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a b s t r a c t

The phenomenon of thermoluminescence (TL) is governed by a set of simultaneous differential

equations. When one studies the properties of a single peak, resulting from the thermal release of

electrons from a trap into the conduction band, followed by radiative recombination with holes in

centers, the set consists of three non-linear equations. Even in this simple case, the equations cannot be

solved analytically. In order to get approximate solutions, the conventional way has been to make the

‘‘quasi-equilibrium’’ assumptions, namely that 9dnc/dt9 is significantly smaller than 9dn/dt9 and 9dm/dt9,
where n and m are the occupancies of traps and centers, respectively, nc is the concentration of

electrons in the conduction band, and nc{n; nc{m. We show, using simulations as well as analytical

arguments that the former condition often does not occur; however, its consequences are valid. The

reason is that the conventional quasi-equilibrium assertion must be replaced by a different condition.

As for the smallness of the concentration of free electrons, we show that it may not be fulfilled at the

high-temperature end of a single glow peak or in the highest-temperature peak in a series. In some

cases, this condition results in a broad high-temperature tail of the TL peak, as previously observed

experimentally in several materials.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The well-known model for explaining a single thermolumines-
cence (TL) peak consists of an electron trapping state, the conduc-
tion band and a hole center. The process of TL consists of the
transition of electrons released thermally from the electron trap into
the conduction band from which they may either recombine with
holes in the center or retrap, namely, fall back into the trap.

Halperin and Braner [1] wrote the set of three simultaneous
differential equations governing the TL process for the one trap,
one center case (see Fig. 1), and for electrons going through the
conduction band before performing recombination:

I¼�
dm

dt
¼ Ammnc , ð1Þ

�
dn

dt
¼ snexp ð�E=kTÞ�AnðN�nÞnc , ð2Þ

dnc

dt
¼ snexp ð�E=kTÞ�nc AmmþAnðN�nÞ½ �: ð3Þ
ll rights reserved.

: þ972 9 9561213.
The meaning of the parameters is given in the caption of Fig. 1.
Solving these equations along with the heating function T(t)
should yield the shape of the TL peak I(T). In most cases, the
heating function used is linear, namely, T¼T0þbt, where T (K) is
the variable temperature, T0 (K) is the initial temperature, t (s) is
time and b (K s�1) is the constant heating rate. k (eV K�1) is the
Boltzmann constant.

This set of nonlinear differential equations cannot be solved
analytically, and in order to get simpler expressions, Halperin and
Braner have now assumed that dnc/dt¼0, which is, more or less,
the quasi-equilibrium assumption. Using this in Eq. (3) yields

nc ¼
snexp ð�E=kTÞ

AmmþAnðN�nÞ
, ð4Þ

and substituting this expression in Eq. (1) yields

I¼�
dm

dt
¼ snexp ð�E=kTÞ

Amm

AmmþAnðN�nÞ
: ð5Þ

Obviously, the condition dnc/dt¼0 cannot be fulfilled strictly
since the concentration of electrons in the conduction band varies
during heating, and later the quasi-equilibrium condition has
been stated as

dnc

dt

����

����{
dm

dt

����

����,
dn

dt

����

����: ð6Þ
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Fig. 1. Energy level diagram of the model explaining a single TL peak. N (cm�3) is

the total concentration of trapping states and n (cm�3) its instantaneous

occupancy. m (cm�3) is the instantaneous concentration of holes in centers and

nc (cm�3) the instantaneous concentration of electrons in the conduction band. Am

(cm3s�1) and An (cm3s�1) are the recombination- and retrapping-probability

coefficients. E (eV) is the activation energy and s (s�1) is the frequency factor. ‘‘TL’’

denotes the emitted thermoluminescence.

