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a b s t r a c t

A model of thermoluminescence (TL) is presented based on a double-occupancy electron trap and a
single-hole recombination center. The concept of double-electron traps has been established before with
regard to different solid state phenomena and briefly mentioned as a possible occurrence in connection
with TL. A new set of simultaneous differential equations governing the three stages of excitation,
relaxation and readout of TL in this new framework is developed. This situation is dealt with by solving
these sets of equations sequentially for reasonable sets of chosen trapping parameters. Also, an analytical
treatment using plausible simplifying assumptions is given in parallel. The outcome of these procedures
yields a two-peak TL curve and, in a sense, the two-electron trap behaves as two traps with different
activation energies, frequency factors and retrapping probabilities. The results of the simulations and the
approximate analytical approach show that the lower-temperature peak has features of first-order peak
and is strongly superlinear with the dose of excitation. With the appropriate choice of parameters, the
dose dependence of the first peak has been found to be cubic and slightly more than cubic with the
excitation dose. This may explain experimental results of cubic and somewhat stronger superlinearity
previously reported in the literature. The second peak has second-order features and it shifts dramati-
cally to lower temperatures with increasing dose.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

May and Partridge (1964) tried to explain the results of ther-
moluminescence (TL) in KCl, which exhibited an approximate non-
integer order of kinetics of ~1.5 by assuming an electron trap with
two electrons. They suggested that two electrons may be located in
a single lattice site or in two sites with very close proximity. The
activation process would consist of excitation of both electrons
simultaneously into the activated state. By using some simplifying
assumption, they reached a 1.5-order equation for TL.
The concept of two-electron traps has been mentioned in the
literature for the explanation of different solid-state phenomena.
Jaros (1975) dealt with the photo-ionization spectra of GaP:O and
suggested that the impurity potential is strong enough to bind a
second electron. Jaros has performed a convergent calculation of
the two-electron state associated with O in GaP. Kaufmann and
Schneider (1977) have shown by ESR measurements that neutral
substitutional iron impurities in GaP can trap two electrons. Mircea
et al. (1977) considered the occurrence of two-electron traps in the
explanation of the results of transient-capacity-spectroscopy in
Ga1-xInxAs with 0 < x < 0.21. Lee and Crawford (1977) discussed the
two-electron center in Al2O3 and Summers et al. (1983) commu-
nicated on two-electron vacancies in MgO. Kaufmann et al. (1979)
reported on infrared luminescence and EPR in GaP:Ni and
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Fig. 1. Energy level diagram of a solid with a single-hole center and a two-electron
trap. The transitions during excitation and heating are shown. The meaning of the
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explained the results by asserting that the Niþ is a two-electron
trap state. Matsuda and Ohata (1981, 1982) described a model of
a two-electron capture process with a typical example of GaP:O.
Binbin and Chihtang (2011) considered the trapping capacitance of
2-charge-state impurities in Metal-Oxide-Semiconductor Capaci-
tors (MOSC's). They mentioned impurities in Si such as a two-
electron trap associated with Sulfur and a two-hole trap ascribed
to Zinc impurity. A number of papers reported on effects associated
with two-electron traps in alkalihalides. Nahum (1967) described
the luminescence of different centers in LiF and mentioned the
effect of two-electron capture. Porret and Lüty (1971) reported on
luminescence of F centers in KCl, and described the formation of a
two-electron F0 center. Baldacchini et al. (1981) communicated on
radiative and nonradiative processes of F and F0 centers in NaBr and
NaI, concentrating on the role of two-electronic states. Zhang et al.
(1994) also discussed the two-electron systems in ionic crystals,
and in particular, the role of F0 centers in alkalihalides. The two-
electron F0 centers in alkalihalides have been broadly discussed
by Georgiev (1988).

