
Computers & Operations Research 36 (2009) 1646 -- 1655

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

New relaxation-based algorithms for the optimal solution of the continuous and
discrete p-center problems

Doron Chena,∗, Reuven Chenb

aIBM Haifa Research Lab, Tel-Aviv Site, Israel
bRaymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel

A R T I C L E I N F O A B S T R A C T

Available online 3 April 2008

Keywords:
p-Center
Relaxation

We present new relaxation algorithms for the uncapacitated continuous and discrete p-center problems.
We have conducted an experimental study that demonstrated that these new algorithms are extremely
efficient.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The p-center problem (see, for example, [1]), also known as the
minimax location--allocation problem, deals with the optimal loca-
tion of emergency facilities. The locations of n demand points are
given, and we need to locate p service facilities. The value of a can-
didate solution to the p-center problem is the maximum distance
between a demand point to its nearest service facility. Our objective
is to find the solution with the minimal value; we want to locate the
service facilities so as to minimize the maximum distance between a
demand point to its nearest service facility. It is assumed that all the
facilities perform the same kind of service, and that the number of
demand points that can get service from a given center is unlimited.

Relaxation (in the context of this paper) [1,2] is a method to
optimally solve a large location problem by solving a succession of
small sub-problems. It is an iterative algorithm which updates, at
each step, bounds on the optimal solution, until the optimal solution
is reached. This paper presents new relaxation algorithms for the
p-center problem.

Every step of a relaxation algorithm involves solving a p-center-
like problem on a subset of the demand points. Our input is the
subset and a value r, which is called the coverage distance. We need
to answer: "Is there a solution to the sub-problem with value less
than r?''.

The new relaxation algorithms we describe try to reduce the
number of iterations, or reduce the sizes of sub-problems, or reduce
the values of the coverage distances (or a combination of these fac-
tors), so that we can improve performance, and therefore solve larger
problems to optimality.

∗ Corresponding author. Tel.: +97237689401; fax: +97237689545.
E-mail addresses: cdoron@il.ibm.com (D. Chen), chenr@tau.ac.il (R. Chen).

0305-0548/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.03.009

There are two main variants of the p-center problem in the lit-
erature; they differ by the possible location of the service points.
Many authors deal with the continuous problem in which the points
to be located optimally can be anywhere in the plane, but another
interesting problem is the discrete case where there is a finite set of
potential points (xj, yj) out of which one wishes to find the points
which fulfill the minimax condition. In some cases, weights wi are
associated with the service points (ai, bi). Another classification of
the problems is associated with the relevant metrics. In many cases,
the distances between demand and service points are Euclidean (e.g.,
[3]). Also considered are problems where the distances are defined
by minimal distances on a graph; this variant was first solved by
Minieka [4].

The formulation of the Euclidean unweighted p-center problem is

min
X1,...,Xp

{
max

1� i�n

[
min

1� j�p
rij

]}

where Xj = (xj, yj) for j = 1, . . . , p is the location of the new facil-

ity and rij = [(ai − xj)
2 + (bi − yj)

2]1/2. Megiddo and Supowit [5]
have shown that both the p-center and p-median problems are
NP-hard and that it is NP-hard even to approximate the p-center
problems sufficiently closely. On the other hand, Hochbaum [6] has
shown that given certain assumptions on the input distribution,
there are polynomial algorithms that deliver a solution asymptoti-
cally close to the optimum with probability that is asymptotically
one.

Most of the methods developed for solving the continuous Eu-
clidean problem are geometrical in nature. When we are looking for
a single service point (p=1), the solution of the problem will be the
center of the smallest circle enclosing n given points in the plane
(see e.g., [7]). This can occur in one of two ways. The smallest circle

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:cdoron@il.ibm.com
mailto:chenr@tau.ac.il

D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655 1647

can be determined by three demand points on its circumference or,
alternatively, by two points on the two ends of a diameter. In the
former case, the three points are the edges of an acute triangle [8].
The geometrical methods are based on a sophisticated search for
the smallest enclosing circle among the circles built on subsets of
two and three demand points. This includes the repeated solution
of relaxed, smaller sub-problems as described below in the broader
context of the p-center problem.

Chen [9] suggested a method that enables both the solution of
the minisum and minimax location--allocation continuous problems
by using a differentiable approximation to the objective function and
solving it by using nonlinear programming. This enabled the solu-
tion of relatively large problems, but the result was not necessarily
optimal since local minima may have been reached. Drezner [3,10]
presented heuristic and optimal algorithms for the p-center prob-
lem in the plane. The heuristic method yielded results for problems
with up to n= 2000 and p= 10 whereas the optimal method solved
problems with up to n = 30, p = 5 or n = 40, p = 4. Watson-Gandy
[11] suggested an algorithm that can optimally solve problems with
up to about 50 demand points and 3 centers in reasonable time. The
p-center problem on networks has been solved by Minieka [4] and
by Toregas et al. [12]. A finite method, which is rather inefficient for
large problems was suggested. An improvement based on the use of
relaxations was offered by Handler and Mirchandani [1]. In Section
2 we elaborate on relaxation methods.

Some other papers dealing with the continuous p-center prob-
lem include the following. Hwang et al. [13] describe a slab-dividing
approach, which is expected to efficiently solve the Euclidean
p-center problem. These authors show that their algorithm has time
complexity of O(nO(

√
p)). Suzuki and Drezner [14] propose heuristic

procedures and upper bounds on the optimal solution where the
demand points are distributed on a square. One of the methods they
use employs the Voronoi heuristic. The same method has been re-
cently used by Wei et al. [15]; the authors explore the complexity of
solving the continuous space p-center problem in location planning.
Agarwal and Sharir [16] discuss efficient approximate algorithms for
problems in geometric optimization, which include the Euclidean p-
center in d dimensions. Hale and Moberg [17] give a broad review on
location problems, which includes the Euclidean p-center problem.

The discrete p-center problem is also known to be NP-hard [18].
For a review on discrete network location models see Current et
al. [19]. Daskin [20] presents an optimal algorithm which solves
the discrete p-center problem by performing a binary search over
possible solution values. This algorithm solves maximal covering
sub-problems, rather than the set-covering sub-problems solved by
Minieka [4]. Mladenović et al. [21] present a basic Variable Neigh-
borhood Search and two Tabu Search heuristics for the p-center
problem without the triangle equality. Elloumi et al. [22] present
a new integer linear programming formulation for the discrete
p-center problem and show how to use this new formulation to
obtain tight bounds on the optimal solution. They use these bounds
in an exact solution method and report very good computational
results. Recent works on the discrete problem include algorithms
given by Caruso et al. [23] and by Ilhan et al. [24]. The latter au-
thors describe an efficient exact method for the discrete p-center
problem. A tight lower bound to the optimal value is found in an
initial phase of the algorithm, which consists of solving linear pro-
gramming sub-problems. Good computational results are reported
for each of an extensive list of test problems derived from OR-Lib
and TSP-Lib problems with up to 900 data points.

