deep influence of 

approaches such as espoused by Hilbert and by Minkowski—against blind and 

extensive calculations—helps explain why further calculations with individual cases 

was not favorably encouraged within the mainstream of number theory in the decades 

that followed, as will be seen below. 

Lengthy section of the Zahlbericht discuss cyclotomic and quadratic fields, as well as 

topics related with reciprocity. Under the kind of conceptual point of view derived 

from Dedekind, extending the results of Kummer on FLT by calculation of additional, 

individual cases was indeed of little interest. Hilbert devoted a few pages in the last 

section of the book to FLT, and there he examined the Diophantine equation αl + βl + 

γl = 0 for exponents l that are regular primes, while correcting a mistake of Kummer 

(who thought to have proved the impossibility of the equation for cyclotomic integers 

in general, rather than just for rational integers). Hilbert’s proof, like most of the 

material presented in the Zahlbericht reformulated Kummer’s ideas in terms of 
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concepts and techniques introduced by Dedekind for dealing with algebraic number 

fields. But if he devoted this kind of special attention in some pages to the equation xn 

+ yn = zn, at the same time he also looked at a related one, showing that x4 + y4 = z2 

has no solutions in Gaussian integers. 

It may be worth pointing out at this point that while Hilbert was teaching in Göttingen 

for the first time a seminar on number theory along the lines pursued in his report, 

Felix Klein (1849-1925) taught, in parallel, another seminar in the same topic, a 

somewhat unusual choice for him. His course amounted to a discussion of the theory 

of binary quadratic forms seen from a geometric perspective. He stressed that the 

visual (anschauulich) perspective he was following and the “logical treatment” 

presented in Hilbert’s seminar were complementary and not mutually exclusive [Klein 

1896-97]. At any rate, FLT finds no place in the syllabus of Klein’s seminar. Nor is it 

mentioned, many years later, when Klein published his classical Lectures on the 

Development of Mathematics in the �ineteenth Century [Klein 1926] (though it must 

be stressed that this is far from being a balanced and comprehensive account of the 

discipline of mathematics in the period covered, anyway. Rather, it is the author’s 

own, broad perspective on it. Number theory at large, to be sure, receives only very 

little attention in these lectures.)  

Not long after the publication of the Zahlbericht Hilbert had another remarkable 

opportunity to express his views about important problems in the theory of numbers, 

and in mathematics in general. This was at the second International Congress of 

Mathematicians held in 1900 in Paris, where Hilbert gave the now very famous talk 

presenting a list of problems that in his opinion should and would occupy the efforts 

of mathematicians in the new century. In the introductory section of the talk, Hilbert 

gave some general criteria for identifying important mathematical problems (and by 

the way, most of the problems in his list do not easily fit into these criteria). He also 

mentioned three exemplary problems from recent times: the problem of the path of 

quickest descent, the three body-problem and FLT. Concerning the latter Hilbert said 

[Hilbert 1902, 440]: 

The attempt to prove this impossibility offers a striking example of the inspiring effect which 

such a very special and apparently unimportant problem may have upon science. For 

Kummer, incited by Fermat's problem, was led to the introduction of ideal numbers and to 

the discovery of the law of the unique decomposition of the numbers of a cyclotomic field 
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into ideal prime factors—a law which today, in its generalization to any algebraic field by 

Dedekind and Kronecker, stands at the center of the modern theory of numbers and whose 

significance extends far beyond the boundaries of number theory into the realm of algebra 

and the theory of functions. 

As already pointed out, this was indeed the prevailing view then and for a long time 

thereafter, that attributed historical importance to FLT because of its contribution, via 

the work of Kummer, to the rise of modern algebra. However, as we have already 

seen, higher reciprocity, and not FLT, was the real, main motivation behind 

Kummer’s efforts. But the point I want to stress here is that in spite of this statement 

and of the discussion of FLT in the introductory section, the problem was not 

included in the list of problems itself. Hilbert included no less than six problems 

directly related with number theory, but he did not consider that FLT should be 

among them. This was a clearly conceived choice. Among the problems included 

were the Riemann conjecture (which was by no means an obvious choice at the time), 

and, not surprisingly, higher reciprocity. Hilbert explicitly stated that the reason to 

include the Riemann conjecture was that its solution would lead to clarify many other 

problems, such as for instance—so he thought—the Goldbach conjecture. Hilbert did 

not single out FLT as holding a promise similar to that. At best, a roundabout 

reference to FLT (but in no way a direct mention of it) was implicitly comprised in 

the famous tenth problem of the list in which, given a Diophantine equation with any 

number of unknowns and with rational integer coefficients, the challenge is to devise 

a process, which could determine by a finite number of operations whether the 

equation is solvable in rational integers. Equation (1) would be an example of such an 

equation, and a possible solution of the tenth problem would indicate if the equation 

has solutions. If Hilbert had in mind this connection, this would only place the 

problem in a similar status to that formulated one hundred years earlier by Gauss, 

namely as a very particular corollary of a much broader and interesting problem.  

 

A third book to be considered here relates to a very helpful source of additional 

information on the status of FLT after Kummer. This is the well-known, three-volume 

History of the Theory of �umbers published between 1919 and 1923 by Leonard 

Eugene Dickson (1875-1954). Out of close to eight hundred pages and thirty seven 

chapters that compose this book, Dickson devoted his last one, of forty-five pages, to 
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list all published mathematical works bearing some relation with FLT.13 Dickson 

pronounced himself clearly with respect to the status FLT as a separate mathematical 

problem: “Fermat’s Last Theorem—he wrote in the introduction to the relevant 

chapter—is devoid of special intrinsic importance, and if a full proof of it is ever 

published it will loose its main source of attraction”.14  

Dickson’s list comprises about 240 items published after Kummer. In order to 

properly evaluate its historical import, however, it is important to stress that almost all 

of these works belong to the above mentioned cluster of research in the discipline that 

distanced itself from the use of analytic methods or of techniques such as developed 

by Dedekind and Kronecker in their theories. Indeed, most items listed are very short 

(typically between one and three pages) and involve essentially unsophisticated 

mathematics. Several are just summaries of the current state of research on the 

problem, and they are typically directed to an audience of non-experts. They embody 

the typical text stressing the outstanding importance of the problem, mainly in order 

to enhance the virtues of their own intended contribution (which in general is either 

erroneous or trivial).15 These publications usually appear in obscure journals or in 

                                                 
13 In order to present the full picture it is important to stress that the three volumes of 

Dickson’s book do not include even a chapter on the law of quadratic reciprocity. 

This omission was not due, however, to Dickson’s opinion on the importance of this 

problem, or to a neglect on his side. Rather, he intended to write a fourth volume 

exclusively devoted to it, but for several technical reasons this plan did not 

materialize. See [Fenster 1999].  

14 We find exactly the same assessment also in [Dickson 1917, 161], but there he 

added that if a proof was found the problem would not loose its historical importance. 

He was citing here Hensel’s opinion (see above note 10). 

15 [Calzolari 1855], [Thomas 1859, Ch. 10], [Laporte 1874], [Martone 1887], 

[Martone 1888], [Barbette 1910] , [Gérardin 1910]. The same Gérardin edited 

between 1906 and 1912 in Nancy a journal entitled “Sphinx-Oedipe. Journal mensuel 
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booklets published by obscure private publishers, and one can also count among them 

the only doctoral dissertation appearing in the list.16 Moreover, the vast majority of 

the works appearing in Dickson’s list comprise slight improvements over previously 

proven results about specific properties of numbers that have some kind relevance to 

an existing argument related with FLT. As a rule, the authors of these short pieces do 

not even care to mention that their article had anything to do with FLT. Even in cases 

where the equation xn + yn = zn is at the focus of the article, the new result is 

occasionally presented as improving on Kummer’s results, rather than as a new 

solution to an open famous problem formulated two hundred earlier by Fermat (whose 

name is not even mentioned in many cases).17 In fact, in many cases Dickson’s 

decision to include a certain item seems to be justified only retrospectively and 

indirectly, as it is clear that the author in question was not thinking of FLT when he 

published the piece. In such cases, we see that only a small section of the article 

contains a specific result that might be used in dealing with FLT, even if this is not the 

                                                                                                                                            
de la curiosité, des concours et de mathématiques”. The journal published several 

reviews and reprints of works related to FLT, inlcuding a series of articles published 

between 1853 and 1862 by one Fortuné Landry (1798-?), who also found a 

factorization of 264 + 1, published in [Landry 1880].  