A rather similar situation of two-hole centers has been consid-
ered in the literature. Winter et al. (1969) reported on the dichro-
ism of V bands in potassium and rubidium halides and explained
the results using a model of two holes trapped at an anion in a
cation vacancy. More specifically, with regard to TL, Mayhugh
(1970) and Townsend et al. (1979) explained results of thermolu-
minescence in LiF by the existence of V3 centers containing two
trapped holes. B€ohm and Scharmann (1981) mentioned the two-
electron F0 center in alkalihalides with relation to the general
subject of TL dosimetry. Yazici et al. (2004) who studied TL of
LiF:Mg, Ti between 100 and 300 K suggested that their results are
related to the V3 two-hole centers. The same V3 two-hole centers
have been considered as being associated with TL by Horowitz
(2006) and by Eliyahu et al. (2016). Woda and Wagner (2007), in
an explanation of a non-monotonic dose dependence of Ge- and Ti-
centers in quartz, discuss amodel of double-electron capturewhich
can be expressed in both ESR and TL measurements.

It is worth mentioning that the distinction between traps and
centers is in their role during the read-out stage. For the sake of
simplicity, we usually talk about electron traps and hole centers,
but the inverse situation is just as likely to occur. The real distinc-
tion should be made between the active and passive entities. Traps
are active in the sense that they release thermally or optically
carriers into the conduction or valence bands or into an excited
statewithin the forbidden gap. In the former case, the free electrons
or holes can move in their respective bands before encountering
stationary holes or electron in a center and recombination takes
place yielding energy that may or may not be luminescence pho-
tons. In the latter case of a carrier being elevated into an excited
state within the forbidden gap, recombination takes place within
the same locality where the trap and center are.

The same is true for two-electron and two-hole entities. It is
convenient to speak about a two-electron trap as the entity which
can release thermally or optically sequentially two electrons into
the conduction band before their recombination with a stationary
hole and about two-hole centers which can recombine sequentially
with two free electrons from the conduction band. However, here
too, the mirror image situation is feasible all the same. We will
continue to talk about the two-electron trap and two-hole lumi-
nescence centers, but will keep in mind that the inverse situation is
possible. The sets of simultaneous differential equations governing
the processes for these two sets of circumstances are exactly the
same.

In the present paper we concentrate on a model of two-charge-
carrier traps whereas the subject of two-carrier centers and their
relation to TL will be discussed elsewhere.
2. The model

At present, we consider a model of two-electron traps in the
study of thermoluminescence. As opposed to the work by May and
Partridge (1964) we assume that the two electrons are thermally
stimulated not simultaneously into the conduction band and that
the activation energies as well as the other trapping parameters of
the two electrons are not the same. The model is similar to that
given previously by Woda and Wagner (2007) except that the au-
thors deal mainlywith ESRmeasurements and therefore, limit their
study to the excitation stage whereas here we talk about TL and
take into consideration the three stages of TL, namely, excitation,
relaxation and heating. Also, these authors concentrate on the non-
monotonic dose dependence of trap filling whereas we deal with
properties of the TL curve resulting from this model, and in
particular the superlinear dose dependence.

Let us assume a simple system with one trap and one center.
However, let us assume that the trap can capture two electrons. A
schematic energy-level diagram of the model is shown in Fig. 1. Let
us denote the total concentration of traps byN (cm�3). Out of these,
it may have instantaneously n1 (cm�3) traps with single electrons
or n2 (cm�3) traps with two electrons. Obviously, the instantaneous
concentration of empty traps is N-n1-n2. The activation energy of a
single electron in a trap will be denoted by E1 (eV) and the energy
for releasing an electron from a trap with two electrons is denoted
by E2 (eV). It seems reasonable to assume that E1 > E2 since, with
two electrons in a trap, theremay be Coulombic repulsion and, with
one electron, there may be some Coulombic attraction of the free
electron to the impurity ion forming the trap. The trapping prob-
ability coefficients will be denoted by A1 and A2, where A1 (cm3s�1)
is the trapping probability coefficient into an empty trap and A2