We present new relaxation algorithms. We report excellent com-
putational results for both the continuous and discrete cases. We
solved problems taken from OR-Lib [25] and TSP-Lib [26].

The rest of the paper is structured as follows. Section 2 explains
the principles of relaxation and present new relaxation algorithms.

In Section 3we present the results of our experimental study. Section
4 contains conclusions and open problems.

2. Relaxation algorithms for the p-center problem

2.1. The p-center problem

The p-center problem, also known as the minimax location--
allocation problem, deals with the optimal location of emergency
facilities. We are given the locations of n demand points, and the ob-
jective is to locate p service facilities so as to minimize the maximum
distance between a demand point to its nearest service facility.

Here is an equivalent way of looking at the same problem: we are
given the locations of n demand points. We need to locate p circles
that will cover all of the demand points. Our objective is to minimize
the radius of the maximal circle. Clearly, this is exactly the p-center
problem, where the centers of the p circles are the locations of the
p service facilities.

Whenwe consider the second interpretation of the p-center prob-
lem, we say that a set of p circles is a feasible solution to the prob-
lem, if the circles cover all of the demand points. When we con-
sider the first interpretation, then any set of p points is considered a
feasible solution to the p-center problem. Whenever convenient, we
will alternate between the two equivalent definitions of the p-center
problem.

2.2. Theory

Relaxation is a simple method to optimally solve a large location
problem by solving a succession of small sub-problems. Although
one cannot know in advance how many sub-problems need to be
solved, once the global optimum is reached, it is identified as such.
This as opposed to some heuristic methods which usually yield local
minima. Though in the worst case relaxation may be very slow, it is
usually very efficient.

Chen and Handler [2] adapted the relaxation method, previously
suggested for the solution of location problems on networks [1],
to the problem in continuous Euclidean two-dimensional space. In
the solution of the p-center problem there is usually only one circle
which is critical in the sense that two or three demand points are
on its circumference. There is much freedom in the exact position
of the other circles and therefore, in the location of all but one of
the centers. The value of the solution is determined by the radius of
this critical circle, whereas the radii of the other circles may vary in
size below this critical value. Thus, the number of possible optimal
solutions is usually infinite. Chen and Handler [2] proved a theorem
stating that among all the optimal solutions to the minimax problem
of serving n demand points in Euclidean space by p service points,
there is at least one inwhich all demand points are covered by critical
circles, the largest of which has a radius rp, which is the value of the
solution. With the aid of this theorem, the search can be reduced to
a finite number of critical circles.

The number of critical circles to be considered is
(

n
3

)
+

(
n
2

)
+ n,

where
(

n
3

)
is the number of circles determined by three points on

their circumference,
(

n
2

)
is the number of circles defined by two

points determining the diameter and n is the number of null circles;
a null circle is a service point located at a demand point, the for-
mer serving only the latter. The number of possible combinations
to cover n points by p critical circles becomes very large when n is
large. However, geometrical considerations associated with a known
upper bound and with the properties of relevant triangles defined
by demand points, significantly reduce the size of the sub-problem
to be solved.

1648 D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655

The discrete case is slightly simpler. Each critical circle is defined
by a single potential service point and a single demand point. Here
too, we can significantly reduce the size of the sub-problem. We
only consider a single circle for each potential service point: a circle
centered at the service point and whose radius is the distance to the
furthest demand point still within the upper bound.

2.3. Relaxation

Before we present new improvements of relaxation algorithms,
and new relaxation-based algorithms, we will explain, in further
detail, the classic relaxation algorithm, suggested by Handler and
Mirchandani [1].

Relaxation is a simple method to optimally solve a large location
problem by solving a succession of small sub-problems. Fortunately,
optimality can be achieved even though each sub-problem need not
be solved to optimality. The relaxation algorithm is iterative; at each
step a candidate solution to the original full problem is considered,
which provides us with an upper bound on the optimal solution. We
search, at each step, for a solution which improves upon the current
candidate solution, until we prove that none exists.

Algorithm 1 describes the skeleton of a relaxation algorithm.

Alogorithm 1. Skeleton of relaxation algorithm
Upper_Bound←∞
Sub← CHOOSERANDOMSUBSET()
while (solution not found)

Feasible← FINDFEASIBLESOLUTION(Sub, Upper_Bound)
if (no feasible solution found for sub-problem)

halt and return Best_Candidate
else

if (Feasible is a feasible solution to the original full problem)
Best_Candidate← Feasible
Upper_Bound← GETVALUE(Feasible)

else
ADDDEMANDPOINT(Sub)

When Algorithm 1 halts, Best_Candidate contains a solution to
the original (full) location problem with value Upper_Bound. Fur-
thermore, the algorithm halts after FINDFEASIBLESOLUTION fails to
find a feasible solution with value better than Upper_Bound. Since
there exists no solution to the sub-problem with value better than
Upper_Bound, there could be no solution to the original problemwith
value better than Upper_Bound. Therefore the returned solution is
optimal.

At each iteration we solve FINDFEASIBLESOLUTION(Sub,
Upper_Bound). Our input is a subset, Sub, and a value Upper_Bound,
which we call the coverage distance. We need to answer: "Is there
a solution to the sub-problem with value less than Upper_Bound?''.
In other words, we need to find a feasible (not necessarily optimal)
solution to the relaxed (smaller) p-center problem, with value less
than Upper_Bound. As we have explained earlier, we need only
consider a finite number of critical circles in order to solve the
problem.1 Furthermore, since we are looking for a feasible solution
with value less than Upper_Bound, we can eliminate, from our finite
set of circles, all circles with radii greater or equal to Upper_Bound.
As a result, the lower the coverage distance, the smaller the relaxed
problem that we need to solve.

Three important factors that influence the running times of re-
laxation algorithms are:

(1) The sizes of the sub-problems, in term of the number of demand
points.

1 This is true for both the discrete and the continuous cases.

(2) The number of sub-problems we need to solve, until we identify
the optimal solution.

(3) The values of the coverage distances. The lower the coverage
distances, the faster the algorithm.

In creating new relaxation algorithms, we are guided by these
three factors. We try to design algorithms that will either reduce
the number of sub-problems we need to solve, or reduce the sizes
of sub-problems, or reduce the values of the coverage distances (or
a combination of these factors).

2.4. Improvement: efficient updating of the upper bound

A simple change to Handler and Mirchandani's relaxation algo-
rithm [1,2] has a considerable effect on its performance. Recall that
whenever we find a feasible solution to the relaxed problem, we
check to see if it is also feasible for the original full problem (see Al-
gorithm 1). But what is a feasible solution? it depends on which of
the two equivalent interpretations of the p-center problem we are
considering (see Section 2.1). In [1,2], we look at the set of (at most)
p circles which cover all of the demand points in the sub-problem,
and check whether they also cover all of the demand points in the
original full problem. We suggest a better alternative; if we view the
p-center problem as a problem of locating a set of (at most) p ser-
vice points, rather than viewing it as a problem of locating a set of
(at most) p circles, then any set of p service points is a feasible (not
necessarily optimal) solution to the full problem. Therefore, we con-
sider the feasible solution which consists of the centers of the circles
which cover the demand points in the sub-problem. This is a feasi-
ble solution to the full problem. We check to see if its value is less
than the current Upper_Bound. If so, we update Best_Candidate and
Upper_Bound, and continue.