16 [Rothholz 1892] was written in Giessen under the direction of Eugen Netto (1848-

1919). It consists mainly of a review of existing results, and an elaboration of one of 

Kummer’s result, leading to the conclusion that the FLT is valid whenever x,y,z are 

less than 202. 

17 Thus for instance [Mirimanoff 1892, 1893], both of which deal with the case of the 

irregular exponent p = 37. Also other mathematicians dicussed this case with special 

interest after Kummer.  
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main issue discussed there.18 Of these, some are no more than conjectures or even 

“beliefs”.19  

A considerable part of the mathematicians mentioned in Dickson’s account of FLT 

are far from prominent and very often they are absolutely obscure. For some of them 

one can find no entry under their names in the main review journal of the time, the 

Jahrbuch über die Fortschritte der Mathematik. On the other hand, whenever 

renowned mathematicians do appear in the list, they appear with very minor, and 

indeed marginal works, or with reformulations of old results in more modern guise. 

An interesting case in point is that of Ferdinand Lindemann (1852-1939), who had 

been Hilbert’s doctoral advisor, and became a very famous and well-connected 

mathematician after the publication, in 1882, of his proof of the transcendence of 

π. After this important proof, however, Lindemann never published again significant 

mathematical works. One place where he did try his forces was precisely in FLT, of 

which he published four attempted proofs between 1901 and 1909, all of them 

mistaken, as it turned out. Euler, Lagrange, Legendre, Lamé, Cauchy, Dirichlet and 

Kummer are of course included in the first part of Dickson’s list of contributors to 

FLT, but most of the prominent German number theorists after Kummer do not even 

appear: Dedekind and Kronecker, Minkowski, Kurt Hensel (1861-1914), Alexander 

Ostrowski (1893-1986), Emil Artin (1898-1962), or Carl Ludwig Siegel (1896-1981). 

If we look at the period before Kummer, the two most important contributors to the 

                                                 
18 Thus for instance [Jacobi 1846]. This is an article enitrely devoted to the problem of 

quadratic and higher reciprocity and FLT is not mentioned at all. In the last two 

pages, Jacobi presented a table of certain values of integers m′, that statify a property 

indirectly related to a proposed solution of FLT, that Dickson quotes earlier. Dickson 

was explicit in giving only these last two pages as reference here, and not the entire 

article.  

19 Thus, the famous conjecture presented in a very short note of eight lines in [Catalan 

1844] as the “belief” that xm - yn= 1 holds only for 32 – 23 = 1. 
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theory of higher reciprocity were Jacobi and Gothold  Eisenstein (1823-1852), none 

of whom devoted any attention to FLT.20  

Of the mathematicians mentioned by Dickson, those with the most significant 

contributions to FLT after Kummer were Dimitry Mirimanoff (1861-1945) and Arthur 

Wieferich (1884-1954).  Wieferich proved in 1909, for instance, that if three integers 

x, y, z satisfy  xp + yp = zp  and the three and p are relatively prime, then 2p-1 ≡ 1 (mod 

p2). Mirimanoff then showed that under the same conditions, 3p-1 ≡ 1 (mod p2). These 

two results, and some similar ones that were sporadically added later on,21 were 

considered to imply significant progress in proving the theorem since they helped 

determine a lower bound for the value of integers for which the Diophantine equation 

associated with case I of FLT could be satisfied (and this, moreover, only by 

considering p, and irrespective of the values of x,y,z that may satisfy the equation).  

And yet, even in the case of these two mathematicians it is important to set their 

works the proper historical context. Wieferich, for instance, published only nine 

papers during his lifetime. They deal with number-theoretic questions of diverse 

nature, but only four of them go beyond what seem to be minor remarks. Only one 

among the latter deals with FLT [Wieferich 1909], and it establishes indeed an 

important result that had a significant follow-up.  Mirimanoff, in turn, was a versatile 

mathematician with important contributions to set theory, probabilities and number 

theory. Of about 60 published articles, about twelve deal with matters related with 

FLT and only six contain significant contributions. In an article published in 1904 

[Mirimanoff 1904], he pointed out with some puzzlement, that some important 

criteria developed by Kummer concerning case I of FLT had received very little 

attention so far and had not been duly appreciated. Indeed, only one article written 

between 1857 and 1904 [Cellérier 1894-97] had dealt with the question addressed 

here by Mirimanoff, without however leading to any significant result.22  

                                                 
20 To this one may also add the entire Russian tradition in which no attention 

whatsoever seems to have been devoted to FLT. See, for instance, [Delone 2005]. 

21 Some references appear in [Ribenboim 1999, 362]. 

22 See [Vandiver 1952]. 
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We thus see that the information contained in Dickson’s section on FLT, when set in 

the proper historical context, indicates the rather low degree of direct mathematical 

interest aroused by FLT in the decades following Kummer’s contributions, and the 

relatively little, real effort devoted by mathematicians to the problem. 

 

6. The Wolfskehl Prize and its aftermath 

An interesting turn of events concerning FLT and the legend around it took place in 

1908, when the Göttingen Royal Society of Sciences instituted a prize of 100,000 

marks to the first person to publish a complete and correct proof of the theorem. The 

fund was bequeathed as part of the will of Paul Wolfskehl (1856-1906) the son of a 

family of wealthy Jewish bankers. According to the legend, repeated in many sources 

(including Singh), Wolfskehl was depressed because of the unreciprocated love of a 

“mysterious woman”, whose “identity has never been established”. Wolfskehl 

decided to commit suicide, but his decision did not materialize, according to the 

legend, because in his last hours he started to browse through Kummer’s work on 

FLT. He became so absorbed in his reading and in the thought that he might finally 

contribute to the efforts to prove FLT, that the carefully planned time for carrying out 

his tragic project—midnight, what else?—passed without notice, and “his despair and 

sorrow evaporated”. The money he decided to devote to the prize was a token of 

recognition to the value of mathematics and, more particularly, to the theorem that 

“renewed [Wolfskehl’s] desire for life” [Singh 1997, 122-129]. 

In 1997 the Kassel mathematician Klaus Barner decided to find out some solid facts 

about the most famous philanthropist in the history of mathematics. The facts 

pertaining to the life of Wolfskehl sensibly differ from the legend [Barner 1997]. 

Wolfskehl graduated in medicine in 1880, apparently with a dissertation in 

ophthalmology. As a student, early symptoms of multiple sclerosis started to appear, 

and Wolfskehl realized that a future as a physician was rather uncertain for him. He 

thus decided to switch to mathematics. Between 1881 and 1883 he studied at Berlin, 

where he attended Kummer’s lectures. Wolfskehl’s interest in, and knowledge of, 

FLT date back to those years. He even published some work in algebraic number 

theory. In 1890 he completely lost his mobility and the family convinced him to 

marry, so that someone would continue to take care of him. Unfortunately, the choice 
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of the bride seems to have been unsuccessful and, according to Barner’s research, 

Wolfskehl’s life became rather miserable after marriage in 1903. And then, in 1905, 

he indeed changed his will on behalf of his life’s only true love, the theory of 

numbers, which gave some meaning to his last, apparently unfortunate years. Perhaps 

the wish to reduce to some extent the capital bestowed to his future widow played a 

significant role in the decision. At any rate, if Wolfskehl ever considered committing 

suicide the reason behind such a decision was the deep depression that affected him 

following his disease, and not because a broken heart caused by an unknown lady. 

FLT did not save his life even though, as part of his interest in the theory of numbers, 

it may have given him some comfort.  

A rather surprising, and totally overlooked, fact related with the establishment of the 

Wolfskehl prize is that it had an almost immediate effect on the amount of work 

devoted to FLT, and not only by amateurs (as it is well-known) but also among 

professional, and sometimes prominent, mathematicians. Before discussing this 

interesting point in greater detail, however, it is relevant to comment on previous 

prizes that were offered in relation with FLT, as the importance attributed to these 

earlier prizes has often been overstated. Also in this case, some historical context 

helps clarifying the correct proportions. 

It seems that the first time a prize was offered for would-be solvers of the problem 

was on December 1815. The prize, which apparently rekindled Sophie Germain’s 

interest in the problem after having devoted some years to elasticity theory, comprised 

a golden medal valued in three thousand francs. The announcement extolled the great 

progress undergone by the theory of numbers since the time of Fermat, but also 

referred to two of the “main theorems” due to “this illustrious sage” that had remained 

unproved in the general case. Cauchy, they indicated, had just proved the one 

concerning the polynomial numbers, and his proof had elicited the praises of the 

geometers. Only one result, then, remained now to be proved, and that was FLT. The 

prize was being offered as homage to “the memory of one of the sages who had 

honored France the most”, and also as an attempt to offer the geometers the occasion 

to perfect this part of science. The expected general proof should be delivered before 
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January of 1818, which did not materialize.23 Indeed, we do not know of any 

mathematician, other than Germain, who devoted some efforts to prove the theorem at 

this time, on the wake of the offer.   