(cm3s�1) the trapping probability coefficient into a trap with one
electron. It appears that usually, A1 > A2 since the probability to
capture a free electron is expected to be larger in an empty trap
than in a trap with one electron. The frequency factors for the first
and second electron are s1 (s�1) and s2 (s�1), respectively. They may
not necessarily be the same since the thermal release of the first
and second electrons are not from exactly the same environment.m
(cm�3) denotes the instantaneous concentration of holes in centers
out of a total of M (cm�3) centers. nc (cm�3) is the instantaneous
concentration of free electrons and Am (cm3s�1) the recombination-
probability coefficient. In the excitation stage, X (cm�3s�1) denotes
the rate of production of electron-hole pairs, which is proportional
to the dose rate of excitation. Note that if we denote the time of
excitation by tD (s), then D ¼ X,tD (cm�3) is the total concentration
different parameters and functions are given in the text.



Fig. 2. Simulated glow curve from a two-electron trap model. The set of parameters is
given in the text.
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of pairs produced by the irradiation, which is proportional to the
total applied dose. nv (cm�3) denotes the instantaneous concen-
tration of free holes and B (cm3s�1) is the probability coefficient of
capturing free holes in the recombination center.

Under these circumstances, the set of coupled differential
equations governing the process during excitation would be:

dm
dt

¼ BnvðM �mÞ � Ammnc; (1)

dn1
dt

¼ s2n2 expð � E2=kTÞ þ A1ðN � n1 � n2Þnc � s1n1 expð
� E1=kTÞ � A2n1nc;

(2)

dn2
dt

¼ A2n1nc � s2n2 expð � E2=kTÞ; (3)

nc þ n1 þ 2n2 ¼ mþ nv; (4)

dnv
dt

¼ X � BnvðM �mÞ: (5)

It should be mentioned that Eq. (4) can be written in a differ-
ential form, namely,

dnc
dt

¼ dm
dt

þ dnv
dt

� dn1
dt

� 2
dn2
dt

: (4a)

Note the first term on the right-hand side of Eq. (3). It has to do
with the retrapping of an electron from the conduction band with a
trap with one electron, changing it to be a trap with two electrons.
Note also the factor 2 in the charge balance Eq. (4). Since n2 is the
concentration of traps with two electrons, the total instantaneous
concentration of electrons in these traps is 2n2. The same factor of 2
appears also in Eq. (4a). These equations are practically the same as
those given by Woda and Wagner with regard to the trap filling
measured by ESR. It is worth mentioning that as long as the tem-
perature during excitation is significantly lower than that of the TL
peaks, the exponential terms in Eqs. (2) and (3) may be negligibly
small.

In order to follow the experimental procedure, we add following
the excitation stage a relaxation stage which mimics the time be-
tween excitation and heating. We use the values of the concen-
trations at the end of excitation as initial values for the relaxation
stage, set X ¼ 0, and solve the simultaneous equations for a further
period of time until nc and nv are practically zero.

The same equations can be used for the heating stage by keeping
X ¼ 0 and letting the temperature in Eqs. (2) and (3) to increase
according to the heating function. We have used, as is customary, a
linear heating functionwith a heating rate of 1 Ks�1. Like before, we
use the final concentrations of the relaxation period as initial values
for the heating stage. According to this model, the concentration of
free holes nv during the heating stage is nil. Here, Eq. (1) is replaced
by

I ¼ �dm
dt

¼ Ammnc; (6)

where I is the intensity of the emitted TL light. Also, since in this
stage, nv≡0, we have dnv/dt≡0 and Eq. (5) can be disregarded. Thus,
in order to follow the process for the heating stage, we solve
numerically the simultaneous Eqs (2) (3) (4a) and (6). Note that, as
given here, I has units of cm�3s�1. In fact, a dimensional constant
should have been inserted here, which is arbitrarily set to unity.
3. Numerical results

The following parameters have been used for the excitation,
relaxation and heating: B ¼ 10�13 cm3s�1; Am ¼ 10�11 cm3s�1;
A1 ¼ 10�12 cm3s�1; A2 ¼ 10�14 cm3s�1; s1 ¼ 1012 s�1; s2 ¼ 1013 s�1;
E1 ¼ 1.3 eV; E2 ¼ 0.7 eV; N ¼ 1017 cm�3; M ¼ 1016 cm�3.