Fig. 2. TL curve simulated by numerical solutions of Eqs. (1–3). ‘‘TL’’ denotes the

simulated results from Eq. (1) whereas ‘‘TL appr’’ is found by Eq. (5). The

parameters chosen are n0¼m0¼108 cm�3; N¼109 cm�3; E¼0.4 eV; s¼1011 s�1;

Am¼10�8 cm3s�1; and An¼10�7 cm3s�1. The heating rate is b¼1 K s�1.
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Also, an additional assumption has been made, namely,

nc{n, ð7Þ

and since in this model nþnc¼m, obviously, this implies that
n�m. Eq. (5) includes two functions, n and m, and additional
information is required to solve it. If recombination dominates,
namely, AmmcAn(N�n), one gets the first-order kinetics equation
whereas if retrapping dominates, Amm{An(N�n), and the trap is
far from saturation, n{N, one gets second-order kinetics. Differ-
ent kinds of intermediate cases are possible. As shown by Chen
[2], first- and second-order TL peaks can be characterized by their
symmetry factor mg, where mg¼d/o, d¼T2�Tm, o¼T2�T1 and
where Tm is the temperature at the maximum and T1, and T2, are
the temperatures at the low and high points of half intensity,
respectively. mgE0.42 indicates first order and mgE0.52 indicates
second order.

It should be noted that Kelly et al. [3] pointed out that the
quasi-equilibrium conditions as previously used are not convin-
cing as they lack universal validity. Different aspects of the quasi-
equilibrium assumption have been discussed by Lewandowski
et al. [4,5] and by Sunta et al. [6–9]. Sunta et al. [8] studied the
solution of the equations associated with a model with one
recombination center, one active trap and one thermally discon-
nected deep trap (TDDT). They found that with certain sets of
parameters, 9dnc=dt9� 9dn=dt9. Shenker and Chen [10] and Opa-
nowicz and Przybyszewki [11] described the results of numerical
solutions of the set of Eqs. (1–3), and checked the occurrence of
the condition (6). A similar work on the parallel condition in
localized transitions has been reported by Bull [12].

In the present work we show examples of numerical solutions
of Eqs. (1–3), where in addition to the temperature dependence of
the emission intensity, we monitor the values of n, m, 9dn/dt9,
9dm/dt9 and 9dnc/dt9. It turns out that with a choice of plausible
sets of parameters for the simulation, the condition (6) may not
be fulfilled. Yet, when substituting the simulated values of n and
m in Eq. (5) and comparing these results to the intensity from
Eq. (1), as simulated by the solution of Eqs. (1–3), there is quite a
good agreement between the two. We then propose a revised
condition that replaces Eq. (6), which is fulfilled in the examples
given and probably more generally. Instead of comparing the rate
of change of the free electrons with the rate of change of trapped
electrons and holes, it is compared to the rates of thermally
adding electrons to the conduction band and depleting them by
both retrapping and recombination.

Another interesting point has to do with the behavior of
the declining part of a TL peak at the high-temperature end.
In literature, there is evidence that at the high-temperature part
of a single TL peak, or usually, when there are several peaks, at the
high temperature part of the last peak in a series, a long tail is
observed. The value of mg is significantly higher which is typical of
an effective kinetics order higher than 2. Obviously, the study of
Eq. (5) does not result in an order larger than 2, a case which is
characterized by the peak being nearly symmetric. Experimental
results of such a long tail have been given by several authors
concerning several materials. Herman and Meyer [13] reported
such long tail in willemite. Singh and Charlesby [14] described it
in Thymine whereas Liu et al. [15] showed it in PET. Kristianpoller
et al. [16] reported a long high-temperature tail in mica and
Sakurai [17] found it in brown microline. More results of the same
sort were given by Furetta et al. [18] in RbCl:OH� , by Mathur
et al. [19] in CaSO4:Dy, by Denis et al. [20] in Eu2þ doped
Ba13�xAl22�2xSi10þ2xO66 (x�0.6) and by Smet et al. [21] in
M2Si5N8:Eu (M¼Ca, Sr, Ba). In the present study we find that at
the high temperature range, the condition (7) may not be fulfilled,
and rather we get that nc�m whereas n is significantly smaller.
We show that this may result in the occurrence of a high-
temperature tail similar to the reported experimental results.
2. Numerical simulation and analytical considerations.