FLT was included in the Grand Prix of mathematics only in 1849, and it was 

postponed several times. Five competing memoirs were presented to the Academy in 

1850 and eleven in 1853, but none of these was deemed worthy of the prize. Finally, 

in 1856 it was decided that the prize would go to Kummer – who had not presented 

himself as a competitor – for his “beautiful” works on the roots of unity and complex 

numbers.24 In explaining why this problem was chosen, the proceedings of the 

Academy used a rather moderate formulation: 

As recent works by several geometers have directed attention to Fermat’s last theorem, and 

have notably advanced the question, even for the general case, the Academy proposes to 

remove the last difficulties that still remain in this subject.  

In both the announcements of the prizes (1815 and 1849) the message is that the prize 

might encourage work that would lead to complete a task that was long overdue and 

thus finally put this enticing and by now somewhat mysterious riddle to rest.  

Also the Royal Belgian Academy devoted in 1883 its annual contest to a proof of 

FLT. The committee comprised only one relatively well known mathematician, 

Eugène Catalan (1814-1894), who indeed had done some work in number theory and 

even on FLT. The other two, Paul Mansion (1844-1919) and Joseph de Tilly (1837-

1906), were much less so. Only two memoirs were presented to this competition and 

they were not considered to be worthy of the prize.25  

                                                 
23 See Académie des sciences (France). Procès-verbaux des séances de l'Académie, 

Vol. 5. 1812-1815, p. 596.  

24 The Grand Prix was usually announced in the Comptes rendus hebdomadaires des 

séances de l’Académie des sciences. See Vol. 29 (1849), 23; Vol. 30 (1850), 263-64; 

Vol. 35 (1852), 919-20; Vol. 44 (1857), 158.   

25 Reports appear in Bulletin Acad. R. Belgique (3), 6 (1883), 814-19, 820-23, 823-32.  
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The Wolfskehl prize became much more famous than the previous ones devoted to 

FLT and indeed it gave rise to a flurry of works. The considerable amount of money 

promised to the would-be successful solver seems to have been more persuasive about 

the importance of devoting attention to the problem, than any other kind of purely 

mathematical consideration. Even before the prize was established, the one aspect in 

which FLT could safely claim precedence over any other mathematical problem 

concerned the amount of false proofs of it that had been published. The announcement 

of the prize boosted this tendency to new, previously unimaginable dimensions. More 

than thousand false proofs were published between 1908 and 1912 alone.26 The 

journal Archiv der Mathematik und Physik, devoted above all to high-school teachers, 

initiated a special section for FLT and until 1911 it had already published more than 

111 proofs acknowledged to be wrong.  

Interestingly, however, not only amateurs or obscure mathematicians were led to 

increased activity around FLT. Wieferich, as already mentioned, published his 

contributions in 1909, and indeed, the Wolfskehl fund paid him an amount of 100 

marks in recognition for the progress achieved in the solution of the problem. Also 

Mirimanoff published six articles on FLT after 1909, about six years after not having 

published anything on this question. It is hard to determine if, and to what extent, the 

works of these two mathematicians were directly motivated by the prize. But we also 

find top-rate mathematicians like Philip Furtwängler (1869-1940), Erich Hecke 

(1887-1947), Felix Bernstein (1878-1956), and Ferdinand Georg Frobenius (1849-

1917) who published works on FLT for the first time around these years [Bernstein 

1910, 1910a; Frobenius 1909, 1910; Furtwängler 1910, 1912; Hecke 1910]. All of 

these works are connected to Kummer’s criteria in various ways as well as with the 

recent advances by Wieferich and Mirimanoff. A direct sequel of this thread can be 

found as late as 1922 in an article by Rudolf Fueter (1880-1950), a distinguished 

number-theorist pupil of Hilbert [Fueter 1922].  

                                                 
26 See [Lietzmann 1912, 63]. [Ribenboim 1999, 381-388] adds information about 

false or insufficient proofs published throughout the years. The amount of 

unpublished wrong proofs that ever reached the desks of mathematicians who were 

publicly known to be associated with FLT cannot even be estimated. 
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It seems much more than pure coincidence that all these works were published on the 

wake of the announcement of the prize. In his highly productive career, Bernstein 

published important works on set theory and on statistics. He completed a 

Habilitation thesis under Hilbert on class field theory and published two short articles 

related to this [Bernstein 1903, 1904]. But then, the only time he ever returned to 

number theory was in 1910, when he published this article on FLT. Similar is the case 

of Hecke, a distinguished number theorist whose only contribution to FLT was this 

one. In a well-known textbook published in 1923 [Hecke 1923], he did not even 

mention FLT. No less prominent was Furtwängler, who published the most important 

contributions to the question of higher reciprocity some years later. In his career he 

published only two articles on FLT, both of them soon after the prize was established 

[Furtwängler 1910, 1912]. Furtwängler explicitly indicated in a footnote to his 1910 

article that the recent awakening of interest in FLT created by the announcement of 

the prize was the direct motivation for publishing his results without further delay, 

even though the current state of his research on the topic did not really satisfy him. 

Finally, Frobenius – the dominant figure of Berlin mathematics between 1892 and 

1917 – published significant research in an enormous variety of fields, and only very 

little on number theory. His only important contribution to the discipline (the so-

called Frobenius density theorem [Frobenius 1896]) was published more than a 

decade before his first article on FLT. The latter consisted in a refinement of 

Wieferich proofs and results. A couple of years later, he proved a congruence similar 

to Wieferich’s, for the bases 11 and 17, as well as for bases 7, 13, and 19, provided p 

= 6n -1 [Frobenius 1914]. The impression created by all these examples is 

strengthened by an explicit assertion found in an appendix to the 1913 French 

translation of Zahlbericht written by Théophile Got. This appendix was devoted to 

presenting a summary of recent work on FLT up to 1911, and the reason that justified 

its inclusion in this edition was the “revival of interest in the question” of FLT 

aroused by the “recent creation of the Wolfskehl prize” [Hilbert 1913, 325].   

There is interesting evidence indicating that the situation brought about by the 

Wolfskhel prize produced discomfort among many mathematicians. That is for 

instance the case of Oskar Perron (1880-1975), a versatile mathematician with a very 

long career and contributions to many fields, including number theory. Among other 

things, he had been in charge, with two other colleagues, of reporting in the Archiv 
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der Mathematik und Physik on putative proofs of FLT. In his 1911 inaugural lecture 

on taking a chair of mathematics at Tübingen (“On truth and error in mathematics”), 

he interestingly referred to his recent experience as a reader of so many failed 

attempts by amateurs. He compared the status of mathematics with that of other 

sciences in terms of public awareness to the current state of research, while lamenting 

the disadvantageous situation of mathematics in this regard. Among other things he 

also said the following [Perron 1911, 197]:  

Strangely enough, however, there are a few problems in mathematics that have always 

aroused the interest of the laymen, and remarkably, it has always been the least competent 

who have wasted their time in vain upon them. I am reminded of the trisection of the angle 

and of the quadrature of the circle. However, those who have dealt with these problems and 

still deal with them nowadays, even though they have been settled for a long time, are likely 

to be utterly unable to indicate adequately what is at stake. And recently also Fermat’s 

theorem has joined the category of popular problems, after the prize of 100,000 marks for its 

solution has awaken a previously unsuspected “scientific” eagerness in much too many 

persons.  

One can only wonder to what extent his views were shared by others, but there are 

two interesting testimonies that point to the same direction. The first appears in 

Klein’s well-known Elementary Mathematics from an Advanced Standpoint [Klein 

1939]. Like others before him, Klein stressed that the interest in this problem laid in 

the fact that attempts to solve it had been in vain thus far. For Klein, it was likely that 

the expected proof would come from the direction opened by Kummer, and at the 

same time it was unlikely that Fermat could have had in mind a proof related with that 

conceptual direction. Thus, he wrote, “we must indeed believe that he succeeded in 

his proof by virtue of an especially fortunate simple idea” (p. 48). He then referred to 

the dramatic change undergone by the status of the problem after the Wolfskehl prize 

was established, and pointed out that, while mathematicians typically understood the 

potential difficulty involved in solving the problem, “the great public thinks 

otherwise”. He went on to describe with open disgust the “prodigious heap of alleged 

‘proofs” that were received since the price was announced. These were sent by people 

from all walks of life, including “engineers, schoolteachers, clergymen, one banker, 

many women”, and what was common to all of them was that they had “no idea of the 

serious mathematical nature of the problem … with the inevitable result that their 

work is nonsense” (p. 49). 
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The second testimony comes from a text by Walther Lietzmann (1880-1959). 