Fig. 2 depicts the results of the simulation by solving numeri-
cally the mentioned set of differential equations in the sequence of
excitation, relaxation and heating. The dose rate X used in Fig. 2 was
1.024 � 1014 cm3s�1 and the time of excitation was tD ¼ 100 s. The
temperature of excitation was 200 K. However, when we repeated
the simulation with excitation at 300 K, the second peak came out
exactly the same. The intensities of the simulated two peaks have
been found to be significantly different and in order to be able to
see both of them on the same scale, intensities below 350 K were
multiplied by a factor of 1000. In further simulations, the dose rates
X chosen varied from 2.5� 1010 to 1.024� 1014 cm3s�1 by factors of
2. The first peak, occurring at ~250 K has been found to have a
symmetry factor mg ¼ 0.421 characteristic of first-order kinetics.
Evaluating the activation energy using the standard shape formula
(Chen,1969) yielded E¼ 0.697 eV as compared to the inserted value
of E2 ¼ 0.7 eV. The frequency factor was found to be s ¼ 8.4 � 1012

s�1 as compared to the value used for simulation, s2 ¼ 1013s�1. Peak
#2 yielded mg ¼ 0.49, indicating second order. The calculated acti-
vation energy is E ¼ 1.32 eV as compared to the input of E1 ¼1.3 eV
and the evaluated frequency factor is s ¼ 8 � 1011 s�1 as compared
to the inserted s1 ¼ 1012 s�1. The agreement between inserted and
evaluated parameters is very good. Typically for first-order peaks,
the maximum temperature of the first peak does not vary with the
dose. The second peak looks like a second-order peak and as such,
its maximum temperature varies significantly with the dose. From
the lowest dose used of 2.5 � 1012 cm�3 to the highest one of
1.024 � 1016 cm�3, the temperature moved from 663 K down to
508 K.

An interesting feature has been found in the dose dependence of
the first peak; it depended on the dose in a strong superlinear
manner. In the simulations, the dose-rate X has been varied be-
tween 2.5 � 1010 and 1.024 � 014 cm�3s�1 by a factor of 2 in the
dose rate between consecutive simulations, and with the given
value of tD, the dose has thus been between 2.5 � 1012 and
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1.024 � 1016 cm�3. Note, however that exactly the same results
were reached when the dose rate was kept constant at
2.5 � 1010 cm�3s�1 and the time of excitation changed gradually
from 100 to 8.192 � 105 s. The results of dose dependence of the
area under the first TL peak are shown in curve (a) of Fig. 3 on a log-
log scale. The initial slope on this scale is three, indicating a cubic
dependence on the dose. At higher doses, the slope gets smaller but
is still larger than unity indicating superlinearity. Since the shape of
this peak does not change with the applied dose, it is obvious that
the area under the curve increases in the same strong superlinear
manner.

It should be noted that an initial cubic dose dependence of TL
has been reported in the literature for at least three cases of TL dose
dependence. Halperin and Chen (1966) described the results of UV
excited TL in semiconducting diamonds. When the excitation was
by UV light in the range of 300e400 nm, the initial dose depen-
dence was fD3. Chen et al. (1988) communicated on the dose
dependence of TL in b-irradiated synthetic quartz. They found cubic
dose dependence in beta excited samples prior to any initial
Fig. 3. Dependence of the area under the two simulated TL peaks on dose of excitation
plotted on a log-log scale, (a) the lower temperature peak; the dashed line shows the
results of Eq. (44) and the triangles represent the numerical results. (b) the higher
temperature peak; the solid line shows the results from Eq. (28) and the diamonds are
the numerical results.
heating. Otaki et al. (1994) reported on more than cubic dose
dependence in UV excited CaF2:Tb4O7.