As a result of this change, the upper bounds are updated more
often. This has a very positive effect on performance; it allows us to
make the most of the smaller sub-problems. By the time we get to
the larger sub-problems, our upper bound is much better, and we
solve problems with smaller coverage distances.

2.5. Improvement: adding more than one point

In the classic relaxation algorithm, we add a single demand point
to the sub-problem whenever the feasible solution we have found
for the sub-problem is not feasible for the complete full problem.
But why add just one point?

Many of the sub-problems that relaxation solves are not
"informative'' in the sense that they do not help us improve our
bound on the solution, but simply serve as an indication that we
need to add more points to the sub-problem. Adding more than one
point may serve to reduce the number of "uninformative'' steps,
and thus decrease the number of sub-problems we need to solve
before we reach the optimal solution.

On the other hand, we do not want to add too many points.
If we added, for instance, k = 100 demand points at a time, then
our smaller sub-problems would quickly cease to be particularly
small. We have shown experimentally (see Sections 3.3 and 3.4)
that adding k >1 points at a time often has very positive effect on
performance.

The correctness of the relaxation algorithm does not depend
on the points we choose to add. However, in order to improve
performance, we add the k demand points farthest from the ser-
vice points of the current feasible solution of the sub-problem.
The distance of a demand point to a feasible solution is the dis-
tance of the demand point to the nearest service point. We add
the most distant demand point, the second most distant, and so
on up to the k-th most distant. If there are less than k points not

D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655 1649

covered by the current solution, we only add the demand points not
covered.

Although we have not tested it experimentally, it appears that
the best approach is a varying value of k. It appears to be a good
idea to start with k= 1, and as the sub-problems grow larger, to in-
crease k. The motivation behind this idea is that solving very small
sub-problems, though adding more iterations, is very cheap compu-
tationally.

2.6. New algorithm: reverse relaxation

As we have mentioned earlier, solving sub-problems with smaller
coverage distances has a profound effect on performance. The clas-
sic relaxation algorithm starts with an upper bound of infinity, and
keeps updating it until the optimal value is reached (this is similar to
Minieka's algorithm [4], which does not involve relaxation). In this
section we describe an algorithm which starts with a lower bound
of 0, and constantly updates it (upwards), until the optimal value
is reached. Intuitively, it is better to solve sub-problems which are
"too small'' (in terms of coverage distance), than to solve problems
which are "too large''.

This idea is similar to that suggested by Ilhan et al. [24] for the
discrete problem. Ilhan et al.'s algorithm has two phases. In the first
stage they compute a tight lower bound on the optimal solution.
At the second stage they gradually increase the lower bound, until
the optimal value is reached. Our algorithm, which we call Reverse
Relaxation, combines this approach with relaxation.

Reverse algorithm is based on two facts. First of all, the opti-
mal solution of the p-center problem on a subset of the demand
points is a lower bound on the optimal solution of the full p-center
problem. Secondly, for any p-center problem we can limit our-
selves to a finite set of possible values for the optimal solution
(we use the same geometrical considerations which allow us only
to consider a finite set of circles). The first fact helps us find tight
lower bounds on the optimal solution (for instance, the solution
to a size-50 sub-problem may be an extremely tight bound on the
full size-500 problem). It also tells us that if an optimal solution
to a sub-problem covers all of the demand points of the original
full problem, then it is also the optimal solution to the full prob-
lem. The second fact helps us find the optimal solution to a sub-
problem, by going over all the finite possible values for the solution,
from the current lower-bound upwards, until a feasible solution is
found.

Algorithm 2 describes the skeleton of a reverse relaxation algo-
rithm.

Algorithm 2. Skeleton of a reverse relaxation algorithm
Lower_Bound← 0
Sub← CHOOSERANDOMSUBSET()
while (solution not found)

Feasible←FINDFEASIBLESOLUTION(Sub, Lower_Bound)
if (feasible solution found for sub-problem)

if (Feasible is a feasible solution to the original full problem)
halt and return Feasible

else
ADDDEMANDPOINTS(Sub, k)

else
Lower_Bound←GETNEXTBOUND(Sub, Lower_Bound)

Function GETNEXTBOUND returns the smallest value, among
the possible values for the optimal solution, which is greater than
Lower_Bound.

The main disadvantage of reverse relaxation is that we often need
to solve many sub-problems before the optimal solution is reached.
This is due to the fact that the finite set of possible solutions to a
p-center problem is often very large, particularly for the continuous

problem. However, this is usually not the case for discrete problems
with integer distances. In Section 3.3 we will show that, indeed,
reverse relaxation is extremely efficient for discrete problems with
integer distances.

2.7. New algorithm: binary relaxation

The classic relaxation algorithm is similar to Minieka's, in
the sense that the bound on the optimal solution is constantly
updated downwards, until the optimal value is reached. The fi-
nal relaxation algorithm that we suggest is similar to Daskin's
[20,27], in the sense that it carries out a binary search on the
optimal solution; it updates, at each step, either an upper or a
lower bound on the optimal solution, until the optimal value is
reached.

Binary relaxation attempts to enjoy the best of all worlds. It
solves relatively few sub-problems, and it solves these sub-problems
with typically small coverage-distance values.

At each step in binary search, we checkwhether there is a solution
to the sub-problem with value less than Coverage_Distance. If there
is none, then we update our lower bound to be Coverage_Distance,
as there can be no solution to the full problem with value less
than Coverage_Distance. If there is a solution to the sub-problem
with value less than Coverage_Distance, then we check whether it
is also a feasible solution to the full problem. If it is a solution
to the full problem, we update Upper_Bound to be the value of
this solution; if not, we add demand points to the sub-problem.
In order to identify the optimal solution, whenever we update
Upper_Bound, we check whether there is a solution to the sub-
problem with value less than Upper_Bound. If there is none, we
halt.

The same arguments that prove the correctness of the classic
relaxation algorithm, also apply here. The algorithm halts when
Best_Candidate contains a solution to the original (full) location
problem with value Upper_Bound. Furthermore, the algorithm halts
after we fail to find a feasible solution for the sub-problem with
value better than Upper_Bound. Since there exists no solution to the
sub-problem with value better than Upper_Bound, there could be no
solution to the original problem with value better than Upper_Bound.
Therefore, if the algorithm halts, then the returned solution is
optimal.