In order to check the assumptions and results, we have chosen
a set of parameters, shown below in the caption of Fig. 2. We have
solved the set of equations numerically to yield the TL intensity
(�dm/dt), and in parallel, used the computed values of m and n to
evaluate the approximation given by Eq. (5). The results are
shown in Fig. 2. Except for a small percent of difference in the
absolute intensity, the two curves look very similar. We have
checked now the time derivatives of the concentrations; the
results are shown in Fig. 3. Obviously, the TL intensity is equal
to �dm/dt. Surprisingly, 9dnc/dt9 is significantly larger than 9dm/dt9
and only a little smaller than 9dn/dt9 which means that the
condition in Eq. (6) is not fulfilled. How is it that the common
approximation, which is apparently confirmed in Fig. 2, is valid
in this case?

Let us consider more closely Eq. (3). While saying that
dnc/dtE0 we do not really mean that dnc/dt¼0, but rather,
we may mean that dm/dtEdn/dt. Using Eqs. (1) and (2) this



Fig. 3. With the same parameters as in Fig. 2, the simulated derivatives dn/dt, dm/dt and dnc/dt are shown as functions of temperature.
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would mean:

�Ammnc � AnðN�nÞnc�snexp ð�E=kTÞ: ð8Þ

However, in order to get the expression in Eq. (4), we use the
condition

snexp ð�E=kTÞ � nc½AmmþAnðN�nÞ�: ð9Þ

It is possible that the two sides of Eq. (8) are rather small
quantities and therefore the difference between them, which,
according to Eq. (3) is dnc/dt, is not smaller than each of the two
sides of the equation, which are dm/dt and dn/dt, respectively.
It appears that the comparison to be made about the approximate
validity of Eqs. (4) and (5) has to do with the terms

term1¼ snexp ð�E=kTÞ, ð10Þ

and

term2¼ nc½AnðN�nÞþAmm�: ð11Þ

In particular, we have to examine the magnitudes of term1 and
term2 as compared to dnc/dt which, according to Eq. (3), can be
written as

term1�term2¼
dnc

dt
: ð12Þ

Fig. 4 shows that, indeed, at least in this particular case, term1
and term2 are nearly equal, and the difference dnc/dt is small
relative to these terms, which justifies the approximate validity of
Eqs. (4) and (5). The physical meaning of these two terms is quite
obvious; term1 represents the rate at which electrons are added
thermally into the conduction band whereas term2 is the rate at
which they are depleted from the conduction band in the two
channels of retrapping and recombination.

It therefore seems that the assumption 9dnc/dt9E0 should be
understood in a slightly different way than before. The smallness
of 9dnc/dt9 as compared to 9dm/dt9 and 9dn/dt9 seems not to be
valid and the validity of the approximate expressions (4) and (5)
depends on the smallness of 9dnc/dt9 as compared to term1 and
term2, which approximately takes place. These two terms are,
respectively, the rates of addition and subtraction of electrons
from the conduction band. The difference between the numeri-
cally simulated and approximate curves in Fig. 2 seems to be
associated with the fact that 9dnc/dt9 is small (though not
negligibly small) as compared to term1 and term2. Although this
has been shown for a specific set of parameters, it seems that it is
quite general.