As for the second peak in the simulations, the dose dependence
of its maximum is very slightly superlinear. As pointed out by Chen
et al. (1983), the initial dose dependence of the maximum of a
second-order peak is ~D1.07, and this is also the case here. Note that,
in fact, in this case, the area under the TL peak is linear with the
dose as is seen in curve (b) of Fig. 3 and the slight superlinearity of
themaximum intensity is ascribed to a small change in the shape of
the curve. As the dose grows, the peak gets somewhat narrower
and since the area under the curve remains constant, themaximum
intensity grows a little faster than linearly. At the high-dose range,
some saturation effect comes into play and the increase of Im gets
somewhat sublinear.

In order to distinguish between processes taking place during
excitation and heating, we have plotted the concentrations n1,0, n2,0
andm0 at the end of the relaxation stage and prior to the heating as
simulated with the mentioned set of parameters. The results are
shown in Fig. 4 on a log-log scale in the range of doses between
3 � 1011 and 1016 cm�3. Note that the figure shows both the nu-
merical results of the simulations and the analytical results dis-
cussed below. As is seen in the figure, n1,0 andm0 grow linearly with
the dose and have practically the same values up to the point that
the occupancy in the center m reaches the full capacity of
Fig. 4. The dependence of the simulated trap and center occupancies at the end of
excitation and relaxation on the dose of excitation on a log-log scale. The solid lines
indicate the results from Eqs. (26e28). The diamonds show the numerical results of n1
andm from the numerical simulations and the triangles are the numerical results of n2.
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M¼ 1016 cm�3. It is worthmentioning that, at least for the given set
of parameters, we have all along n1,0ym0yDwhere D is the “dose”
given in the same units of cm�3. As for the curve of n2,0, it has a
slope of 2 at the lower doses, indicating quadratic dose depen-
dence. At higher doses, the slope reduces to ~1.65 beforem0 goes to
saturation.
Fig. 5. Trap concentrations plotted against the dose for the case Am ¼ A2 ¼ A1/2. The
theory also assumes that M > 2N and that A1 is large enough so that the quasi-steady
theory holds. Subject to these requirements, this is a universal plot: whatever values
one picks for X, t, A1, N, the solution falls on this plot.
4. Theoretical background

4.1. The excitation stage

Let us assume that irradiation takes place at low temperature. As
pointed out above, the temperature dependent terms in Eqs. (2)
and (3) can be neglected so for this stage we can consider Eqs.
(1)e(5) without these terms. In addition, the initial conditions are
m(0) ¼ n1(0) ¼ n2(0) ¼ 0. Let us assume that the time of excitation
tD is long enough so that

1< <BðM �mÞtD; (7)

1< < ½A1ðN � n1 � n2Þ þ A2n1 þ Amm�tD: (8)

In other words, we assume that the lifetimes of free electrons
and free holes are much shorter than the irradiation time. Since
irradiation typically takes place over seconds, days or years and the
lifetimes are often measured in microseconds, this is generally a
good approximation. From Eqs. (4) and (5) we get respectively

nc ¼ X
A1ðN � n1 � n2Þ þ A2n1 þ Amm

; (9)

nv ¼ X
BðM �mÞ : (10)

In Eqs. (9) and (10), the numerator represents the production
rate of free electrons and holes and the denominators represent
constants for their capture.

The governing equations then reduce to

dn1
dt

¼ A1ðN � n1 � n2Þ � A2n1
A1ðN � n1 � n2Þ þ A2n1 þ Amm

X; (11)

dn2
dt

¼ A2n1
A1ðN � n1 � n2Þ þ A2n1 þ Amm

X; (12)

dm
dt

¼ X � Amm
A1ðN � n1 � n2Þ þ A2n1 þ Amm

X: (13)

Eq. (12) shows that the rate of increase of the population of n2 is
proportional to the rate of production of free electrons, X, multi-
plied by the fraction of those electrons that are captured by n1,
creating n2. Eq. (11) similarly shows that the rate of increase of the
population n1 is proportional to the rate of production. The factor in
front of X in Eq. (11) represents the fraction of those free electrons
that are captured into n1 minus the fraction that converts n1 to n2.
Eq. (13) shows that the rate of increase of the population of holes,
m, is the rate of free hole production, X, minus the rate of free
electron production, X, times the fraction of those free electrons
that end up recombining in the center.