Lietzmann completed in 1904 his dissertation in Göttingen under Hilbert, with a 

thesis on biquadratic reciprocity. Later on he continued to do some research on higher 

reciprocity laws [Lietzmann 1904, 1905]. He became a high-school teacher and 

principal, from 1919 to 1946, of the Felix Klein Gymnasium in Göttingen. He 

published extensively on didactics of mathematics. Throughout the years Lietzmann 

remained in close contact with Hilbert.27 Therefore, it does not seem farfetched to 

assume that views expressed by Lietzmann agreed to a large extent with those of 

Hilbert. At any rate, it is illuminating to see what he has to say about FLT in a booklet 

devoted to the Pythagorean theorem, first published in 1912 and republished in 

successive new editions until 1965.  

“Fermat’s problem would not be on everyone’s mouth”, Lietzmann said, were it not 

for the Wolfkshel prize. Lietzmann indicated with satisfaction that while no one had 

yet been awarded the money of the prize (except, as already said, a small amount to 

Wieferich), Hilbert, as head of the prize committee, was making a very good use of 

the interests yield by the fund. Indeed, throughout the years Hilbert organized a series 

of Wolfskehl lectures in Göttingen, where the most prominent physicists of the time 

were invited to discuss pressing, open issues of the discipline. Some of these meetings 

became real milestones in the history of physics, such as a series of talks delivered by 

in 1922 Niels Bohr (1885-1962), where he presented for the first time to a relevant 

audience, his groundbreaking ideas about the structure of the atom.28 Lietzmann also 

quoted a famous Hilbert comment regarding FLT: “Fortunately, there is no 

mathematician except me who is in a position to solve this question. However, I do 

                                                 
27 See [Fladt 1960]; [Reid 1969, 89; 212-213].  

28 The various Wolfskehl lectures are described passim in [Corry 2004a]. For 

Einstein’s lecture, see pp. 321-326. For Bohr, see pp. 411-414. In an unintended 

sense, FLT led, through the Wolfskehl prize, the Wolfskehl lectures and Hilbert’s 

intiative, to the most direct, significant, and unlikely contribution of number theory to 

theoretical phsyics.  
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not intend to slaughter myself the goose that lays the golden eggs”.29 FLT may have 

been considered perhaps difficult, but not important enough so as to be worth the time 

and efforts of a Hilbert, and so that it would justify losing this money. In Lietzmann’s 

opinion, moreover, the consequences of the creation of the prize were dreadful 

(fürchterlich). He thus wrote, in a spirit similar to Perron [Lietzmann 1912, 63]: 

In the past, well-known mathematicians, but above all editors of mathematical journals, 

received every now and then an attempted solution to the problem of the quadrature of the 

circle and the trisection of the angle, even though the impossibility of such constructions with 

straightedge and compass has been fully demonstrated. Nowadays the Fermat problem takes 

the place of these constructions, since here also resonant coins lure side by side with fame.  

Faced with mostly trivially mistaken proofs, Lietzmann commented (partly amused 

and partly annoyed) that the senders must believe that mathematicians are truly stupid 

people if they were offering such a high amount of money for a question that can be 

solved in two lines of elementary calculations. Lietzmann complained that even the 

first edition of his own booklet, in spite of his warnings, had led to additional letters 

with attempted proofs. On the other hand, as with the years the fund lost most of its 

value, Lietzmann remarked in later editions of his book that the continued flow of 

attempts had receded and that this was perhaps the only positive consequence of 

interwar hyperinflation. He concluded with the following comment [Lietzmann 1965, 

96]: 

For whom this is a matter of money, he will now have to do without. But whoever deals with 

this problem out of love for mathematics, to him I can advise to divert his urge to 

mathematical activity into other directions, in which the prospects for satisfaction, and 

perhaps even for some research results, are granted.  

 

Another Göttingen mathematician whose name became associated with FLT and the 

Wolfskehl prize, and not precisely in a positive sense, was the leading number theorist 

Edmund Landau (1877-1938). Landau was a distinguished Berlin mathematician who 

in 1909 was appointed to Göttingen following the sudden death of Minkowski. Soon 

                                                 
29 This qoutation appears differently formulated in various contexts, but always as 

hearsay. Lietzmann did not quote it in the first edition of his book, in 1912. It does 

appear in the seventh edition of 1965.   
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after his arrival he was commissioned with handling the Wolfskhel prize, and the 

dreary, unending correspondence associated with it. In order to cope with this rather 

unpleasant task, it is well known that Landau printed a standard answer in the 

following terms,  

Dear ........, 

 

  Thank you for your manuscript on the proof of Fermat's Last 

Theorem. 

  The first mistake is on: 

  Page ...... Line ..... 

  This invalidates the proof. 

 

  Professor E. M. Landau 

 

He would then ask a student to read any manuscript sent and to fill in the missing 

details. For this reason alone, but possibly because his lack of direct interest in the 

problem, Landau was never enthusiastic about FLT and there are two interesting 

pieces of evidence for that.  At the International Congress of Mathematicians held in 

1912 at Cambridge, UK, Landau was invited to give a plenary lecture. The topic of 

his talk echoed to some extent that of Hilbert in 1900 and its title was “Solved and 

Unsolved Problems in the Theory of Numbers” [Landau 1912]. About two thirds of 

the problems and results discussed belonged to Landau’s own work, and for the rest 

he used this opportunity also to add his own considerations about what others had 

achieved in the field. The main topic was the distribution of primes and the Riemann 

Zeta-function. The talk also discussed several other topics of analytic number theory 

and the special functions defined in it. Like Smith in 1867 before a purely British 

audience, Landau still remarked in 1912 that his field was essentially unknown among 

mathematicians in general. The difficulty of its methods, he stressed, has not helped 

attracting many colleagues to become acquainted with the beautiful results of this 

theory. He used this opportunity to present the main challenges and important open 

problems of the field. As one may already expect, FLT was not even mentioned. 

The second piece of evidence comes from a rather obscure, but indeed unique source. 

In 1927 Landau accepted the challenge to become the first professor of mathematics 

in the newly established Hebrew University in Jerusalem. He moved to Mandatory 

Palestine in 1927 with his family, intent on establishing residence in Jerusalem, a 

rather remote and provincial town at the time. Things did not develop as smoothly as 

he would have wished, and the Landau family returned to Germany one and a half 
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year later. Still, the Landau spirit left a strong imprint in the incipient mathematical 

community that would eventually turn into the prestigious Jerusalem school of 

mathematics. In 1925, two years before his move to Jerusalem, Landau had been 

invited to give an official speech during the act of inauguration of the Hebrew 

University. The text of this speech is perhaps the first text dealing with a subject of 

advanced mathematics in modern Hebrew [Katz 2004]. Landau used once again the 

title “Solved and Unsolved Questions in Elementary Number Theory”, but this time 

he aimed to an audience of laymen. In fact, Landau’s list contains exactly 23 

problems like Hilbert’s, and Landau found it adequate to explain why he chose 

precisely this number, namely, because 23 is a prime number, which befits very much 

the topic of the problems covered by the list. One can hardly imagine anyone in the 

audience who may have ever heard about Hilbert’s list, a list that was surely present 

in Landau’s mind when preparing his speech. 

In this very festive occasion we cannot imagine that Landau—an extremely 

meticulous mathematician anyway, who was careful about every word he ever chose 

for a text—prepared his list other than with great care and without any rush. After all, 

he was about to present the respectable audience of gathered in Mount Scopus to 

inaugurate the new university of the Jewish people in the Land of Israel with their 

first glimpse after two-thousand years into the current status of the classical discipline 

of arithmetic. A full description of the list is well beyond the scope of this article. 