But will the algorithm halt? A problematic scenario is when
Upper_Bound is the optimal solution for the original full prob-
lem, but is not identified as such. This happens when we
find a feasible solution for the sub-problem with value better
than Coverage_Distance, though no such solution exists for the
full problem. The problem arises from the fact that we per-
form a binary search to look for the optimal solution between
Lower_Bound and Upper_Bound. If the optimal solution is exactly
Upper_Bound then we get closer and closer to it, but we never quite
reach it.

We solve this problem by checking, at each step, whether
Lower_Bound is sufficiently close to Upper_Bound. If it is suffi-
ciently close, then we halt. The problem we described does not
happen often, particularly for p-center problems with a large num-
ber of demand points. As a result, performance is typically very
good.

In our experiments (see Section 3), we ran a variant of Algo-
rithm 3 which attempts to make the most of the smaller sub-
problems before adding more demand points. In the variant we
ran, whenever we find that the solution to the sub-problem is a
solution to the original full problem, we enter a loop: we keep
updating the upper bound as long as the feasible solutions we
find for the sub-problem are feasible solutions for the original full
problem.

1650 D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655

If it is possible to create an array of all the possible solution values,
then this algorithm can be improved by performing the binary search
on the indices of this array.

Algorithm 3. Skeleton of a binary relaxation algorithm
Lower_Bound← 0
Upper_Bound←∞
Sub← CHOOSERANDOMSUBSET()
while (solution not found)
Coverage_Distance← (Lower_Bound+ Upper_Bound)/2
Feasible←FINDFEASIBLESOLUTION(Sub, Coverage_Distance)
if (no feasible solution found for sub-problem)
Lower_Bound← Coverage_Distance

else
if (Feasible is a feasible solution to the original full problem)
Best_Candidate← Feasible
Upper_Bound←GETVALUE(Feasible)
if there is no feasible solution for Sub with value
less than Coverage_Distance
halt and return Best_Candidate

else
ADDDEMANDPOINTS(Sub, k)

2.8. Relaxation's weakness

Relaxation-based iterative algorithms represent a different ap-
proach to previous optimal iterative algorithms for the discrete
p-center problem, such as those suggested by Ilhan et al. [24],
Daskin [20,27] and Elloumi et al. [22]. The traditional iterative al-
gorithms update, at each step, an upper or lower bound on the
optimal solution, until the optimal solution is reached.

Roughly speaking, while traditional algorithms need to solve few
large problems, relaxation algorithms need to solvemany small prob-
lems. Relaxation needs to solve more problems, since many of its
steps are not "informative'' in the sense that they do not help us im-
prove our bound on the solution, but simply indicate that we need
to add more points to the sub-problem.

Relaxation performs particularly well for problemswith relatively
small values of p (see Table 2). As the value of p grows, the sizes of
the problems that need to be solved grow larger too. Consequently,
there exist problems for which relaxation needs to solve many sub-
problems, where many of these sub-problems are not particularly
small. For such problems one would be better off to use a non-
relaxation algorithm which would solve much fewer sub-problems.

However, relaxation is not useless even for such "difficult'' prob-
lems. Relaxation can be used to efficiently compute upper and lower
bounds on the optimal solution (see Section 3.3.2). We can halt the
relaxation algorithm once the sizes of the sub-problems become too
large, and feed the bounds we have obtained to non-relaxation algo-
rithms such as Daskin's [20,27]. Analyzing the performance of such
semi-relaxation algorithms is outside the scope of this paper.

3. Experimental results

3.1. Methodology

For the discrete p-center problem, we compare the performance
of our relaxation code to that of Ilhan et al.'s [24], run on the same
computer. Ilhan et al.'s algorithm is a non-relaxation iterative algo-
rithm which is a variant of Minieka's algorithm [4]. Unless we state
otherwise, we solve at each iteration a feasibility sub-problem rather
than a set-covering sub-problem [24].

Comparing our algorithms to that of Ilhan et al. gives us insight
to the strengths and weaknesses of relaxation, although it should be
noted that we made little effort to optimize either code.

Our relaxation algorithms accept a parameter k, which is the
number of demand points we add to the sub-problem following an
"uninformative'' step (see Section 2.5). Unless stated otherwise, we
tested the performance of the relaxation algorithms for different
values of k, and report the results for the k values which yielded the
best results.

3.2. Experimental setup

The experiments were conducted on a 3.2GHz Pentium 4 com-
puter with 2GB of main memory. The computer runs the Linux
2.6.17. The code is written in C and compiled using gcc-4.0.

We formulated both the set-covering and the feasibility sub-
problems as Integer Programming problems. We used CPLEX version
7.5 [28] for the solution of these Integer Programming problems.
CPLEX implements optimizers based on the simplex algorithms.

3.3. Experimental analysis---discrete problems

3.3.1. Discrete p-center
Like Ilhan et al. [24] and Daskin [20], we tested the performance of

our relaxation algorithm on the p-median (pmed) inputs2 from OR-
Lib [25]. We have found that on these problems improved relaxation,
reverse relaxation and binary relaxation work best with parameters
k = 10, 19 and 36, respectively.

Surprisingly, we have found that on these problems relaxation
is not particularly sensitive to the values of k. It takes improved
relaxation to solve the entire set of 40 problem between 25 and
28 s for any value of k between 5 and 50. It takes reverse relaxation
between 10 and 15 s for any value of k between 5 and 50. It takes
binary relaxation between 10 and 17 s for any value of k between 5
and 50.

It takes the original relaxation algorithm 55.02 s to solve all 40
problems. On the same computer, it took Ilhan et al.'s algorithm (the
Minieka sub-problem variant) 83.58 s to solve all problems.

We divided the pmed problems to three: problems with "small''
p values (p = 5,10), "medium'' p values (20�p�67), and "large'' p
values (70�p�200). Table 1 sums up the total running times for
the "small'', "medium'', and "large'' sets of problems. For complete
information on the performance of relaxation algorithms versus Ilhan
et al.'s algorithm on the pmed problems, see the Appendix.

We now demonstrate that our algorithms can handle larger p-
center problems. Like Elloumi et al. [22], we tested the performance
of our relaxation algorithms on problems rl1323 and u1817 from
TSP-Lib [26]. Given the coordinates of the demand points in the
plane, the Euclidean distance is computed and rounded to the nearest
integer for every pair of demand points.

Surprisingly, we have found that for problems of this magnitude,
it is better to solve the set-covering sub-problem at each step, rather
than Ilhan et al.'s feasibility sub-problem, although for smaller prob-
lems the feasibility sub-problem was often much more efficient.

Table 2 shows the performance of reverse relaxation on problem
u1817. We made no attempt to find the optimal parameter k for
this problem. We chose k= 16, which seemed to work well. Besides
running times, Table 2 shows, for each problem, the size of the max-
imal sub-problem solved by the relaxation algorithm, and the total
number of sub-problems solved by the relaxation algorithm.

Table 3 shows the performance of the reverse and binary relax-
ation algorithms on problem rl1323 with k = 16.

2 In these problems, the set of demand points and the set of potential service
points are the same.

D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655 1651

Table 1
Total running times (in seconds) of Ilhan et al.'s algorithm and different relaxation algorithms for discrete pmed problems .

