MODELS FOR THE SENSITIZATION OF THERMOLUMINESCENCE IN SILICA FIBRES

R. Chen,* Y. Kirsch† and P. D. Townsend‡

*School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
†The Open University of Israel, 16 Klausner St, Tel Aviv, Israel
‡School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, U.K.

Abstract—Several models have been suggested for the sensitization effect, which is the enhancement of the TL sensitivity following irradiation and thermal annealing. The main models are reviewed here, as well as methods by which the appropriate model for the case under study may be established. Some of these methods are demonstrated in relation with a sensitization effect which was recently found in Ge–SiO₂ Nd optical fibres. Initially the TL emission spectrum consisted of a major blue band and a weaker green band. The sensitization effect was much stronger for the green band, and for high doses it exceeded the blue one. It is argued that the sensitization is compatible with the Zimmerman–Chen model which is based on the transfer of electronic charge carriers and a “competition during heating”.

1. INTRODUCTION

The sensitization of thermoluminescence, also termed the pre-dose effect, is the change of sensitivity of a sample to a given test dose, resulting from its exposure to a prior irradiation followed by a thermal annealing. The effect was first observed by Cameron (1964) in LiF and later by Attken’s group in quartz [see e.g. Fleming (1968) and Attken (1979)]. This group studied in detail the sensitization of the 110°C peak in natural quartz (crystalline SiO₂) and developed the pre-dose technique for dating pottery based on this effect.

Several models have been suggested for the sensitization effect in various materials. The purpose of this work is to review the main models and the techniques by which the right model for the case under study may be established. Some of these techniques are demonstrated in relation to a sensitization effect which was recently found in silica optical fibres.

2. MODELS FOR THE SENSITIZATION

2.1 Zimmerman’s “reservoir” model

Zimmerman (1971) suggested that the sensitization of the 110°C peak in quartz, which had been attributed to the recombination of thermally released electrons with hole centres, is due to the occurrence of a “reservoir” centre, R, in which holes accumulated during the irradiation. R is characterized by a high probability for capturing holes, and is too deep to release holes in the temperature range studied by the TL. However, when the crystal is heated to ~500°C, the holes in R are thermally released into the valence band, and are eventually trapped in the recombination centres. More holes are thus available now and a subsequent irradiation of the sample by a “test dose” reveals an increase of sensitivity.

2.2 The Zimmerman–Chen model—“competition during heating”

Chen (1979) discussed the inconsistency of the fact that, on one hand, in Zimmerman’s model the measured TL depended on the concentration of holes in the recombination centres, and on the other hand, the 110°C peak was found to be linear with the test dose. He resolved this by postulating, in addition to the defects assumed by Zimmerman, another trap, T₂, which competes for charge carriers during the heating stage (see Fig 1). The filling of this trap should be hardly dependent on the excitation dose while the transition into it should be more probable than both recombination and retrapping (see also Chen and Kirsch (1981), pp 200–203).

2.3 Ion migration models

The sensitization might involve the migration of ions which becomes feasible due to the irradiation and heating. This ionic migration may produce new defect complexes which act as traps or recombination.

Fig 1 Energy levels involved in the sensitization of TL in quartz according to the Zimmerman–Chen model. L—a hole luminescence centre, R—a hole reservoir, T—an electron trap, T₂—an another trap which competes for electrons during the heating stage.
centres Halperin et al (1986) found that the irradiation of synthetic quartz at a low temperature (15-77 K) followed by a thermal annealing at 200 K, and a second irradiation at the low temperature, caused the appearance of a new TL peak at 190 K. They found that the first irradiation and the subsequent heating caused the migration of Li ions along c-axis channels from AlO$_2$ to SiO$_2$ sites, and formed new electron traps. According to Yang and McKeever (1990) the movement of H$^+$ ions may be the actual cause for the sensitization of the 110 C peak in quartz, rather than the transfer of holes from a reservoir.

2.4 The removal of a competing trap

Sensitization may also be caused by eliminating the trap which acts as a ‘competitor-during-heating’ in the Zimmerman-Chen model described above. Once the competitor has been removed all charges released from traps will find their way to recombination centres and thus the TL per unit dose will increase. Chen et al (1988) explained by this model the increase of the 110 C peak following firing to 950 C.

3 METHODS BY WHICH THE RIGHT MODEL MAY BE ESTABLISHED

Several types of measurements can be performed in order to study the sensitization effect and find out which of the models might be appropriate for the specific case under study.

(1) The spectral structure of the TL is important information which can cast light on the recombination centres and on competition processes (Townsend and Kirsh 1989).

(2) By evaluating the kinetic parameters (activation energy, frequency factor and order of reaction) of the various TL peaks, the traps from which the charge carriers are thermally released can be characterized or even identified with known defects. It is advantageous to perform the kinetic analysis on monochromatic TL curves rather than on the curve of the total light intensity. Thus, concurrent recombination processes which produce different spectral bands are distinguishable (Kirsh 1988).

