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Abstract
The phenomenon of radioluminescence (RL) has been reported in a number of materials
including Al2O3 : C, which is one of the main dosimetric materials. In this work, we study RL
using a kinetic model involving two trapping states and two kinds of recombination centres.
The model has been previously used to provide a quantitative description of the
thermoluminescence and optically stimulated luminescence processes in Al2O3 : C. Using
appropriate sets of trapping parameters for the kinetic model, the RL signal along with the
occupancies of the relevant traps and centres are simulated numerically. The set of differential
equations is also solved analytically by assuming dynamic balance during sample irradiation.
Analytical expressions are obtained for the concentrations of traps and centres in the material
during irradiation with short irradiation pulses, by assuming that quasi-steady conditions hold
during irradiation. Several experimentally observed characteristics of the RL signals are
explained by using the model. Good quantitative agreement is found between the analytical
expressions and the numerical solutions of the model for short irradiation pulses.

1. Introduction

Over the last decade attention has been given to applications of
the dosimetric material Al2O3 : C in medical dosimetry. One
such application is in vivo dose verification in radiotherapy
of cancer patients. Andersen et al [1] have developed a
system for in vivo dose measurements during radiotherapy.
Their system uses the radioluminescence (RL) and optically
stimulated luminescence (OSL) signals from small Al2O3 : C
crystals attached to long optical fibre cables. During radiation
therapy, the RL signal provides a real-time measurement of
the dose rate at the position of the crystal, and immediately
after the treatment, the continuous wave (CW) OSL signal
is used to determine the integrated dose (see, for example,
Aznar et al [2]).

These experimental studies have established several
empirical results for RL measurements carried out in Al2O3 : C
crystals. Three such important results are shown in figure 1,

5 Author to whom any correspondence should be addressed.

which reproduces experimental data from Aznar [3], figure 3.9,
page 43. Specifically, figure 1(a) shows that the RL
intensity during a short irradiation pulse increases linearly with
time. The experimental data in figure 1(b) indicate that the
corresponding initial RL intensity Io varies linearly with the
dose rate X, while figure 1(c) demonstrates that the slope of
the linear part of the RL intensity varies quadratically with the
dose rate X. The results shown in figure 1(a)–(c) are mostly
empirical in nature, and no analytical expressions have been
previously offered in the literature.

In this work, we study the RL signal from Al2O3 : C
by using a kinetic model consisting of two trapping states
and two kinds of recombination centres. This model has
been previously used successfully to provide a quantitative
description of the dose response of thermoluminescence (TL),
OSL and UV-induced TL signals from Al2O3 : C crystals (see,
for example, Chen et al [4], Pagonis et al [5], Pagonis et al [6]).

In this paper the RL signal during irradiation of Al2O3 : C
samples is simulated numerically, along with the occupancies
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Figure 1. Previous experimental results obtained by Aznar [3]
during RL experiments on Al2O3 : C samples are redrawn here for
reference purposes. (a) The RL pulses as a function of time are
characterized by a linear region. (b) The initial RL intensity Io of
the RL pulses in (a) is found empirically to depend linearly on the
dose rate X. (c) The slope of the RL pulses shown in (a) is found
empirically to depend linearly on the square of the dose rate X2 used
during the RL experiments.

of the relevant traps and centres. The set of differential
equations is also solved analytically by assuming dynamic
balance during sample irradiation, and analytical expressions
are obtained for the concentrations of traps and centres during
short irradiation pulses. The empirical characteristics of the
RL signal shown in figure 1 are explained by using the results
of the model.

2. The model

The model presented in this section has some similarities to
previously published kinetic models for the RL phenomenon
in Al2O3 : C and feldspars [7–15]. The schematic details of the
model are shown in figure 2, and it is identical to the model
used by Pagonis et al (2007) to explain the dose response of the
TL dose signal from Al2O3 : C. In Pagonis et al [5] the model
was used to fit the experimental data of Yukihara et al [9] for
three different samples labelled Chip101, D320 and B1040.

Two electron trapping states are taken into consideration
in the model, N1 which is the main dosimetric trap from which
stimulating light can release electrons, and N2, a competitor in
which electrons can be trapped, but the stimulating light cannot
release electrons from it. Two recombination centres are
assumed to exist, M1 which is radiative and M2, a non-radiative
competitor. The various transitions in the model taking place
during an RL measurement are indicated by arrows in figure 2.
The set of six coupled differential equations governing the
process during excitation is

dm1

dt
= −Am1m1nc + B1(M1 − m1)nv, (1)

dm2

dt
= −Am2m2nc + B2(M2 − m2)nv, (2)

dn1

dt
= An1(N1 − n1)nc, (3)

dn2

dt
= An2(N2 − n2)nc, (4)

dnv

dt
= X − B2(M2 − m2)nv − B1(M1 − m1)nv, (5)

dnc

dt
= X − An1(N1 − n1)nc − An2(N2 − n2)nc

−Am1m1nc − Am2m2nc, (6)

where M2 (cm−3) is the concentration of non-radiative
hole centres with instantaneous occupancy of m2 (cm−3),
M1 (cm−3) is the concentration of radiative hole centres
with instantaneous occupancy of m1 (cm−3), N1 (cm−3)
is the concentration of the electron active dosimetric trap
with instantaneous occupancy of n1 (cm−3) and N2 (cm−3)
is the concentration of the competitor trapping state with
instantaneous occupancy of n2 (cm−3). nc and nv are
the concentrations (cm−3) of the electrons and holes in the
conduction band (CB) and valence band (VB), respectively.
X (cm−3 s−1) is the rate of production of electron–hole pairs,
which is proportional to the excitation dose rate, B1 and B2