Ilhan et al.
(s)

Relaxation
(s)

Improved
relaxation
k = 1 (s)

Improved
relaxation
k = 10 (s)

Reverse
relaxation
k = 1 (s)

Reverse
relaxation
k = 19 (s)

Binary
relaxation
k = 1 (s)

Binary
relaxation
k = 36 (s)

Small 58.73 7.16 6.21 4.9 5.43 3.97 6.11 3.07
Medium 5.44 9.46 9.15 5.6 6.24 2.02 6.95 2.07
Large 19.41 38.4 39.36 15.39 30.31 4.6 31.61 5.5

In bold font we mark the best results for the set of problems.

Table 2
The performance of our reverse relaxation with k = 16 for u1817, a large discrete problem from TSP-Lib .

Input n p Obj. Reverse relaxation (s) Max. prob. No. sub.

u1817 1817 5 715 13.23 264 488
u1817 1817 10 458 112.62 412 292
u1817 1817 15 359 1728.53 626 223
u1817 1817 20 309 9061.35 771 203
u1817 1817 25 272 7919.15 742 180
u1817 1817 30 241 19556.36 789 171
u1817 1817 35 227 19109.32 903 170

The two rightmost columns are for the maximal size of a relaxation sub-problem and the total number of relaxation sub-problems.

0 2000 4000 6000 8000
500

1000

1500

2000

2500

3000

time (seconds)

relaxation − upper bound
binary − upper bound
reverse − lower bound

Fig. 1. The progression of relaxation bounds for discrete problem rl1323 with 1323
demand points for p=60. The figure shows the upper bounds obtained by improved
relaxation and binary relaxation as well as the lower bounds obtained by reverse
relaxation. All these algorithms were run with parameter k = 16.

3.3.2. The progression of relaxation bounds
We now demonstrate the progression of relaxation bounds on a

large discrete p-center problem. Fig. 1 shows the upper and lower
bounds obtained by relaxation algorithms on the solution of discrete
problem rl1323 with p= 60. Note that the progression of improved
relaxation and reverse relaxation are much more gradual than that
of the binary relaxation. Also note that although it takes about 2h
and 26min for reverse relaxation to solve the problem, it reaches
the lower bound of 1011 after 1min, and 1042 after 5min. The exact
solution is 1063.

3.3.3. "Difficult'' p-center problems
Fig. 2 shows the running times of binary relaxation and reverse

relaxation on discrete problem rl1323 for different values of p.
Although the behavior of the two algorithms is different, note that
both algorithms find problems with small values of p and problems
with large values of p to be relatively easy. Intermediate values are
difficult for both algorithms. The reason that problems with small

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

p

tim
e

(s
ec

on
ds

)
binary
reverse

Fig. 2. The running times (in seconds) of binary relaxation and reverse relaxation
for discrete problem rl1323 with 1323 demand points for different values of p. Both
algorithms were run with parameter k = 16.

values of p are easy is that they can be solved before the relaxed
sub-problems become too large (in terms of the number of demand
points). Problems with large values of p are also easy, although the
sizes of the maximal relaxation sub-problems we need to solve are
quite large. Relaxation works well in these cases because the earlier
stages, when the sub-problems are small, yield tight bounds on
the solution, which simplify the problems we need to solve as the
relaxation subsets become bigger. Another way of looking at it is
that problems with large values of p are easy because the value of
the solution is small, and we need to solve sub-problems with small
coverage distances. As we have mentioned earlier, smaller coverage
distances tend to lead to easier sub-problems.

3.3.4. Discrete p-center problems with Euclidean distances
Like Ilhan et al. [24], we tested the performance of our relax-

ation algorithm on problems from TSP-Lib [26]. Table 4 sums up
the total running times for p= 5,10,20,40. For more details on the
performance of relaxation versus Ilhan et al.'s algorithm on the TSP-
Lib problems, see the Appendix.

1652 D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655

Table 3
The performance of reverse and binary relaxation with k = 16 for rl1323, a large discrete problem from TSP-Lib .

Input n p Obj. Reverse relaxation (s) Reverse max. prob. Reverse no. sub. Binary relaxation (s) Binary max. prob. Binary no. sub.

rl1323 1323 10 3077 198.38 385 2220 27.03 490 96
rl1323 1323 20 2016 437.65 512 1409 152.36 614 100
rl1323 1323 30 1632 1764.54 630 1103 585.97 808 123
rl1323 1323 40 1352 1696.81 686 892 1655.82 907 135
rl1323 1323 50 1187 5776.33 798 778 12 298.17 959 140
rl1323 1323 60 1063 8976.75 782 655 8756.93 1014 148
rl1323 1323 70 972 1162.37 811 583 1128.03 911 136
rl1323 1323 80 895 202.59 769 518 1010.09 957 142
rl1323 1323 90 832 106.78 782 464 626.40 992 144
rl1323 1323 100 787 74.56 791 442 574.26 1013 149
rl1323 1323 110 741 42.85 814 410 475.27 972 137
rl1323 1323 120 697 41.98 780 373 490.38 1012 152
rl1323 1323 130 664 19.18 775 347 479.65 1050 156
rl1323 1323 140 651 22.21 767 345 479.42 1058 162
rl1323 1323 150 617 20.80 799 325 468.11 1030 153

In bold font we mark the best result for the problem.

Table 4
Total running times (in seconds) of Ilhan et al.'s algorithm and different relaxation algorithms for discrete problems with Euclidean distances from TSP-Lib .

Ilhan et al.
(s)

Relaxation
(s)

Improved
relaxation
k = 1 (s)

Improved
relaxation
k = 13 (s)

Reverse
relaxation (SC)
k = 1 (s)

Reverse
relaxation (SC)
k = 10 (s)

Binary
relaxation
k = 1 (s)

Binary
relaxation
k = 11 (s)

p= 5 89.82 8.17 6.42 6.33 15.79 89.05 3.35 3.27
p= 10 64.92 48.73 29.68 20.4 42.77 119.57 10.65 9.56
p= 20 120.77 248.9 124.77 106.59 274.69 155.13 64.84 33.43
p= 40 457.61 808.61 364.46 112.8 1390.61 434.4 1779.07 132.01

In bold font we mark the best result for the set of problems.

0 20 40 60 80 100
0

100

200

300

400

500

p

tim
e

(s
ec

on
ds

)

relaxation k=7
binary k=2
reverse k=6

Fig. 3. The running times (in seconds) of the new relaxation algorithms for contin-
uous problem pr439 with 439 demand points for different values of p.

Not surprisingly, we see that reverse relaxation does not perform
well on these problems. For these problems we have found that re-
verse relaxation performs better with the set-covering sub-problem
rather than Ilhan et al.'s feasibility sub-problem.