An alternative possibility of getting a TL peak is when the
trapped electrons are stimulated thermally into a localized
excited state from which radiative recombination into an adjacent
recombination center is possible. As explained by Chen [22] and
Bull [12], the set of governing equations for this situation is

IðTÞ ¼�
dm

dt
¼ pne, ð13Þ

�
dn

dt
¼ snexp ð�E=kTÞ�sne, ð14Þ

m¼ nþne, ð15Þ

where ne(cm�3) is the instantaneous concentration of electrons in
the excited state and p(s�1) is the recombination probability of an
excited electron. From Eq. (15), we can write for the derivatives

dne

dt
¼

dm

dt
�

dn

dt
: ð16Þ

By inserting Eqs. (13) and (14) into Eq. (16) one gets

dne

dt
¼ snexp ð�E=kTÞ�ðpþsÞne: ð17Þ

In order to proceed with the approximation, one assumes in
analogy to the previous case that 9dne/dt9E0. Again, in analogy
with the case of transition of electrons through the conduction
band, it should not be understood as suggested before [12] that



Fig. 4. With the same parameters as in Figs. 2 and 3, the simulated factors ‘‘term1’’ and ‘‘term2’’ along with dnc/dt are shown as functions of temperature.
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9dne/dt9{9dn/dt9, but rather

dne

dt

����

����{snexp ð�E=kTÞ; ðpþsÞne: ð18Þ

Note that in comparison with the case of transition through
the conduction band, snexp(�E/kT) is the same as term1 in Eq.
(10) whereas (pþs)ne replaces term2 in Eq. (11). By using the
condition (18), Eq. (17) becomes

ne �
snexp ð�E=kTÞ

pþs
, ð19Þ

from which, the approximate equation for TL is reached:

I¼�
dm

dt
¼

ps

pþs
mexp ð�E=kTÞ: ð20Þ

This is a first-order equation with an effective frequency factor
of ps/(pþs); the first-order feature holds for both high and low
retrapping as long as condition (18) holds.

It should be noted that in a recent paper, Chen et al. [23]
discussed a two-stage model of TL in which the first stage of
excitation is localized and in the second stage, electrons are raised
thermally into the conduction band before performing radiative
recombination with holes in the centers. Here, the smallness of
9dne/dt9 is compared to the value of the relevant magnitude which
in this case is pþs2exp ð�E2=kTÞ (see Eq. (6)). In analogy to the
present cases, an approximate equation is reached for ne, from
which conclusions are drawn concerning the relevant two-stage
TL peak.
3. Long tail at the High temperature side of a TL peak

In the simulations, it has been found that a single TL peak may
have a long tail in the high-temperature side. Note that similar
results are found in the highest-temperature peak in a series
as described in the companion paper by Chen and Pagonis [24]
(see also McKeever et al. [25]). An example of such a single peak
is shown in Fig. 5. One should note that the parameters chosen
for Figs. 2 and 5 are the same except that in the former,
Am¼10�8 cm3s�1 and An¼10�7 cm3s�1 and in the latter,
Am¼10�10 cm3s-1 and An¼10�9 cm3s�1. Thus, the ratio Am/An is
the same in both cases, but in the case of Fig. 5, the two
probability coefficients are relatively low, which results in the
mentioned accumulation of electrons in the conduction band.
Also, the results of the simulations have shown that at the high
temperature side, mEnc as depicted in Fig. 6. This may be the
case, as will be shown in the results of simulations below when
both Am and An are rather small. At the high-temperature range,
the rate of release of electrons from the trap gets very high and
the recombination and retrapping probability coefficients are
rather small, and therefore, electrons are accumulating in the
conduction band.

Considering the fact that mEnc in this range, Eq. (1) will be

I¼�
dm

dt
¼ Amm2, ð21Þ

and the solution is

1

m
¼

1

m0
þ

Am

b
t: ð22Þ

It is obvious that this is a time dependent, not temperature
dependent function. The point is that as of a certain temperature,
although the Botlzmann function is increasing, the trap popula-
tion is decreasing very fast, and the net effect is that the
concentration m and the time dependence of TL intensity are
practically independent of temperature. The TL intensity at this
range will be

I¼ Ammnc ¼ Amm2 ¼
Amm2

0

1þm0Amt½ �
2
: ð23Þ

The meaning of this equation is, for example, that if we are in a
high enough temperature range, there is a decay of luminescence



Fig. 5. Similar to Fig. 2, except that the retrapping and recombination probability coefficients are smaller by two orders of magnitude; Am¼10�10 cm3s�1 and

An¼10�9 cm3s�1.