(3) The curve of the TL intensity vs the annealing temperature (thermal activation curve) may cast light on the processes involved. An Arrhenius type dependence ($I \sim \exp(-E/kT)$) may occur where the sensitization stems from the transfer of electronic charges or from ionic motion. In the first case the activation energy E characterizes the depth of the reservoir below the conduction or valence band. In the second case it represents the energy required for the hopping of the ion between two adjacent unit cells. In some samples of quartz, the sensitization of the 110 C peak was found to obey the Arrhenius law with activation energies of 1.14 - 1.55 eV (Fleming, 1979). Yang and McKeever (1990) found that the activation curve of this peak was sample dependent. Halperin et al (1986) found for the 190 K peak in quartz, a peak-shaped activation curve centred at 220 K.

(4) The dose dependence of the sample before and after the treatment should be checked. Chen et al (1988) showed that the competition-during-heating mechanism, which may be involved in the sensitization, may also cause a strong superlinear dose dependence. Thus, dose dependence which is superlinear before the sensitization and linear after it may indicate that model D is the most probable candidate.

(5) The dependence of the effect on the pre-dose and the test-dose is significant. Discussing the pre-dose dating, Chen (1979) showed what one can expect for the Zimmerman-Chen model in cases where the reservoir and/or the centre are close to saturation or far from saturation (see also Chen and Kirsh 1981 pp 304-308).

(6) If an exposure to near UV light eliminates the sensitization it corroborates the electronic-charge-carriers models, since it is unlikely that the UV can restore the distribution of ionic defects. Zimmerman (1971) found that UV light in the range 250-320 nm reduced the sensitivity of the 110 C peak and could bring it to the original value. A subsequent heating to \sim 500°C (with no further irradiation) recovered the high sensitivity. Her explanation was that the UV light released holes from the recombination centres to the valence band, from which they fall preferably (at room temperature) back into the reservoir.

(7) Auxiliary methods such as ESR or optical absorption measurements are very useful for the study of the defects formed or destroyed during the sensitization. ESR was essential in identifying the defects involved in the sensitization of both the 190 K peak of quartz (Jan et al 1986 Halperin et al 1986) and the 110 C peak (McKeever et al 1985 Yang and McKeever, 1990).

4 A TEST CASE—THE SENSITIZATION OF SILICA OPTICAL FIBRES

As an example for the application of some of the techniques mentioned above we shall now describe the study of a sensitization effect in optical fibres of silica (amorphous SiO$_2$) containing Ge and Nd. The effect was discovered by Ellis et al (1989) Some of the results were published elsewhere (Ellis et al 1989 Kirsh et al 1989) and will be summarized here briefly.

4.1 Experimental

Optical fibres of a germano-silicate core (4 mole % GeO$_2$) containing 450 ppm Nd$^{3+}$ and an estimated 2 ppm of OH$^-$ were used. The fibres were X-irradiated at RT and then heated at a rate of 20 K mm$^{-1}$ up to 450 C. The TL spectrum was scanned in the range 300-800 nm by a Bausch and Lomb grating monochromator coupled to a stepping motor. The readings were corrected for the wavelength sensitivity of the monochromator and photomultiplier (EMI 9659QA).
MODELS FOR TL SENSITIZATION

4.2 Results

4.2.1 Spectral analysis. The TL curve consisted of two broad peaks at 140 and 410°C, as shown in Fig. 2. Over all this temperature range the emission spectrum was the same. Initially the spectrum consisted of a major blue band at 400 nm, and a weaker green band centred at about 520 nm, as shown in Fig. 3(a). The intensity of both bands increased due to the combined effect of irradiation at RT, and several minutes of thermal annealing above 320°C. This is demonstrated in Fig. 3(b). For both bands the sensitivity to a given test-dose grew with the increasing pre-dose. However, the green band grew much faster, and for high pre-doses it exceeded the blue one.

4.2.2 Kinetic analysis. By applying the initial-rise method and a best-fit programme for kinetic analysis, it was found that the broad TL curve could be described as composed of five overlapping peaks (Kirsh et al., 1989). The main peak which occurred at about 150°C represented a distribution of activation energies between 0.94 and 1.35 eV. The other peaks occurred at 90°C (0.86 eV), 340°C (1.45 eV), 375°C (1.68 eV) and 418°C (1.72 eV). All of them were of the second order and the frequency factors were between 1.2 and 3.5 s⁻¹.

6 × 10⁻⁹ s⁻¹ The important result is that both the 400 and 520 nm bands could be described by the same set of activation energies, indicating that the blue and green bands involve the same system of traps.

4.2.3 Activation curve. The intensity of the green band was found to depend on the annealing temperature according to an Arrhenius law, with an activation energy of 0.52 eV (Ellis et al., 1989).

4.2.4 Dose dependence. Ellis et al. (1989) found that both bands grew with the pre-dose. However, the green band depended linearly on the pre-dose, after a small range of a constant signal, as shown in Fig. 4. The growth of the blue band with the pre-dose was sub-linear. There was no difference whether the pre-dose was given in one shot, or in parts separated byheatings. The dependence of both bands on the test dose was found to be linear.