3.4. Experimental analysis---continuous problems

3.4.1. Continuous p-center problems with Euclidean distances
Fig. 3 shows the performance of the new relaxation algorithms on

problem pr439 for TSP-Lib [26] with 439 demand points. We solve
the problem for p=10,20, . . . ,100 service points. To the best of our
knowledge, no one has ever attempted to solve continuous problems
of this magnitude. We got the best results for improved relaxation

with k=7, for binary relaxation with k=2 and for reverse relaxation
with k = 6. We have found that reverse relaxation performs better
with the set-covering sub-problem rather than Ilhan et al.'s feasibility
sub-problem. For complete information on the performance of the
relaxation algorithms on this problem, see the Appendix.

4. Conclusions and open problems

4.1. Open problems

We list a number of ideas how to improve the performance of
relaxation algorithms.

Chen and Handler [2] proposed to solve the p-center problem by
first solving, optimally, the 1-center, then the 2-center, up to the
(p−1)-center problem. The motivation is to start solving the p-center
problem when you already have a reasonably tight upper bound on
the solution. We have generally found that this approach hinders,
rather than improves, performance. However, it might be beneficial
to use other "step sizes''; if, for instance, wewant to solve a 40-center
problem, we might do well to first pre-solve the 10-, 20- and 30-
center problems. If these "pre'' problems are also difficult to solve,
we can begin solving them and stop before we reach optimality. Any
upper bound on the 30-center problem is also a bound on the 40-
center problem.

In Section 2.5 we suggested to use a varying value of k (the num-
ber of demand points we add to a sub-problem if we cannot improve
the bounds). It appears to be a good idea to start with k = 1, and as
the sub-problems grow larger, to increase k. We have not tested this
idea experimentally.

Since discrete p-center problems are easier to solve than their
continuous counterparts, we could attempt to improve the perfor-
mance of relaxation on continuous problems by using the solution
of a discrete problem as an initial upper bound. We could solve the
discrete problem where the set of potential service points is identi-
cal to the set of demand points.

D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655 1653

Table 5
The performance of Ilhan et al.'s algorithm and different relaxation algorithms for discrete problems with "small'' values of p .

Input n p Obj. Ilhan et al. (s) Relaxation (s) Binary relaxation
k = 34 (s)

Reverse relaxation
k = 19 (s)

Max. prob. rev-
erse relaxation

No. sub. rev-
erse relaxation

pmed1 100 5 127 0.27 0.12 0.09 0.27 45 95
pmed6 200 5 84 0.38 0.19 0.05 0.22 44 79
pmed11 300 5 59 0.81 0.19 0.1 0.16 29 51
pmed16 400 5 47 1.15 0.19 0.04 0.2 27 42
pmed21 500 5 40 1.82 0.45 0.19 0.22 34 43
pmed26 600 5 38 4.35 0.23 0.19 0.21 29 39
pmed31 700 5 30 3.86 0.27 0.08 0.15 41 34
pmed35 800 5 30 4.88 0.17 0.11 0.2 23 33
pmed38 900 5 29 7.75 0.25 0.08 0.16 28 27
pmed2 100 10 98 0.11 0.27 0.01 0.13 41 63
pmed3 100 10 93 0.09 0.3 0.04 0.16 45 53
pmed7 200 10 64 0.25 0.24 0.19 0.11 42 46
pmed12 300 10 51 0.68 0.28 0.13 0.15 39 43
pmed17 400 10 39 1.18 0.5 0.23 0.21 54 37
pmed22 500 10 38 2.54 1.36 0.28 0.26 69 38
pmed27 600 10 32 3.42 0.34 0.2 0.17 47 35
pmed32 700 10 29 11.01 0.59 0.5 0.3 59 32
pmed36 800 10 27 5.33 0.78 0.18 0.4 52 32
pmed39 900 10 23 8.85 0.44 0.38 0.29 54 27

The two rightmost columns are for the size of the maximal sub-problem solved by the reverse relaxation algorithm and for the total number of sub-problems solved by
the reverse relaxation algorithm. In bold font we mark the best result for the problem.

Table 6
The performance of Ilhan et al.'s algorithm and different relaxation algorithms for discrete problems with "medium'' values of p .

Input n p Obj. Ilhan et al. (s) Relaxation (s) Binary relaxation
k = 34 (s)

Reverse relaxation
k = 19 (s)

Max. prob. rev-
erse relaxation

No. sub. rev-
erse relaxation

pmed4 100 20 74 0.08 0.32 0.1 0.19 62 60
pmed8 200 20 55 0.18 0.37 0.1 0.18 78 57
pmed13 300 30 36 0.4 0.7 0.11 0.21 85 43
pmed5 100 33 48 0.08 0.37 0.13 0.07 59 41
pmed9 200 40 37 0.17 0.57 0.11 0.12 90 41
pmed18 400 40 28 0.74 1.21 0.4 0.37 141 41
pmed23 500 50 22 0.89 2.4 0.51 0.3 151 33
pmed14 300 60 26 0.3 1.11 0.25 0.25 143 42
pmed28 600 60 18 2.49 1.77 0.3 0.27 170 29
pmed10 200 67 20 0.11 0.64 0.06 0.06 115 27

Table 7
The performance of Ilhan et al.'s algorithm and different relaxation algorithms for discrete problems with "large'' values of p .

Input n p Obj. Ilhan et al. (s) Relaxation (s) Binary relaxation
k = 34 (s)

Reverse relaxation
k = 19 (s)

Max. prob. rev-
erse relaxation

No. sub. rev-
erse relaxation

pmed33 700 70 15 3.92 3.42 0.64 0.48 216 32
pmed19 400 80 18 0.38 2.06 0.32 0.29 200 33
pmed37 800 80 15 3.49 3.81 0.76 0.61 237 35
pmed40 900 90 13 7.11 7.2 0.81 0.95 310 36
pmed15 300 100 18 0.23 1.16 0.18 0.14 166 28
pmed24 500 100 15 0.61 2.77 0.46 0.31 232 31
pmed29 600 120 13 0.8 3.01 0.44 0.37 252 31
pmed20 400 133 13 0.35 2.68 0.34 0.22 226 30
pmed34 700 140 11 1.24 3.76 0.55 0.51 306 34
pmed25 500 167 11 0.55 3.52 0.45 0.34 279 31
pmed30 600 200 9 0.73 5.01 0.55 0.38 331 29

Another promising approach is to "restart'' when the sub-
problems get too large. At any point in the relaxation algorithms,
we can start over with a small new sub-problem, and proceed while
using the upper and/or lower bounds obtained so far. Restarts could
be combined with randomization. Whenever we restart, we could
choose a random subset of the demand points. Also, whenever
we need to add demand points to the sub-problem we can use
randomization. Currently, we always add the k farthest demand
points from the current service points, which is a very good heuris-
tic. However, if solving the larger sub-problem takes too long, we
can replace the k farthest demand points with k random points.

The correctness of the relaxation algorithm does not depend on the
points we choose to add.

It might be interesting to investigate whether we can employ
Vijay's method [29] to solve the reduced problems and improve our
relaxation algorithm for the continuous case.