Fig. 6. With the same parameters as in Fig. 5, n, m, and nc are shown as functions of temperature.
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with time if we keep this high temperature constant. However,
once we are in this range where the equation governing the
process is (21), the decay curve given by Eq. (23) is independent
of temperature. In a TL experiment, one keeps heating the
sample using the same linear heating function as before, namely
T¼T0þbt. From this, one immediately gets t¼(T�T0)/b and by
inserting into Eq. (23), one gets

IðTÞ ¼
Amm2

0

1þm0AmðT�T0Þ=b
� �2 , ð24Þ



Fig. 7. High-temperature apparent temperature-dependent curve calculated by Eq. (24), with the same parameters as in Figs. 5 and 6. We used here T0¼230 K and

m0¼7�107 cm�3, as explained in the text.
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which describes the pseudo temperature dependence of the decay
at the high-temperature side of the TL peak. An example of this
function as compared to the numerical solution of the set of
differential equations at the high-temperature range is given
below. One should note that the rate of decay of this function
depends on the magnitude of the heating rate b. Therefore, for the
same set of parameters, the apparent value of the TL peak
symmetry factor mg may change with b. Obviously, the simulated
curve in Fig. 5 has an apparent value of mg significantly larger
than that of a second-order TL peak. Note that Sunta et al. [8]
have reported a simulated case where mg � 0:6 within the more
complex TDDT model.

In order to check the validity of Eq. (24), and its relation to the
high-temperature part of Fig. 5, we have monitored the depen-
dence of n, m and nc on temperature under the same parameters
and conditions as in Fig. 5. The results are shown in Fig. 6. It is
seen that the curves of m and nc coincide at�230 K, and that the
value of m at this temperature is �7�107 cm�3. We have now
used these values as T0 and m0, respectively, in Eq. (24); the
results are shown in Fig. 7. The apparent decline of the intensity
with increasing temperature is the same as that shown in Fig. 5
from 230 K onwards.
4. Conclusion

In this work, we have dealt with the quasi-equilibrium assump-
tions and their consequences in the understanding of the kinetics of
thermoluminescence (TL). Using numerical simulations along with
analytical arguments we show that the condition (6) concerning the
rates of change of the concentrations of trapped electrons and holes
and free electrons, may not take place. However, it turns out that a
better stated condition which compares the rate at which electrons
are added into the conduction band and the rate at which they are
depleted by retrapping and recombination is better fulfilled, and
brings about the approximate Eq. (5). We also show that at least in
some cases, at the high end of a single TL peak or the last peak in a
series, the condition between the concentrations of free and trapped
electrons, nc{n does not hold and, in fact, one may have a near
equality between the free electrons and trapped holes, nc�m, which
means that the trap occupancy n is significantly smaller. This point
has been previously made by Kelly et al. [3]. This is the case since at
this temperature range electrons are very easily released into the
conduction band. If the recombination and retrapping are rather
small, electrons may be accumulating in the conduction band. Under
these circumstances, the shape of the TL peak is not determined by
An/Am only and the absolute magnitudes of these coefficients are
of importance. This explains the difference in shape between
Figs. 2 and 5. In the case shown in Fig. 5, a very long tail at the
high temperature side is seen, which resembles reports on TL in
different materials. We show that in this range, the decline of TL
intensity may be independent of temperature, and as a result, the
apparent symmetric property of the TL curve may depend on the
heating rate. In this situation, in the range where nc�m, in the given
example, we use the simulated results of m0 at 230 K, the tempera-
ture at which the decline becomes temperature independent, from
Fig. 6. Using Eq. (24), we get the declining curve which turns out to
be practically the same as in the same range of temperatures
simulated in Fig. 5. It should be noted that the condition nc�m

which results in the occurrence of Eq. (24) and the explanation of
the long high-temperature tail, depends on all the relevant para-
meters and in particular, the magnitudes of Am and An. For high
values of at least one of these two parameters, T0 will be expected to
be very high and m0 very low, and therefore, the long-tail appear-
ance will not be expected, whereas for low values of both prob-
ability coefficients, a long tail can be predicted.
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[3] P. Kelly, M.J. Laubitz, P. Bräunlich, Phys. Rev. B4 (1971) 1960.