Still, it is important to stress that in spite of the word ‘elementary’ appearing in the 

title, the list also included some rather advanced problems associated with both the 

analytic and the algebraic tradition in number theory. FLT, to be sure, did not appear 

there. In fact, also the Riemann conjecture that was at the focus of his 1912 lecture 

was left out of this list. But taking into consideration the kind of audience addressed 

here and the context of the talk, this decision may seem justified by the apparent 

difficulty in explaining the conjecture. This difficulty, of course, does not exist in the 

case of FLT. Its absence can only be taken as an indication of Landau’s lack of 

attraction, or perhaps even negative attitude, towards it.  
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7. FLT in the twentieth century: developing old ideas, 
discovering new connections  

Side by side with the negative reactions discussed above, one can also indicate after 

1915 a gradually increasing tide of texts that reached a relatively broad circle of 

readers and that consistently stressed the historical importance of FLT while 

explaining the development of the main, related ideas. As already mentioned, in his 

three-volume book Dickson stated very clearly his opinion about the lack of 

mathematical importance of FLT. But in a 1917 article that is often cited in 

contemporary accounts, he stressed that the historical importance of FLT would never 

diminish even if a complete proof was found. This importance stemmed, of course, 

from the rise of the algebraic theory of numbers in the wake of Kummer’s work, 

which Dickson described, like others before him, as having been created in order to 

deal with FLT. Dickson’s 1917 paper gave a systematic and very sympathetic account 

of the relevant ideas, especially concerning Kummer’s contributions.  

Another interesting example appears in the work of Paul Bachmann (1837-1920). 

Bachmann had studied with Dirichlet and Kummer, and was a lifelong close friend of 

Dedekind. He published several comprehensive textbooks on the theory of numbers 

that were widely circulated and used in the German-speaking world [Bachmann 1892-

1923; 1902-1910]. In all these textbooks, FLT received very little attention. In the 

historical introduction to one of his books, Bachman wrote at length about the 

decisive influence of Fermat in shaping the future development of the discipline 

[Bachman 1892]. He mentioned FLT, but only in passing, as one among a long list of 

problems that Fermat bequeathed to coming generations. Its peculiarity was that even 

prominent mathematicians had failed to solve it. In the various chapters of the book, 

however, the problem was not even discussed. His book of 1902 was an elementary 

introduction to the theory of numbers, and FLT is discussed there towards the end 

[Bachman 1902, 458-476]. Bachman described the most elementary techniques 

associated with some known proofs. The presentation was rather superficial to the 

extent that Bachmann claimed wrongly that all primes under 100 are regular (p. 461, 

but he corrected this in a Errata on p. 480). But then in 1919 Bachmann published a 

general account of FLT and its history that became a very popular and frequently 

quoted source [Bachmann 1919]. Bachmann suggested with evident disgust that 

following the creation of the Wolfskehl prize an immense amount of non-professional 
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dilettantes had inundated the mathematical literature with their failed attempts. Still, 

he found that many ideas that had developed in relation with FLT were of enduring 

mathematical importance, and his book was an attempt to present those ideas to non-

specialist in number theory.  

A third and important example is that of Louis Mordell (1888-1972). Mordell was a 

leading authority in the field of Diophantine equations. Early in his career he had 

studied the solutions of y2 = x3 + k, an equation to which also Fermat had devoted 

some attention. In combination with a result previously obtained by Axel Thue 

(1863–1922), but unknown to Mordell at the time, his work implied that this equation 

had only finitely many solutions. In 1912 he was awarded the Smith Prize for his 

work on the equation that now is associated with his name [Davenport 1964]. Mordell 

also made important contributions to the theory of elliptic curves, the theory within 

which Wiles’ proof would be formulated many years later. A famous conjecture he 

advanced in 1922 about rational solutions of certain Diophantine equations implied 

that for n > 3,  xn + yn = zn could have at most a finite number of primitive integer 

solutions. The conjecture was proved in 1983 by Gerd Faltings. This result signified, 

on the face of it, a very meaningful advance towards a possible general proof of FLT, 

but no further progress was made on it, and eventually Wiles’ proof came from a 

different direction.  

Mordell was among the first prominent number theorists to speak consistently about 

the historical importance of FLT and to do so while addressing various kinds of 

audiences. In March 1920 Mordell gave a series of three public lectures at Birkbeck 

College, London, fully devoted to FLT, and to explain the methods that had been 

developed throughout the years in the attempt to prove it. These lectures were 

intended for persons with general mathematical background, but not necessarily in 

number theory [Mordell 1921]. In November 1927 he lectured at the Manchester 

Literary and Philosophical Society on recent advances in number theory trying to 

convey to a lay audience the excitement of his field of research [Mordell 1928]. FLT 

was one of the six problems he chose, and so was the already mentioned Euler 

conjecture (for which Elkies gave a counterexample in 1988). Like Dickson before 

him, Mordell stressed above all the historical, as opposed to intrinsic mathematical, 

importance of the problem. In fact, Mordell prepared his lectures on the basis of the 

information contained in Dickson’s and Bachmann’s texts, and following a similarly 
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sympathetic approach. Dickson, Bachmann and Mordell together established the kind 

of discourse about FLT and its history that would dominate many later presentations 

of the subject. 

Mordell was Sadleirian professor of mathematics at Cambridge between 1945 and 

1953. In his inaugural lecture, he discussed again the Diophantine equation with 

which he opened his career, y2 = x3 + k. Mordell found it necessary to justify before 

his own mathematical colleagues, who “are familiar with obviously important and 

abstruse branches of mathematics”, why in such festive an occasion he had chosen a 

question that may seem “insignificant and remote” to them. That he felt the need for 

such a justification says much about the status of this kind of questions within the 

profession. His explanation put the stress on the surprisingly long period of time that 

these problems had stood unsolved. He thus said [Mordell 1947, 5-6]: 

Most of the mathematical knowledge of the period 1600-1700, as far as algebra, geometry 

and calculus are concerned, would be described now as being thoroughly elementary and 

completely absorbed in the body of knowledge, with all its possibilities exhausted long since. 

This, however, does not apply to the questions in the Theory of Numbers discussed at that 

time, and there are several of permanent interest which have not sunk into anonymous 

obscurity.  

He mentioned three examples of this: the Pell equation (actually solved in the 

seventeenth century), FLT and the equation y2 = x3 + k. In his talk, like in his entire 

career, Mordell focused on the latter equation rather than on FLT. Interestingly, 

Mordell explained how Fermat had posed this question as a challenge to English 

mathematicians, following the work of Bachet, who was the first to deal with it. 

Fermat had asked if there is another square, other than 25, that when added to 2 makes 

a cube. Fermat declared to have discovered “an exceedingly beautiful and subtle 

method which enables me to solve such questions in integers and which was not 

known to Bachet not to any other with whose writings” he was familiar. But Mordell 

did not believe that Fermat had indeed discovered such a method.  

Like FLT, also the Diophantine equation that attracted Mordell’s interest had been 

given some attention by Euler, Dirichlet, Legendre and others. Mordell’s own work, 

however, opened a new direction that considered rational points of cubic curves as a 

main tool for finding all integer solutions of the equation. Indeed, this can be seen as 

part of a broader train of ideas in which significant applications of algebraic geometry 
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and its methods were applied to problems related with Diophantine equations. Among 

its early contributions one finds works by Henri Poincaré (1854-1912) at the turn of 

the twentieth century [Poincaré 1901], and it is remarkable that also André Weil 

(1906-1998) (on whose work more is said below) participated in it with his earlier 

works [Weil 1928, Hindry 1999]. “I must emphasize – Mordell wrote when 

explaining the approach followed in previous works – that I am not underestimating 

the possibilities of elementary mathematics by which difficult results may often be 

proved.” But he was aware of pursuing now a totally different point of view, when 

trying to find certain rational solutions for the cubic curves that were related with his 

equation. He wrote [Mordell 1947, 28]: 

I was rash enough to write in 1921 that the prospects of any immediate solution of such 

problems appeared then almost as remote as that of discovering any knowledge concerning 

the chemical constitution of the stars appeared in say, 1800. This was not altogether an 

unjustifiable view, since a mathematician of course never knows whether the solution of a 

difficult problem requires principles or ideas which may not be discovered for hundreds of 

years to come.  

In the specific context of his problem, Mordell discovered that all the rational points 

of the general cubic curve could be generated from a finite number of them. His work 

opened the way for additional, important investigation by others, but more generally, 

it indicated that the solution of some seemingly elementary problems of number 

theory would need to be solved by new methods that could hardly be considered 

“elementary” in the same sense. This was to be the case with FLT, even though 

Mordell was not thinking about that neither in 1912 nor in 1945. Still, the train of 

ideas leading from Mordell’s conjecture to Faltings’ proof is one of the remarkable 

and well-known advances related to FLT in the twentieth century. In the end, 

however, it did not lead to a complete solution of FLT. It suggested that perhaps a 

proof of FLT might be closer than ever, but it also made clear that the idea of an 

elementary proof would have to be relinquished, like Mordell had suggested in 1945 

for his equation.  