Eq. (11) through (13) can be combined to again yield conserva-
tion of charge
m ¼ n1 þ 2n2; (14)

where we used the initial condition m(0) ¼ n1(0) ¼ n2(0) ¼ 0. Note
that Eq. (14) may result from Eq. (4) by assuming that nv and nc are
negligibly small as compared to the other magnitudes, which is
usually made in the quasi-equilibrium assumptions.

4.2. Complete irradiation solution for a special case

If the rate constants have a given relative size, we can obtain a
solution that is valid all the way from low doses to high doses. In
particular, let us consider

Am ¼ A2 ¼ A1=2: (15)

Note that we are not assuming any particular values for the rate
constants but only require that their relative sizes be given by Eq.
(15). Eqs. (11) and (12) simplify to

dn1
dt

¼ 2N � 3n1 � 2n2
2N

X; (16)

dn2
dt

¼ n1
2N

X; (17)

where Eq. (14) was used. By the usual methods and using the initial
conditions m(0) ¼ n1(0) ¼ n2(0) ¼ 0, the solution is found to be

n1 ¼ 2N
�
exp

�
�Xt
2N

�
� exp

�
�Xt
N

��
; (18)

n2 ¼ N
�
1� 2 exp

�
�Xt
2N

�
þ exp

�
�Xt
N

��
; (19)

m ¼ n1 þ 2n2 ¼ 2N
�
1� exp

�
�Xt
2N

��
: (20)

From these equations, one can see that there are two time
constants that govern the growth of the populations of n1 and n2.
Note that, as long as Eq. (15) holds, we can raise or lower the rate
constants A1, A2 and Am, and it has no effect on these time constants.

The concentrations of n1, n2 and m vs. dose are shown in Fig. 5.
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We can see that at low doses, n1 and m rise linearly with dose.
Consequently, n2 rises superlinearly with the dose. Eventually, as
dose increases, the conversion of n1 to n2 occurs faster than n1 is
formed. The population of n1 reaches a peak and then declines.
With high enough dose, all the electron traps are converted to n2 as
the population of n1 asymptotically approaches zero. Because n2 is
the concentration of two-electron occupied traps, the population of
m asymptotically approaches 2N. This figure bears similarity to
Fig. 7 in the paper byWoda andWagner (2007) except that with the
parameters they chose only very slight superlinearity was found
there for n2. Note also that their results are found by numerical
simulations whereas ours in Fig. 5 result from approximate
analytical considerations.
4.3. Irradiation solution for small doses

Let us assume that the dose is low enough so that the concen-
trations arewell below saturation. In particular, we assume that the
dose is small enough so that

ðA1 þ A2 þ AmÞn1 < <A1N; (21)

ðA1 þ 2AmÞn2 < <A1N: (22)

With this assumption, the governing equations can be expanded
in a Taylor series in powers of (n1/N) and (n2/N),

dn1
dt

¼
�
1� Am þ 2A2

A1

n1
N

� 2Am

A1

n2
N

þ :::

�
X; (23)

dn2
dt

¼
�
0þ A2n1

A1N
þ :::

�
X; (24)

dm
dt

¼
�
1� Amm

A1N
þ :::

�
X: (25)

With the dose D defined as D ¼ R
Xdt, the above integrates to

n1 ¼ D� Am þ 2A2

A1N1

D2

2
þ O

�
D3

�
; (26)
Fig. 6. Trap concentrations at low doses. The solid curves are the results of the theory
for Am ¼ A2 ¼ A1/2. The dotted curves are the low-dose approximation.
n2 ¼ A2

A1N
D2

2
þ O

�
D3

�
; (27)

m ¼ D� Am

A1N
D2

2
þ O

�
D3

�
: (28)

This shows that, at least at small doses, both n1 andm are linear
in dose while n2 rises quadratically with dose, in agreement with
the numerical results shown in Fig. 4 above. The low-dose
approximation is compared to the full analytical solution of Eqs.
(18) and (19) in Fig. 6. This low-dose approximation appears
reasonably accurate up to doses of D z 0.4N.

