Lightning, Thunderstorms



One of the most fabulous examples of nature's power is the lightning discharge. There are different types of lightning, although the most common lightning is that within the thunderstorm cloud, between different parts of the same cloud (intracloud lightning). This makes up approximately 70% of all lightning discharges. The majority of the remaining 30% is due to lightning between clouds and the ground (not surprisingly called cloud-to-ground lightning). There are other types of lightning such as cloud-to-cloud lightning, cloud-to-air lightning, ball lightning, heat lightning, and others. It is estimated that there are between 50-100 lightning flashes every second somewhere around the globe.
 

lt2

Satellite observations of lightning show that lightning around the globe is concentrated primarily over the continental regions, which make up only 30% of the surface area of the earth. Why is this? It appears that the updraft velocities in thunderstorms are important in the microphysical processes that eventually lead to the electrification of clouds and finally the lightning discharge. Observations show that the updraft velocities in oceanic thunderstorms are much weaker than the updraft velocities in the continental thunderstorms. Part of my research deals with these differences between oceanic and continental thunderstorms.

Severe thunderstorms often have intense lightning activity.  These storms can often produce large hail, strong winds, flash floods and sometimes tornados. Lightning is also known to be closely related to the amount of precipitation produced by these storms. It may be possible to therefore use lightning information, which can be observed either via satellite or by ground detection networks, to estimate the amount of rainfall that will fall in remote regions where flooding is a threat (e.g. the Negev desert in Israel). Since rivers crest a few hours after the rain has fallen, realtime lightning data may allow us to improve flash flood warnings.  During 2006-2010 I led a large European project called FLASH to study the link between lightning and flash floods.  Recently we have also studied lightning in hurricanes (see figure below), and found that lightning activity (red) peaks about one day before the peak wind intensities of the hurricane (black).



Besides observations, I am also interested in the numerical simulations of global lightning distributions in mathematical computer models. We have recently used the Weather Research and Forecasting (WRF) model to simulate lightning activity in thunderstorms, flash floods, and hurricanes.

References:

<>    Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions, J. Geophy. Res., 97, 9919-33.
    Price, C., and D. Rind, 1993: What determines the cloud-to-ground lightning fraction in thunderstorms? Geophys. Res. Lett., 20, 463-466.
    Price, C., and D. Rind, 1994: Modeling global lightning distributions in a General Circulation Model, Mon. Wea. Rev., 122,1930-1939.
    Price, C. and B. Murphy, 2002: Lightning activity during the 1999 Superior Derecho,
Geophys. Res. Lett.,  29(23), 57.1-57.4.
    Burrows, W.R., C. Price, and L. J. Wilson, 2005: Warm season lightning probability prediction for Canada and the northern United States. Wea. and Forecasting, 20(6), 971-988.
    Price, C., 2006: Global lightning activity, in Sprites, Elves and Intense lightning Discharges, M. Fullegrug et al. (eds.), Springer, Amsterdam, The Netherlands, 85-99.
    Price, C., and B. Federmesser, 2006: Lightning-rainfall relationships in Mediterranean winter thunderstorms, Geophys. Res. Lett., 33, L07813, doi:10.1029/2005GL024794.
    Yair, Y., R. Aviv, G. Ravid, R. Yaniv, B. Ziv and C. Price, 2006:  Evidence for synchronicity of lightning activity in networks of spatially remote thunderstorms, J. Atmos. Solar-Terr. Phys., 68, 1401-1415.
    Price, C., and M. Asfur, 2006:  Long term trends in lightning activity over Africa, Earth Planets Space, 58, 1-5.
    Price, C., Y. Yair and M. Asfur, 2007: East African lightning as a precursor of Atlantic hurricane activity, Geophys. Res. Lett., 34, L09805, doi:1029/2006GL028884.
    Price, C., 2008:  Lightning sensors for observing, tracking and nowcasting severe weather, Sensors, 8, 157-170.
    Dowden, R L, R H Holzworth, C J Rodger, J Lichtenberger, N R Thomson, A R Jacobson, E Lay, J B Brundell, T J Lyons, S O'Keefe, Z Kawasaki, C Price, V Prior, P Ortéga, J Weinman, Y Mikhailov, O Veliz, X Qie, G Burns, A Collier, O Pinto Jr, R Diaz, C Adamo, E R Williams, S Kumar, G B Raga, J M Rosado, E E. Avila, M A Clilverd, T Ulich, P Gorham, T J G Shanahan, T Osipowicz, G Cook, Y Zhao, 2008: World-Wide Lightning Location Using VLF Propagation in the Earth-Ionosphere Waveguide, IEEE Antennas and Propagation Magazine doi: 10.1109/MAP.2008.4674710, p 40-60.
    Price, C., 2009:  Thunderstorms, Lightning and Climate Change,  in Lightning : Principles, Instruments and Applications, ed. H.D. Betz, U. Schumann and P. Laroche, Springer Publications, 521-536.
    Dotzek, N., and C. Price, 2009:  Lightning characteristics of extreme weather events, in Lightning : Principles, Instruments and Applications, ed. H.D. Betz, U. Schumann and P. Laroche, Springer Publications, 487-508.
    Yair, Y., B. Lynn, C. Price, V. Kotroni, K. Lagouvardos, E. Morin, A. Mugnai and M. C. Llasat, 2009: Predicting lightning density in Mediterranean storms based on the WRF model dynamic and microphysical fields, J. Geophysi. Res., VOL. 115, D04205, doi:10.1029/2008JD010868.
    Price, C., M. Asfur and Y. Yair, 2009:   Maximum hurricane intensity preceded by increase in lightning frequency , Nature Geoscience, doi:10.1038/NGEO477, Vol. 2, 329-332.
    Altaratz, O., I. Koren, Y. Yair and C. Price, 2010: Lightning response to smoke from Amazonian fires, Geophys. Res. Lett., 37, L07801, doi:10.1029/2010GL042679.
    Rozalis, S., E. Morin, Y. Yair and C. Price, 2010:  Flash flood prediction using an un-calibrated hydrological model and radar rainfall data in a Mediterranean watershedunder changing hydrological conditions, J. of Hydrology¸ 394, 245-255.
    Llasat, M.C., M. Llasat-Botija, M.A. Prat, F. Porcú, C. Price, A. Mugnai, K. Lagouvardos, V. Kotroni, D. Katsanos, S. Michaelides, Y. Yair, K. Savvidou, and K. Nicolaides, 2010: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database,  Adv. Geosci., 23, 47-55.
    Kohen, M., E. Galanti, C. Price, K. Lagouvardos and V. Kotroni, 2011:  Now-Casting Thunderstorms in the Mediterranean Region using Lightning Data, Atmos. Res.,100, 489-502.
    Price, C., Y. Yair, A. Mugnai, K. Lagouvardos, M. C. Llasat, S. Michaelides, U. Dayan, S. Dietrich, E. Galanti, L. Garrote, N. Harats, D. Katsanos, M. Kohn, V. Kotroni, M.     Llasat-Botija, B. Lynn, L. Mediero, E. Morin , K. Nicolaides, S. Rozalis, K. Savvidou, B. Ziv,  2011: The FLASH Project: Using lightning data to better understand and predict flash floods, Environ. Sci. & Policy, 14, 898-911.
    Price, C., Y. Yair, A. Mugnai, K. Lagouvardos, M. C. Llasat, S. Michaelides, U. Dayan, S. Dietrich, F. Di Paola, E. Galanti, L. Garrote, N. Harats, D. Katsanos, M. Kohn, V. Kotroni, M. Llasat-Botija, B. Lynn, L. Mediero, E. Morin , K. Nicolaides, S. Rozalis, K. Savvidou, B. Ziv,  2011: Using lightning data to better understand and predict flash floods in the Mediterranean, Surveys in Geophysics, 32(6), 733-751.
    Lynn, B., Y. Yair, C. Price, G. Kelman and A. Clark, 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models, Weather and Forecasting, submitted.
    Price, C., B. Lynn, Y.Yair, N. Reicher and A. Khain, 2012:  Modeling lightning activity in hurricanes, Atmos. Res., submitted.



<>

Related websites:

Lightning and thunderstorm information
Close encouters with a tornado