Additional attempts and results continued to support this possibility. For instance, the 

joint contributions of Len Adleman, Roger Heath-Brown and Étienne Fouvry in 1985 

implied that there exist infinitely many primes for which case I of Fermat's last 

theorem holds [Fouvry 1985; Adleman & Heath-Brown 1985]. These works drew 
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together ideas taken from an astounding amount of diverse mathematical sources.30 

There was also an attempt in 1988 by Yoichi Miyaoka that elicited much interest 

because the methods he developed in arithmetical algebraic geometry seemed to 

indicate that a wealth of difficult mathematical problems might perhaps be solved 

following a similar approach. In 1987 A.N. Parshin developed an arithmetic analogue 

of an important inequality on topological invariants that Miyaoka himself, working on 

problems of differential geometry, had proved in 1974 [Parshin 1989]. Parshin 

suggested that if this arithmetic analogue were true, then FLT would also be true. 

Miyaoka then announced, a year later, a proof of this analogue to his own inequality. 

Quite soon, however, it turned out that Miyaoka’s proposed proof contained several 

flaws [Cipra 1988]. Interestingly, flaws encountered in the proof, did not in 

themselves diminish the kind of enthusiasm surrounding Miyaoka’s attempt, and in a 

certain sense they actually increased it. By this time, also the line of attack that would 

finally lead to Wiles’ proof had already been initiated, starting from a totally different 

direction.  

What all these important developments highlight is that FLT came gradually be seen 

within the framework of an increasingly evident trend in number theory. Problems 

involving Diophantine equations, some of which can be formulated in very 

elementary terms and which had been seen in the past within a much more reduced 

perspective, started to appear now as intimately connected with deep and intricate 

mathematical topics pertaining to broad range of fields of enquiry such as algebraic 

geometry or differential geometry. This trend was eliciting a new kind of interest in 

both older and more recent problems in number theory – FLT included – and many 

mathematicians were eager to stress it [Lang 1990].  

Parallel to this, another trend with far reaching consequences had also been 

developing in number theory, whereby an increasingly important role was accorded to 

unproven, overarching conjectures, as a focus of attention around which new and 

interesting mathematics is produced. Of course, unproven conjectures had always 

been part and parcel of number theoretical research (FLT being a case in point). But 

now, when considerable evidence existed for the plausibility of such conjectures they 

were often being taken as hypothetical starting points for the development of 

                                                 
30 See Math. Rev. MR 87d: 11020. 
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elaborated theories. This trend was singled out by Barry Mazur as a unique, central 

characteristic of twentieth-century mathematics [Mazur 1997]. At the confluence of 

these two interesting and interrelated trends, FLT became a focus of special attention 

in a sense that differed from the traditional one. Indeed, Mazur explicitly stressed this 

situation in 1991, three years before Wiles presented in public for the first time his 

proof. He spoke then about TSW as a foremost example of a “profoundly unifying 

conjecture” that “plays a structural and deeply influential role in much of our thinking 

and our expectations in Arithmetic.” The status of FLT could thus be formulated in 

this context as follows [Mazur 1991, 594]: 

Fermat’s Last Theorem has always been the darling of the amateur mathematician and as 

things have progressed, it seems that they are right to be enamored of it: Despite the fact that 

it resists solution, it has inspired a prodigious amount of first-rate mathematics. Despite the 

fact that its truth hasn’t a single direct application (even without number theory!) it has, 

nevertheless, an interesting oblique contribution to make to number theory; its truth would 

follow from some of the most vital and central conjectures in the field. Although others are to 

be found, Fermat’s Last Theorem presents an unusually interesting “test” for these 

conjectures. 

Thus, after close to 350 years of history, FLT appeared as a problem with deep yet 

purely tangential importance (even though, one might perhaps qualify the claims 

about the prodigious amount of first-rate mathematics inspired by FLT). FLT 

suddenly appeared as more important that it could have ever been considered along 

the years not because of intrinsic mathematical interest and consequences, but rather 

because what it does to the status of one specific, deep and “structural”, “unifying 

conjecture” of mathematics.  

It would be beyond the scope of the present article to describe the story of Wiles’ 

breakthrough in detail. Still, it is important to briefly consider it within the framework 

discussed thus far in this article. The train of ideas more directly leading to Wiles’ 

proof of FLT may be traced back to 1955. At that time, in a symposium held in 

Tokyo, Yutaka Taniyama (1927-1958) presented two problems on the basis of which 

a conjecture was formulated somewhat later. The conjecture establishes a surprising 

link between two (theretofore) apparently distant kinds of mathematical entities: 

“elliptic curves” and “fields of modular forms”. Goro Shimura (1930- ) and Weil took 

part in refining the conjecture over the following years and formulating it in a very 

precise fashion. Eventually it came to be known as the “Taniyama-Shimura”, or 
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“Taniyama-Shimura-Weil” conjecture (TSW). Only many years later its possible 

connection with FLT became apparent. The fact that Taniyama committed suicide in a 

tragic and enigmatic manner has also been harnessed to enhance the dramatic qualities 

of the story of FLT. Many years after it saved Wolfskehl from suicide, one may be led 

to believe from some accounts, it did the opposite to a despaired Taniyama. Of 

course, Taniyama himself had no clue about the connections that would arise between 

the problems he suggested and FLT, neither in 1955 nor at the time of his death. The 

reason for his suicide in 1958 has remained unclear to this day, but one thing is sure: 

it had no connection whatsoever with TS and much less so with FLT.  

The road that finally led to Wiles’ proof via a possible link between TSW and FLT 

derived from ideas found in the separate works of Yves Hellegrouach and Gerhard 

Frey. In his doctoral dissertation, [Hellegouarch 1972] as part of an attempt to show 

the inexistence of points of certain orders in elliptic curves, Hellegouarch associated 

an elliptic curve to a hypothetical integer solution of equation (1) with exponent 2pn, 

with n ≥ 1 and p prime. In the mid-eighties, Frey came up with a similar association 

and constructed a certain curve based on a supposed integer solution of  xn + yn + zn = 

0. This curve appeared to be non-modular. This meant that the falsity of FLT seemed 

to imply the falsity of TSW. The idea behind the non-modularity of Frey’s curve was 

precisely formulated by Jean Pierre Serre in terms of Galois representations, in what 

became known as the epsilon conjecture, which was proved in 1986 by Ken Ribet. At 

this point, a full proof of FLT appeared to be at hand, albeit just in theory, for the first 

time. It was necessary, though, to complete a clearly definable, but very difficult task: 

proving TSW. Experts at the time, however, essentially coincided in considering such 

a task to be inaccessible. Not so Wiles, though. Immediately upon hearing about 

Ribet’s proof of the epsilon conjecture he decided that it was time to return to his old 

mathematical love, FLT, and to prove it by providing a proof of TSW. The rest of the 

story is well known by now. 

 

This chapter in the history of FLT, involving the final stages leading to Wiles’ proof 

as delineated above, is an inspiring story of uncommon mathematical determination 

that was crowned with success. The amount of unexpected mathematical difficulty 

that appeared at the end of an unusually long quest amply justifies the excitement with 

which this achievement has been saluted. From a historical point of view, however, it 
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one should not let this excitement make us forget other developments related with 

FLT that took place independently of those mentioned above and that evolved along a 

completely different path of events. This alternative path did not lead to a general 

proof of FLT and perhaps for this reason they have been now somewhat forgotten. 

Still, some of its main milestones are openly documented in accounts written in the 

late 1970s on the state of the art on FLT (e.g., [Ribenboim 1977, 1980], [Edwards 

1977]). In these accounts, none of the names that came to be famously associated with 

the theorem after Wiles’ proof, such as Taniyama or Shimura, appear. By contrast, 

many do appear in those accounts who were not mentioned, or were barely so, in 

Dickson’s list of 1919, and that in spite of their involvement with FLT after 1920, 

were often forgotten in accounts written after 1994. I would like to devote the 

remainder of this section to discuss some twentieth century works on FLT that did not 

lead to Wiles.  