5. The heating stage

5.1. The governing equations

Wewill examine the equations for heating during the time over
which luminescence due to recombination of electrons released by
thermal excitation from n2 is important. We find that the compe-
tition between trapping into n1 and recombination leads to
superlinearity at low doses. When we combine the heating theory
with the irradiation theory, a cubic superlinearity is found.

The set of simultaneous differential equations governing the
heating stage is rather similar to Eqs. (1)e(5) governing the exci-
tation stage, but with the appropriate adjustments. During heating,
nv≡0 and therefore Eq. (5) is superfluous. Also, obviously, X≡0 and
also, the temperature is variable, T ¼ T0 þ bt where T0 (K) is the
initial temperature, and b (K/s) the constant heating rate. The
governing equations are

dn1
dt

¼ A1ðN � n1 � n2Þnc � A2n1nc þ n2s2 expð � E2=kTÞ
� n1s1 expð � E1=kTÞ; (29)

dn2
dt

� A2n1nc � n2s2 expð � E2=kTÞ; (30)

dm
dt

¼ �Ammnc; (31)

dnc
dt

¼ �A1ðN � n1 � n2Þnc � A2n1nc � Ammnc þ n1s1 expð
� E1=kTÞ þ n2s2 expð � E2=kTÞ:

(32)

In the heating stage, we have nv≡0, and therefore, using the
conventional quasi-equilibrium assumption,

nc < <n1;n2;m; (33)

Eq. (4) reads

m ¼ n1 þ 2n2; (34)

or in its differential form,

dm
dt

¼ dn1
dt

þ 2
dn2
dt

: (35)

Inserting Eqs. (29e31) into Eq. (35) and rearranging, one gets

nc ¼ n1s1 expðE1=kTÞ þ n2s2 expðE2=kTÞ
A1ðN � n1 � n2Þ þ A2n1 þ Amm

: (36)

The governing equations now reduce to



dn1
dt

¼ ½2A1ðN � n1 � n2Þ þ Amm�n2s2 expð � E2=kTÞ � ð2A2n1 þ AmmÞn1s1 expð � E1=kTÞ
A1ðN � n1 � n2Þ þ A2n1 þ Amm

; (37)

dn2
dt

¼ A2n1s1 expð � E1=kTÞ � ½A1ðN � n1 � n2Þ þ Amm�n2s2 expð � E2=kTÞ
A1ðN � n1 � n2Þ þ A2n1 þ Amm

; (38)
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dm
dt

¼ �Amm½n1s1 expð � E1=kTÞ þ n2s2 expð � E2=kTÞ�
A1ðN � n1 � n2Þ þ A2n1 þ Amm

: (39)

As pointed out above, since the charge of n2 is more negative
than that of n1, we expect that E2 < E1. Consistent with that (and as
seen in the results of the simulations in Fig. 2), let us assume that
the thermal excitation of an electron from a double-charged trap
effectively completes before significant thermal excitation from the
single-charged trap begins. In this case, we neglect n1s1exp(-E1/kT)
relative to n2s2exp(-E2/kT). Eqs. (38) and (39) can now be combined
to yield

dm
dt

¼ Amm
A1ðN � n1 � n2Þ þ Amm

dn2
dt

: (40)

This equation will be useful in the next section.
5.2. Approximation for small n2

Let us assume further that n2 << n1. This will always be true at
low doses and will also be true at higher doses if A2 is smaller than
A1 as is usually expected given the charge difference. From n2 << n1,
it also follows that n2 << m and n1 z m. Eq. (40) further simplifies
now to

dm
dt

¼ Amm
A1N þ ðAm � A1Þm

dn2
dt

: (41)

Because n2 << m, it follows that there will be a small reduction
in m to

m ¼ m0 �
Amm0

A1N þ ðAm � A1Þm0
n2;0; (42)

where the subscript 0 indicates values at the start of heating. It
follows from Eq. (42) that the integrated intensity during the
thermal depletion of the double-charged trap is

I2 ¼ Amm0

A1N þ ðAm � A1Þm0
n2;0: (43)

Because bothm0 and n2,0 increase with the dose at least linearly
at the low-dose range, this indicates a superlinear dependence.