Another question is whether our relaxation algorithms can be
improved by applying heuristics to efficiently provide us with tight
initial upper and lower bounds on the solution.

We have witnessed that the choice of algorithm for the sub-
problems had a profound effect on performance. In some cases the
set-covering algorithm was several times more efficient than the

1654 D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655

Table 8
The performance of Ilhan et al.'s algorithm and relaxation algorithms for discrete p-center problems with Euclidean distances .

Input n p Obj. Ilhan et al. (s) Relaxation (s) Improved relaxation
k = 13 (s)

Binary relaxation
k = 11 (s)

Max. prob. binary
relaxation

No. sub. binary
relaxation

kroA200.tsp 200 5 911.412091 0.29 0.36 0.26 0.13 73 22
kroB200.tsp 200 5 897.669204 0.39 0.24 0.17 0.06 46 15
gr202.tsp 202 5 19.384514 12.23 0.1 0.1 0.05 18 15
pr226.tsp 226 5 3720.551034 0.7 0.41 0.39 0.1 74 19
pr264.tsp 264 5 1610.124219 0.42 0.16 0.24 0.05 38 11
pr299.tsp 299 5 1336.272801 0.71 0.95 0.62 0.25 82 32
lin318.tsp 318 5 1101.339639 0.66 0.58 0.57 0.7 100 64
pr439.tsp 439 5 3196.580204 1.71 0.71 0.75 0.32 93 26
pcb442.tsp 442 5 1024.74387 2.32 1.79 1.39 0.44 116 29
d493.tsp 493 5 752.908474 14.75 0.77 0.51 0.76 62 51
d657.tsp 657 5 880.908537 55.64 2.1 1.33 0.41 114 26
kroA200.tsp 200 10 598.819672 0.37 1.19 0.56 0.29 104 29
kroB200.tsp 200 10 582.103943 0.35 1.69 0.67 0.25 110 27
gr202.tsp 202 10 9.334002 10.67 0.39 0.29 0.14 77 28
pr226.tsp 226 10 2326.478025 0.21 0.5 0.39 0.12 98 25
pr264.tsp 264 10 850 0.31 0.46 0.47 0.16 78 29
pr299.tsp 299 10 888.835755 0.84 2.05 1.43 0.81 128 73
lin318.tsp 318 10 743.210603 0.52 2.32 1.55 0.5 179 43
pr439.tsp 439 10 1971.832904 1.39 1.49 0.79 0.45 126 37
pcb442.tsp 442 10 670.820393 3.57 9.5 4.23 1.49 197 38
d493.tsp 493 10 458.304571 13.16 2.97 2.23 0.69 155 38
d657.tsp 657 10 574.744682 33.53 26.17 7.79 4.66 245 46
kroA200.tsp 200 20 389.307077 0.21 1.9 0.96 0.26 141 39
kroB200.tsp 200 20 382.280002 0.79 2.23 0.86 0.2 141 36
gr202.tsp 202 20 5.56569 9.08 1.29 0.63 0.21 121 35
pr226.tsp 226 20 1365.650028 0.27 0.68 0.56 0.13 125 26
pr264.tsp 264 20 514.781507 0.28 0.87 0.84 0.22 122 37
pr299.tsp 299 20 559.016994 0.43 3.58 1.94 0.84 181 73
lin318.tsp 318 20 496.452415 0.4 2.65 1.45 0.8 172 75
pr439.tsp 439 20 1185.59057 0.99 2.65 1.91 0.61 170 46
pcb442.tsp 442 20 447.213595 1.73 16.65 11.32 10.52 315 61
d493.tsp 493 20 312.744896 55.73 12.47 6.13 2.04 225 51
d657.tsp 657 20 374.7 50.86 203.93 79.99 17.6 421 89
kroA200.tsp 200 40 258.259559 0.2 2.68 1.03 0.18 149 40
kroB200.tsp 200 40 253.237043 0.19 2.89 1.01 0.22 163 42
gr202.tsp 202 40 2.971363 7.01 2.93 1.2 0.22 148 44
pr226.tsp 226 40 650 0.21 1.13 0.8 0.18 156 34
pr264.tsp 264 40 316.227766 20.64 443.51 29.14 32.75 202 46
pr299.tsp 299 40 355.31676 0.35 4.2 2.36 0.67 198 76
lin318.tsp 318 40 315.919293 0.66 5.66 2.06 0.71 211 47
pr439.tsp 439 40 671.751442 0.99 6.92 4.5 0.84 244 57
pcb442.tsp 442 40 316.227766 140.48 13.1 4.82 27.45 322 77
d493.tsp 493 40 206.015655 2.03 17.94 8.54 2.53 321 68
d657.tsp 657 40 249.51541 284.85 307.65 57.34 66.26 491 82

In bold font we mark the best result for the problem.

Table 9
The performance of relaxation algorithms for a continuous p-center problems with Euclidean distances .

Input n p Obj. Improved relaxation
k = 7 (s)

Reverse relaxation (SC)
k = 2 (s)

Binary relaxation
k = 6 (s)

Max. prob. binary
relaxation

No. sub. binary
relaxation

pr439.tsp 439 10 1716.509904 48.67 0.84 4.53 147 51
pr439.tsp 439 20 1029.714766 48.88 2.63 7.28 176 60
pr439.tsp 439 30 739.192972 231.76 6.17 14.33 257 71
pr439.tsp 439 40 580.005388 334.66 93.38 58.92 314 90
pr439.tsp 439 50 468.54162 408.9 207.45 78.89 345 95
pr439.tsp 439 60 400.195265 404.17 62.19 29.98 341 82
pr439.tsp 439 70 357.945527 374.86 103.28 27.72 360 83
pr439.tsp 439 80 312.5 405.57 172.59 31.04 375 89
pr439.tsp 439 90 280.902563 352.71 157.07 40.05 408 101
pr439.tsp 439 100 256.680194 378.59 60.4 35.07 401 105

In bold font we mark the best result for the problem.

feasibility sub-problem. In other cases it was the other way around.
This suggests that there could be other algorithms, or other imple-
mentations of the same algorithms, which might yield better results.

4.2. Conclusions

Relaxation is a simple method to optimally solve a large location
problem by solving a succession of small sub-problems.

We presented new variants of relaxation, for the discrete and
continuous p-center problems. We have conducted an experimental

study that demonstrated that these new variants are very efficient.
For the discrete case, our algorithm often outperforms other optimal
algorithms; for the continuous case, the algorithm solves problems
which were previously considered too large.

Our experiments show that relaxation algorithms work particu-
larly well for problems with either small or large value of p. For small
values of p relaxation needs to solve relatively small sub-problems
in terms of the number of demand points. For large values of p
relaxation need to solve relatively small problems in terms of the
coverage distance.

D. Chen, R. Chen / Computers & Operations Research 36 (2009) 1646 -- 1655 1655

Acknowledgments

Thanks to Taylan Ilhan for sending us his code for the discrete
p-center problem. Thanks to Gil Shklarski, Sivan Toledo and Leon
Ankonina for their help with the utilization of CPLEX.