Quantitatively speaking, most efforts devoted to FLT in the twentieth century 

represented a continued exploration of ideas related with Kummer’s methods, albeit 

with some historically interesting twists. Indeed, as already seen in relation with the 

works of Mirimanoff and Wieferich, some progress was done along these lines in the 

first decade of the twentieth century, even if limited and slow. In the following 

decades FLT continued to be a problem to which the mainstream of number theory 

paid little attention. The first mathematician whose work must be mentioned here was 

the Danish Kaj Løchte Jensen (not to be mistaken for Johan Ludvig Jensen (1859-

1925)). Very little is known about Jensen. Apparently he was a student of Niels 

Nielsen (1865-1931), a versatile mathematician who became interested in Bernoulli 

numbers around 1913 [Nielsen 1913-14]. It seems that Jensen could not complete a 

dissertation due to some kind of mental breakdown, but still as a student in 1915 he 

published in a remote Danish journal a proof of the existence of infinitely many 

irregular primes of the form 4k + 3 [Jensen 1915].31  

                                                 
31 I thank Jesper Lützen and Christian U. Jensen in Copenhagen for information on 

Jensen (for which unfortunately I do not have direct evidence).  This information 

originated with Thøger Bang who presumably heard it from Harald Bohr.  
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Kummer had initially assumed that in proving FLT for regular primes, he was proving 

it for an infinite number of cases. Nowadays, there are heuristic arguments to support 

such an assumption, but no definite proof of it [Washington 1997, 63]. In spite of the 

fact that this question arises naturally when following the line of attack derived from 

Kummer, it was not until 1915 that someone devoted some systematic thought to it. 

This was an unknown student whose teacher happened at the time to be looking at 

Bernoulli numbers, and what he did was to prove a result about irregular primes, 

rather than about the regular ones. His proof was rather straightforward and did not 

require any special idea or technique that was not known to number theorists since the 

time of Kummer. Jensen asserted that the result he had proved was then commonly 

assumed. This may have indeed been the case, and this is in any case what Jensen 

heard this from his teachers. I have found no written evidence of discussions 

pertaining to the question at the time. At any rate, Jensen did connect it, but only in 

passing, with FLT. He wrote:  

That there exist infinitely many irregular primes has been conjectured for a long time but as 

far as I know it has not been proved. It is well known that it has a certain importance for the 

evaluation of Kummer's investigations of Fermat's last theorem. 

Jensen’s result was not mentioned in Dickson’s 1919 account, but only in a follow-up 

published several years later [Vandiver & Wahlin 1928, 182]. Harry Schultz Vandiver 

(1882-1973) published Jensen’s argument in English for the first time only in 1955 

[Vandiver 1955], and he stressed that by that time it was not yet well-known. One 

year earlier, Leonard Carlitz (1932-1977) proved a similar, but more general result 

without the limitation 4k + 3 [Carlitz 1954].  

The same Vandiver is the second mathematician I want to mention here, and he is also 

some kind of outsider, though in a very different sense that Jensen was. Vandiver did 

never go the usual training of number theorists, and when he did gain a more 

institutionalized status as a mathematician, he continued to follow a self-fashioned, 

original path. He never completed high-school, and the little college-level 

mathematics he studied, he studied in rather haphazard, non-systematic way. In 1900 

he started publishing original research work in various journals, some of it in 

collaboration with George David Birkhoff (1884-1944), the most influential 

mathematician of the time in the USA. Later on, in 1919, with Birkhoff’s 

endorsement, Vandiver got a position at Cornell. That year he collaborated with 
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Dickson in the preparation of the latter’s book on the history of the theory of numbers, 

especially the chapter on FLT. In 1927 he published a follow-up of that chapter. After 

Cornell, Vandiver moved to the University of Texas, Austin, where he obtained a 

permanent appointment.32  

Vandiver is the only person in this story, other than Wiles, to have truly devoted a 

considerable part of his professional life to work on FLT. Most possibly he was never 

“tormented” by the theorem and probably not even “obsessed” with FLT, but he 

certainly did a great amount of work specifically devoted to proving it. This choice 

was definitely unusual in the American, as well as in the international mathematical 

community.  In 1914 he extended the Wieferich-Mirimanoff type of criterion for case 

I to basis 5 [Vandiver 1914], (i.e., he proved that if the equation xp + yp + zp = 0 is 

solved in integers relatively prime to an odd prime p then 5p-1 – 1 is divisible by p2).  

Beginning in 1920, Vandiver published a long series of articles on FLT. Among other 

things, Vandiver was the first to make significant progress since Kummer concerning 

case II. He also corrected some of Kummer’s proofs [Vandiver 1920]. Of special 

importance was a paper published in 1929 where he summarized some of his early 

work and proved the validity of FLT, for both case I and case II, for exponents up to 

269 [Vandiver 1929]. For this article he was awarded by the AMS the first Cole Prize 

for an outstanding work in number theory. 

At the center of Vandiver’s work was a sustained attempt to refine Kummer’s criteria 

for proving FLT for irregular primes. He added theoretical insight into the properties 

of the Bernoulli numbers and developed algorithms for facilitating their calculation 

[Vandiver 1926-27]. More interestingly, he was the first to conduct this kind of 

research in number theory while systematically applying two strategies not commonly 

found theretofore in the discipline. The first one was, simply, division of labor. In his 

1929 article, for instance, he was assisted by young members of the faculty in Austin, 

such as Samuel Wilks (1906-1964) and Elizabeth Stafford (1902-2002). Each 

collaborator was assigned a certain part of the range of numbers to be investigated. 

                                                 
32 Very little historical research has been devoted to Vandiver, to his work as 

mentioned here, and to his interesting collaboration with younger colleagues. An 

initial attempt appears in [Corry (forthcoming)].  
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The second strategy was the massive use of number-crunching devices for support. In 

this case, he used electro-mechanical Monroe and Marchant calculators then 

available, but in subsequent research he also tried additional possibilities.  

It is remarkable that results similar to those of Vandiver were achieved at roughly the 

same time by another person, and again this was a complete mathematical outsider at 

the time: Otto Grün (1888-1974). When he was over forty, and without any formal 

background in mathematics, Grün initiated a correspondence with Helmut Hasse 

(1898-1979), then at Marburg. Hasse was not directly involved in research on FLT 

and indeed at that time he was deeply immersed in his own attempts to prove the 

Riemann conjecture for curves. But he was definitely impressed by Grün’s ideas, even 

though he was not fully aware that Grün then made his life in commercial occupations 

rather than in mathematics. As he did in many similar occasions Hasse devoted 

considerable energies to react to Grün’s letters and to correct many mistakes he found 

in the work of a man who could not previously enjoy of any serious feedback for his 

ideas. Hasse highly encouraged Grün to continue with his original efforts. As he had 

been previously in contact with Vandiver, Hasse also facilitated the communication 

between the latter and Grün, and Vandiver explained in letters the specific points in 

which their results coincided or differed. Very soon, however, as Grün’s mathematical 

activities and knowledge became more and more articulated and well-grounded, he 

abandoned his interest on FLT and his focus moved to class field theory and, above 

all, to group theory. He went on to make highly interesting contributions to this latter 

field but, unfortunately, his mathematical career never reached institutional stability in 

spite of efforts by many to help him.33  

Going back to Vandiver, the most important of his collaborations was the one held 

with the young couple from Berkeley, Emma (1906 -2007) and Derrick (1905-1991) 

Lehmer. In 1937 they were able to prove FLT for prime exponents smaller than 619, 

including 36 cases of irregular primes [Vandiver 1937]. The technical limitations 

imposed by the machine used at that opportunity did not allow them going beyond 

that limit. But the truly decisive step forward was taken in 1954 when Vandiver 

                                                 
33 The correspondence between Hasse and Grün was uncovered and published only 

recently in [Roquette 2005].  
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continued his collaboration with the Lehmers, using for the first time a general 

purpose, programmable electronic computer, SWAC, for a problem of this kind.   

The Lehmers had been previously involved in developing “standard” proofs of FLT, 

as well as in the application of analog computers to the calculations related with prime 

numbers. Specifically, they made significant calculations related with the classical 

problem of finding Mersenne primes. In 1941, for instance, the couple published a 

joint paper which presented a synthesis of various methods applied then to FLT, and 

that allowed them proving case I of FLT for all exponents smaller than 253,747,899 

[Lehmer & Lehmer 1941]. In their joint paper of 1954 using the electronic computer, 

they showed that almost half of the primes smaller than 2500 are irregular, and they 

proved the theorem up to this value [Lehmer, Lehmer & Vandiver 1954]. 

This is not the place to describe the details of this interesting collaboration [see Corry 

2008a, 2008b]. What was said is enough to indicate that it proceeded along a path that 

was, and in many sense remained, outside the mainstream. Still, the kind of work 

initiated by Vandiver and his collaborators opened a new direction of research, which 

is still alive and well until this very day. Calculation techniques with digital 

computers were strongly developed after 1951, but their use in mathematics in general 

and in particular for finding proofs for various questions related with number theory 

evolved in a very slow and hesitant manner. It has become increasingly common over 

the last decades, but it is yet far from having become mainstream. Within this trend, 

additional proofs of FLT along similar lines continued to appear up to exponents over 

one billion, and case I of FLT up to values much higher than that [e.g., Wagstaff 

1978; Granville & Monagan 1978; Buhler, Crandall & Sompolski 1992]. In fact, 

articles of this kind continued to be published even after Wiles completely general 

proof [Buhler et al. 2000]. One should not be surprised to see additional articles of 

this kind appear in the near future, and, perhaps, more general attempts at computer-

assisted “elementary” proofs of FLT. 