5. DISCUSSION

There is evidence that above RT the TL in SiO₂ involves electron traps and hole recombination centres (McKeever, 1984). In the following we shall try to match the results described above with the Zimmerman-Chen model, by assuming two recombination centres which we shall designate \(L_a \) and \(L_g \), for the blue and green bands respectively. According to this model, \(L_a \) is readily filled with holes during the irradiation, while \(L_g \) is filled mainly during the heating stage, through the depletion of a reservoir \(R \), which has a high probability of capturing holes during the irradiation.

In recent measurements we found that the blue band has a Gaussian shape when described as a function of the photon energy. The Gaussian is centred at 3.08 ± 0.01 eV and its half-width is ~0.29 eV (Kirsh et al., 1991). Guzzi et al. (1987) ascribed a similar Gaussian emission band at 3.1 eV to the \(O_2^- \) molecular ion (a pair of a lattice oxygen and an interstitial one).
which is an intrinsic hole centre in SiO₂. Skuja and Trukhin (1989) disagreed with this conclusion and suggested that the 3 1 band is related to Ge impurity measurements in our laboratory (Ellis et al., 1989) are in favour of Guzzi’s model, since the band at 400 nm was the major feature in the luminescence of a wide variety of doped and undoped silica fibres, indicating that the luminescent centre is an intrinsic defect. We therefore suggest to identify L₉ with O₂⁻.

As for L₉, in a previous work it was suggested that this is a hole centre in which a Nd ion is incorporated (Kirsh et al., 1989). We gave several justifications for that suggestion. Firstly, in previous measurements only Nd-doped fibres were found to exhibit this band (Ellis et al., 1989). Secondly, the valence of Nd is usually +3, and it should form a hole trap if it enters the lattice substitutionally for Si. An important hole centre in natural quartz is associated with Al³⁺, and the recombination of electrons with the Al³⁺–h⁻ centre produces an emission band at 470 nm (McKeever et al., 1985). One can expect the recombination of electrons with a similar Nd³⁺–h⁻ centre to produce a similar emission band.

Recent measurements (Kirsh et al., 1991) gave further support to this supposition. We found that several small peaks, which are superimposed on the 520 nm band, can be identified with lines in the emission spectrum of Nd³⁺. These lines are possibly due to the excitation of the Nd³⁺ ion as a secondary effect of the e⁻–h⁻ recombination.

The reservoir, R, and the competitor trap, T, should have high probabilities for capturing holes (during the irradiation) and electrons (during the heating) respectively. They are probably rather common intrinsic defects. It is known that broken Si–O bonds are readily created by ionizing radiation and are also present in as-grown samples, especially silica (Stapelbroek et al., 1976; Greaves, 1978; Lucovsky, 1979, 1980). The resulting dangling oxygen bonds and empty Si orbitals are potential hole and electron traps, respectively, and are plausible candidates for R and T. Indeed, a Nd³⁺ which substitutes a Si⁴⁺ ion should result in a free oxygen bond. This is compatible with the fact that the green band is sensitized more strongly than the blue band, which implies that R is near L₉.

Other electron traps, from which electrons are thermally released to give the observed TL, may include Ge⁴⁺ in various environments (to account for the distribution of activation energies) as well as oxygen vacancies (E centres). Although Ge is tetravalent, like Si, its higher electron affinity makes it an efficient electron trap (McKeever et al., 1985). Oxygen vacancies, which appear in quartz only after particle irradiation, have been observed in as-grown silica (Levy, 1960; Nelson and Crawford, 1960).

This model for the sensitization of TL in Ge-silica Nd³⁺ fibres is obviously a tentative one. Several points, such as the significance of the activation energy of 0.52 eV, which was found for the dependence of the sensitization on the annealing temperature, are not yet clear. An alternative model, which involves the migration of ions and the production of new complexes, may also be considered. There is some evidence that essentially only few of the Nd ions in silica substitute Si⁴⁺ ions while most of them exist in clusters (Arai, 1986). Thus, the sensitization might involve the diffusion of Nd⁴⁺ and their entering into Si⁴⁺ sites, where they can act as hole centres.

REFERENCES

Antken M J (1979) Pre-dose dating predictions from the model European PACT J 3, 319–324

Cameron J R (1964) TL radiation dosimeters utilizing LiF Health Phys 10, 25–29

Chen R (1979) Saturation of sensitization of the 110 C TL peak in quartz and its potential application in the pre-dose technique. European PACT J 3, 325–335

Fleming S J (1979) Thermoluminescent Techniques in Archaeology p 125 Clarendon Oxford

Greaves G N (1978) Colour centres in Vitreous Silica Phil Mag B37, 447–466

Lucovsky G (1979) Spectroscopic evidence for valence-alteration-pair defect states in vitreous SiO₂ Phil Mag B39, 513–530

MODELS FOR TL SENSITIZATION