R. Chen, V. Pagonis / Journal of Luminescence 143 (2013) 734–740740
[4] A.C. Lewandowski, S.W.S. McKeever, Phys. Rev. B43 (1991) 8163.
[5] A.C. Lewandowski, B.G. Markey, S.W.S. McKeever, Phys. Rev. B49 (1994) 8029.
[6] C.M. Sunta, W.F. Feria Ayta, R.N. Kulkarni, J.F.D. Chubaci, S. Watanabe, J. Phys.

D: Appl. Phys. 32 (1999) 717.
[7] C.M. Sunta, W.F. Feria Ayta, J.F.D. Chubaci, S. Watanabe, J. Phys. D: Appl. Phys.

34 (2001) 3285.
[8] C.M. Sunta, W.F. Feria Ayta, J.F.D. Chubaci, S. Watanabe, Radiat. Prot. Dosim.

100 (2002) 83.
[9] C.M. Sunta, W.F. Feria Ayta, J.F.D. Chubaci, S. Watanabe, Radiat. Meas. 35

(2002) 595.
[10] D. Shenker, R. Chen, Comput. Phys. 10 (1972) 272.
[11] A. Opanowicz, K. Przybyszewski, Proc. SPIE 2373 (1995) 236.
[12] R.K. Bull, J. Phys. D: Appl. Phys. 22 (1989) 1375.
[13] R.C. Herman, C.F. Meyer, J. Appl. Phys. 17 (1946) 743.
[14] B.B. Singh, A. Charlesby, Photochem. Photobiol. 5 (1966) 63.
[15] L.B. Liu, K. Hiyama, K. Miyasaka, Polymer 29 (1988) 286.
[16] N. Kristianpoller, Y. Kirsh, S. Shoval, D. Weiss, R. Chen, Nucl. Tracks Radiat.

Meas. 14 (1988) 101.
[17] T. Sakurai, J. Appl. Phys. 82 (1997) 5722.
[18] C. Furetta, M.T. Laudadio, C. Sanipoli, A. Scacco, J.M. Gomez-Ros, V. Correcher,

J. Phys. Chem. Solids 60 (1999) 957.
[19] V.K. Mathur, A.C. Lewandowski, N.A. Guardala, J.L. Price, Radiat. Meas.

30 (1999) 735.
[20] G. Denis, P. Deniard, X. Rocquefelte, M. Benabdesselam, S. Jobic, Opt. Mater.

32 (2010) 941.
[21] P.F. Smet, K. Van den Eeckhout, A.J.J. Bos, E. van der Kolk, P. Dorenbos,

J. Lumin. 132 (2012) 682.
[22] R. Chen, J. Mater. Sci. 11 (1976) 1521.
[23] R. Chen, J.L. Lawless, V. Pagonis, Radiat. Meas., in press. doi:10.1016/j.

radmeas.2012.01.002.
[24] R. Chen, V. Pagonis, J. Lumin. Submitted for publication (companion paper).
[25] S.W.S. McKeever, J.F. Rhodes, V.K. Mathur, R. Chen, M.D. Brown, R.K. Bull,

Phys. Rev. B32 (1985) 3835.

doi:10.1016/j.radmeas.2012.01.002
doi:10.1016/j.radmeas.2012.01.002

	On the quasi-equilibrium assumptions in the theory of thermoluminescence (TL)
	Introduction
	Numerical simulation and analytical considerations.
	Long tail at the High temperature side of a TL peak
	Conclusion
	References