In 1959, the mathematician Heinrich Tietze (1880-1964) summarized the current 

status of FLT, as he saw it, in a book devoted to presenting “Famous Problems of 

Mathematics”. Mentioning the fact that although it had been mostly addressed by 

“flood of amateurs”, also some professionals had occasionally returned to it, mostly 

on the wake of the Wolfskehl Prize. These professionals, he said, were aware of the 

difficulty of the problem, and of “the profound theories which must be mastered” 
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before one can appreciate the work already done in the field, and he concluded [Tietze 

1965, 286]: 

Perhaps some day Fermat’s problem will be completely solved. It will be a real achievement 

and if the solution yields new methods of research and new problems, it will be a new 

milestone. If not, our desire of knowledge will have been gratified, but Fermat’s problem in 

itself would then occupy no more than a modest place in the history of mathematics, and this 

principally because it stimulated Kummer’s work. 

Faced with some further historical evidence, I believe that Tietze would even agree to 

temper his claim in relation with Kummer, but at any rate this seems to me a sober 

and balanced historical appreciation of FLT that had the additional virtue of 

foreseeing how a groundbreaking work, like Wile’s would eventually turn out to be, 

would completely change the minor historical importance of this problem. 

 

8. Concluding Remarks: the Fermat-to-Wiles drama 
revisited 

Within the entire story of FLT, the episode involving Wiles and his contribution to 

finally proving the theorem is no doubt the one that comes closer to a real drama of 

the kind that some accounts have tried to create around this mathematical tale. 

Perhaps the word “obsession” can be used here with some degree of justification, 

especially to describe the years of self-imposed seclusion during which Wiles worked 

out his proof and the unexpected discovery of a non-trivial mistake that took about 

eight months, and the collaboration of Richard Taylor, before it could be corrected. 

Because of this delay Wiles could not be awarded the Fields medal at the 1994 

International Congress of Mathematicians in Zürich, but then he was duly recognized 

in 1998 in Berlin with a special award by the Fields medal committee, obviously 

expressing an overall consensus in the international mathematical community. Also 

the recent 2006 ICM at Madrid was marked by the sensational solution of another, 

long standing, famous open problem, the Poincaré conjecture (PC), by Grigori 

Perelman. Also here a somewhat dramatic tale surrounded the solution and the award, 

thus giving rise to its own share of media coverage and popularization efforts of 

various kinds. It seems tempting to me, therefore, to make a brief comparison, in this 

concluding section, of the different ways in which these two problems appear in the 

history of the Field medals. It definitely appears as natural, and even self-evident, that 
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both Perelman and Wiles were considered to be in the category of Fields medal 

recipients for their work. There is little to be said in this respect. But, interestingly 

enough, previous to them, FLT and PC featured very differently in terms of the 

history of this award.  

At least three mathematicians were awarded the medal for work directly connected 

with PC: Stephen Smale (1966), William Thurston (1982), and Michael Freedman 

(1986). In the cases of Smale and Freedman this connection was explicitly mentioned 

as the main reason for the medal in the presentation at the respective ICMs [Thom 

1968, Milnor 1987]. In the case of Thurston’s presentation PC was not mentioned but 

the connection was by all means implicitly clear [Wall 1984]. Also René Thom 

(1958), John Milnor (1962) and Serge Novikov (1970) received the prize for work 

related to classifications of manifolds and cobordism, within which PC always 

attracted prominent (though not exclusive) attention [Hopf 1960, Whitney 1963, 

Atiyah 1971].  

The case for FLT was very different. Gerd Faltings is the only Fields medal recipient 

(1986) whose work can is directly related to the history of problem. The works of 

other number theorist among the recipients, Klaus Roth (1958) and Alan Baker 

(1970), went in completely different directions anyway, certainly at the time of their 

receiving the prize.34 The dedication speech for Faltings was pronounced by Barry 

Mazur who already advanced here some of his ideas, mentioned above, on the unique 

role that certain “structural conjectures” play in twentieth century mathematics. The 

importance of Faltings’ proof of the Mordell conjecture derived, in his view, precisely 

from the fact that it was intimately connected with some of those “outstanding 

conjectures – fundamental to arithmetic and to arithmetic algebraic geometry.” And 

the outstanding conjectures mentioned by Mazur were Shafarevich’s conjecture for 

curves, the conjecture of Birch & Swinnerton-Dyer, and the semisimplicity conjecture 

of Grothendieck. Moreover, Mazur stressed that based on the ideas developed by 

Faltings we could “expect similarly wonderful things in the future”, and these would 

relate to topics such as moduli spaces of Abelian varieties, Riemann-Roch theorem 

for arithmetic surfaces, or p-adic Hodge theory. Not only FLT was not mentioned 

here specifically in relation with Faltings proof, but, more surprisingly perhaps, TSW 

                                                 
34 But see [Baker 1982].  
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was also absent from the general panorama of fundamental conjectures described by 

Mazur, and this in spite of his following, very clear pertinent statement: 

Nowadays the analogy between number fields and fields of rational functions on algebraic 

curves (over finite fields) is so well imprinted upon our view of both number theory and the 

theory of algebraic curves that it is hard to imagine how we might deal with either theory, if 

deprived of the analogy. [Mazur 1997, 8] 

 Here, like throughout the entire article, my point in referring to this evidence related 

to the Fields medal is not to express any mathematical judgment about the intrinsic, 

relative importance of the two problems but merely to add another interesting 

perspective from which to consider the ways in which this importance was perceived 

before the impressive, respective achievements of Wiles and Perelman. Contrary to 

what is the case with PC, the medal dedications during these years never presented 

FLT at the center of an acknowledged, great plan of research that attracted continued 

attention and efforts meriting the institutionalized, top formal recognition of the 

international mathematical community.  

 

Wiles’ fascination with FLT, I would like to say to conclude on a different note, 

reportedly started in his childhood when he read Eric Temple Bell’s The Last 

Problem. On looking at the example provided by his career, and in spite of the tone of 

my account thus far, I must acknowledge at this point that over-dramatized accounts 

of mathematical tales have undeniable virtues. Indeed, over-dramatizing and telling 

the history of mathematics as a series of essentially undocumented legends about 

mathematical heroes is the main narrative strategy famously followed by E.T. Bell in 

his book about FLT as well as in his better-known and indeed legendary Men of 

Mathematics. This approach is what caught the imagination of many young readers 

(some of which became mathematicians), apparently including that of young Andrew 

Wiles. It does not seems risky to conjecture that, had a young, mathematically 

sensible child like Wiles, read a moderate account of the kind I have pursued here—

for all the historiographical and scholarly qualities I hope it has—he was much less 

likely to become fascinated with the problem and to be led to imagine himself as 

pursuing a mathematical career with the hope of solving it.  

On becoming a professional mathematician, Wiles realized that existing methods to 

address FLT seemed to be thoroughly exhausted. Focusing on an attempt to prove the 
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theorem did not appear to be a reasonable way to build up a mathematical career. 

Without thereby loosing his “emotional attachment” to the problem, Wiles 

nevertheless built a distinguished career while working on other fields, especially 

elliptic curves. Upon hearing in 1986 about Ribet’s proof of the epsilon conjecture, 

his old interest on FLT was rekindled. Wiles had not previously believed that the 

epsilon conjecture would be correct. But now, upon hearing of Ribet’s proof, several 

significant factors converged into a situation where proving FLT had become a 

mathematical task to which he could devote all of his energies: FLT, the problem for 

which he was passionate for so many years, was to be derived from a mathematical 

conjecture that evidently posed a difficult professional challenge, that was considered 

to be highly important and that, at the same time, he now believed to be true. His 

strong background on elliptic curves only made the achievement of the task appear as 

even more plausible. But without the direct, emotionally-laden motivation to prove 

FLT, TSW alone, for all of its acknowledged mathematical importance, would 

probably not have provided Wiles with enough fuel to undertake this long and 

difficult quest. This is the crossroads at which he reached the decision to devote his 

time now exclusively to proving TSW, so that FLT could be finally established. Bell’s 

kind of dramatic approach to the history of mathematics is indeed problematic for the 

professional historian, but one must acknowledge that it did play a direct role in 

triggering the series of events that would eventually lead to the solution of FLT (and, 

as a bonus on passing, TSW as well). 
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