If we further assume low doses so that Eqs. (27, 28) can be
applied, we have

I2 ¼ AmA2

2A1N
D3

A1N þ ðAm � A1ÞD
: (44)

This shows a cubic dependence on the dose and sometimes even
faster, as discussed below.
6. Discussion

In this work, we have presented a newmodel that can explain a
very strongly superlinear dose dependence of thermolumines-
cence. The model is based on the assumption that a trap that may
capture either one or two electrons takes part in the process. As
pointed out above, the occurrence of such traps has been proposed
in different solid state phenomena including TL. It should be noted
that models that lead to superlinear dose dependence have been
offered before. These models dealt with competition between two
traps, or two centers and distinguished between competition dur-
ing excitation, during heating or both (see e.g. Kristianpoller et al.,
1974; Bowman and Chen, 1979; Chen and Fogel, 1993; Chen et al.,
1996). These models could explain a quadratic and to some
extent, more than quadratic behavior at least in the low dose range.
In the literature, there are, however, at least three examples of cubic
dose dependence. Halperin and Chen (1966) reported on cubic dose
dependence of UV excited TL in semiconducting diamonds, Chen
et al. (1988) described a similar effect of TL in b-excited quartz
and Otaki et al. (1994) communicated on more than cubic dose
dependence in CaF2:Tb4O7.

In the present case, the occurrence of traps that may hold either
one or two electrons explains cubic dose dependence as is seen in
Eq. (44). In a sense, it seems that there is competition between the
two states of the trap, namely, if it holds a single or double electron.
As can be seen both in the simulations and the approximate
analytical treatment, after irradiation þ relaxation, the concentra-
tion of n2 scales as dose squared. This seems to be due to compe-
tition between trapping of an electron in an empty trap, A1(N-n1-n2)
nc and trapping in a trap with one electron, A2n1nc. During readout,
there is competition between trapping in an empty trap, A1(N-n1-
n2)nc and recombination, Ammnc. Withm increasing with dose, this
adds an additional linear term which makes the total dependence
of the first peak cubic.

If Am >> A1 (as is the case in the simulations above), Eq. (44)
predicts a fall off from the cubic dependence as doses approach
D~(A1/Am)N. If the low-dose approximation still applies above this
dose, then the dose dependence will be quadratic. Note that Eq.
(44) implies faster-than-cubic superlinearity if Am < A1. This is so
since in Eq. (44), if the dose D increases, the denominator decreases,
which causes the whole expression to increase somewhat faster
than D3. As pointed out, this agrees with the results by Otaki et al.
(1994).

As mentioned above, under the given circumstances, E1 > E2,
and therefore, Tm1>Tm2, namely, the peak associated with two
trapped electrons occurs before the peak ascribed to only one
trapped electron. As indicated above, the first peak is asymmetric,
with a shape factor of a first-order peak. The second peak is nearly
symmetric, as is characteristic of second-order peaks. This is in
agreement with the known property of a series of peaks as
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described by Chen and Pagonis (2013); the peaks excluding the last
in a series tend to be of first order and the last one tends to have
second-order symmetry. As is characteristic of first-order peaks
here, the maximum temperature of the first peak which grows
strongly superlinearly does not change with the excitation dose. As
for the second peak, it shifts very significantly to lower tempera-
tures; such shift to lower temperature is characteristic of second-
order peaks, but the amount of the shift here is rather large. Note
that such significant shift has been reported by Sunta (2015, p. 78)
for “regular” simulated second-order TL peak when the excitation
dose varies by ~5 orders of magnitude. The parameters retrieved
from the simulated peaks using the peak-shape method are very
close to those used in the simulation.
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