Appendix A. Tables

A.1. Discrete p-center problems

Tables 5--7 show the performance of Ilhan et al.'s algorithm, the
original relaxation algorithm, the binary relaxation algorithm with
k= 34 and the reverse relaxation algorithm with k= 19. Tables 5--7
show the performance of these algorithms for problemswith "small'',
"medium'', and "large'' values of p, respectively. The input files are
taken from OR-Lib [25]. Besides running times, the tables show, for
each problem, the size of the maximal sub-problem solved by the
reverse relaxation algorithm, and the total number of sub-problems
solved by the reverse relaxation algorithm.

A.2. Discrete p-center problems with Euclidean distances

Table 8 shows the performance of Ilhan et al.'s algorithm, the orig-
inal relaxation algorithm, the improved relaxation algorithm with
k = 13 and the binary relaxation algorithm with k = 11 on discrete
p-center problems with Euclidean distances. The input files are taken
from TSP-Lib [26]. Besides running times, the tables show, for each
problem, the size of the maximal sub-problem solved by the binary
relaxation algorithm, and the total number of sub-problems solved
by the binary relaxation algorithm.

A.3. Continuous p-center problems with Euclidean distances

Table 9 shows the performance of the new relaxation algorithms
for a continuous p-center problem with 439 demand points. The
problem is pr439, taken from TSP-Lib [26].

References

[1] Handler GY, Mirchandani PB. Location on networks: theory and algorithms.
Cambridge, MA: MIT Press; 1979.

[2] Chen R, Handler GY. Relaxation method for the solution of the minimax
location--allocation problem in Euclidean space. Naval Research Logistics
1987;34:775--87.

[3] Drezner Z. The p-center problem---heuristic and optimal algorithms. Journal of
Operation Research 1984;8:741--8.

[4] Minieka E. The m-center problem. SIAM Reviews 1970;12:139--40.
[5] Megiddo N, Supowit KJ. On the complexity of some common geometric location

problems. SIAM Journal on Computation 1984;13:182--96.
[6] Hochbaum DS. When are NP-hard problems easy? Annals of Operations

Research 1984;1:201--14.
[7] Chrystal G. On the problem to construct the minimum circle enclosing n

given points in the plane. Proceedings of the Edinburgh Mathematical Society
1885;3:30--3.

[8] Rademacher H, Toeplitz O. The spanning circle of a finite set of points. In:
the enjoyment of mathematics. Princeton, NJ: Princeton University Press; 1957.
p. 103--10.

[9] Chen R. Solution of minisum and minimax location--allocation problems with
Euclidean distances. Naval Research Logistics Quarterly 1983;30:449--59.

[10] Drezner Z. The planar two center and two median problems. Transportation
Science 1984;18:351--61.

[11] Watson-Gandy CDT. The multi-facility min--max Weber problem. European
Journal of Operational Research 1984;18:44--50.

[12] Toregas C, Swain R, ReVelle C, Bergmann L. The location of emergency service
facilities. Operations Research 1971;19:1363--73.

[13] Hwang RZ, Lee RCT, Cheng RC. The slab dividing approach to solve the Euclidean
p-center problem. Algorithmica 1993;9:1--22.

[14] Suzuki A, Drezner Z. The p-center location problem in the area. Location Science
1996;4:69--82.

[15] Wei H, Murray AT, Xiao N. Solving the continuous space p-center problem:
planning applications issues. IMA Journal of Management and Mathematics
2006;17:413--25.

[16] Agarwal PK, Sharir M. Efficient algorithms for geometric optimization. ACM
Computing Surveys 1998;30:428--58.

[17] Hale SH, Moberg CR. Location science research: a review. Annals of Operations
Research 2004;123:21--35.

[18] Kariv O, Hakimi SL. An algorithmic approach to network location problems.
Part 1: p-centers. SIAM Journal of Applied Mathematics 1971;37:513--38.

[19] Current J, Daskin M, Schilling D. Facility location: applications and theory. In:
Drezner Z, Hamacher HW, editors. Discrete network location models. Berlin:
Springer; 2001. p. 83--120.

[20] Daskin MS. A new approach to solving the vertex p-center problem to
optimality: algorithm and computational results. Communications of the
Operations Research Society of Japan 2000;45(9):428--36.

[21] Mladenović N, Labbé M, Hansen P. Solving the p-center problem with tabu
search and variable neighborhood search. Networks 2003;42:48--64.

[22] Elloumi S, Labbé M, Pochet Y. A new formulation and resolution method for
the p-center problem. INFORMS Journal of Computing 2004;16:84--94.

[23] Caruso C, Colorni A, Aloi L. Dominant, an algorithm for the p-center problem.
European Journal of Operational Research 2003;149:53--64.

[24] Ilhan T, Özsoy FA, Pinar MC. An efficient exact algorithm for the
vertex p-center problem and computational experiments for different set
covering subproblems. Technical Report; 2002. Available at URL: 〈http://www.
optimization-online.org/DB_HTML/2002/12/588.html〉.

[25] Beasley JE. A note on solving large p-median problems. European Journal
of Operational Research 1985;21:270--3 〈http://people.brunel.ac.uk/mastjjb/jeb/
orlib/pmedinfo.html〉.

[26] Reinelt G. TSP-Lib. URL: 〈http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.
html〉.

[27] Daskin MS. Network and discrete location, models: algorithms and applications.
New York: Wiley Interscience Publications, Wiley; 1995.

[28] ILOG, Inc. Gentilly, France. ILOG CPLEX 7.5 User's Manual; November 2001.
[29] Vijay J. An algorithm for the p-center problem in the plane. Transportation

Science 1985;19:235--45.

http://www.optimization-online.org/DB_HTML/2002/12/588.html
http://www.optimization-online.org/DB_HTML/2002/12/588.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/pmedinfo.html
http://people.brunel.ac.uk/mastjjb/jeb/orlib/pmedinfo.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

	New relaxation-based algorithms for the optimal solution of the continuous anddiscrete p-center problems
	Introduction
	Relaxation algorithms for the =p-center problem
	The =p-center problem
	Theory
	Relaxation
	Improvement: efficient updating of the upper bound
	Improvement: adding more than one point
	New algorithm: reverse relaxation
	New algorithm: binary relaxation
	Relaxation's weakness

	Experimental results
	Methodology
	Experimental setup
	Experimental analysis---discrete problems
	Discrete =p-center
	The progression of relaxation bounds
	"Difficult'' =p-center problems
	Discrete =p-center problems with Euclidean distances

	Experimental analysis---continuous problems
	Continuous =p-center problems with Euclidean distances

	Conclusions and open problems
	Open problems
	Conclusions

	Acknowledgments
	Appendix A. Tables
	Discrete =p-center problems
	Discrete =p-center problems with Euclidean distances
	Continuous =p-center problems with Euclidean distances

	References