(cm3 s−1) are the trapping probability coefficients of free holes
in centres 1 and 2, respectively. Am1 and Am2 (cm3 s−1) are the
recombination probability coefficients for free electrons with
holes in centres 1 and 2, and An1 (cm3 s−1) is the retrapping
probability coefficient of free electrons into the active trapping
state N1. An2 (cm3 s−1) is the retrapping probability coefficient
of the free electrons into the competing trapping state N2.
If we denote the time of excitation by tD and the rate of
production of electron–hole pairs per cm3 per second by X,
then X × tD represents the total concentration of electrons and

2



J. Phys. D: Appl. Phys. 42 (2009) 175107 V Pagonis et al

  Am2 

Am1 

X 

RL 

nc 

nv 

B2 B1 

  M2, m2 

M1, m1 

N1, n1 
An1 An2 

N2, n2 

Figure 2. The energy level diagram of two electron trapping states and two kinds of hole recombination centres. Transitions occurring
during irradiation of the sample are given by solid lines.

holes produced, which is proportional to the total dose imparted
on the sample.

The RL intensity is associated with the recombination into
m1; therefore, the intensity I (t) is given by

I (t) = Am1m1nc. (7)

In the rest of this section we present an analytical solution to
the system of equations (1)–(7). The only assumptions used
during this derivation are that the quasi-steady conditions hold
and that the initial concentrations of electrons and holes in
the model are m1(0) = m10 and n10 = n20 = m20 = 0.
Experimentally it is possible to achieve these initial conditions
by annealing the material at a high temperature, as is commonly
done before using a dosimetric material.

After a very short transitional period, a dynamic balance
is established between the irradiation process creating pairs of
electrons and holes on the one hand, and the relaxation process
of electrons and holes into the various energy levels on the
other. According to the quasi-static assumption commonly
made in kinetic models, we can assume that during this
dynamic balance the concentrations of electrons in the CB and
of holes in the VB change very slowly, so that dnv/dt = 0 and
dnc/dt = 0. By substituting dnv/dt ≈ 0 into equation (5), it
can be solved for nv to yield

nv = X

B2(M2 − m2) + B1(M1 − m1)
. (8)

The initial concentration nv0 of holes in the VB at time t = 0
can be obtained by replacing the concentrations m1 and m2

in equation (8) with their initial values at time t = 0, i.e.
m2 = m20 = 0 and m1 = m10. Equation (8) then yields

nv0 = X

B2M2 + B1(M1 − m10)
. (9)

In a similar manner by assuming that during dynamic balance
dnc/dt = 0 equation (6) can be solved for nc to yield

nc = X

An1(N1 − n1) + An2(N2 − n2) + Am1m1 + Am2m2
.

(10)

The initial concentration nc0 of electrons in the CB at time
t = 0 is obtained by replacing the concentrationsn1, n2, m1 and
m2 with their initial concentrations in equation (10) to obtain

nc0 = X

An1N1 + An2N2 + Am1m10
. (11)

For short irradiation pulses the RL intensity I (t) can be
expanded as a Taylor series about t = 0. Our goal is to find
the first two terms of the series expansion:

I (t) = C1 + C2t + O(t2), (12)

with the coefficients C1 and C2 given by

C1 = I (0), (13)

C2 = dI (t)

dt

∣∣∣∣
t=0

. (14)

The calculation of C1 is straightforward by using equation (7)
for I (t) and equation (11) for the initial quasi-steady equilib-
rium value of nc0:

C1 = I (0) = Am1m10nc0 = Am1m10X

An1N1 + An2N2 + Am1m10
.

(15)

From equations (13) and (15) we see that the constant C1

represents the initial RL intensity Io at t ∼ 0 and hence the
initial RL intensity is equal to

Io = C1 = Am1m10X

An1N1 + An2N2 + Am1m10
. (16)

Equation (16) indicates that the initial RL intensity Io will be
proportional to the dose rate X used during the RL experiment,
in agreement with the empirical data shown in figure 1(b).

The calculation of the constant coefficient C2 in
equation (12) is more complex algebraically, and is derived

3
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in detail in appendix A. The result after much algebra is

C2 = Am1X
2

(An1N1 + An2N2 + Am1m10)2

×
(

m10
A2

n1N1 + A2
n2N2 − Am1(An1N1 + An2N2)

An1N1 + An2N2 + Am1m10

+
(An1N1 + An2N2)B1(M1 − m10) − Am2B2M2m10

B1(M1 − m10) + B2M2

)
.

(17)

Equations (12) and (17) show that for a constant dose rate
X the RL intensity will be increasing linearly with time t ,
in agreement with the empirical data shown in figure 1(a).
The slope of this linear dependence of I (t) is given by the
constant C2:

slope of I (t) = C2. (18)

Equations (17) and (18) indicate that the slope of the linear part
of the RL signal I (t) should be proportional to the square of the
dose rate X2. This prediction from the model is in agreement
with the empirical data shown in figure 1(c).

It is emphasized that the derivation of C1 and C2 in
equations (15) and (17) is based solely on the validity of the
quasi-steady conditions, and uses no other approximations.

We can also obtain analytical expressions for the electron
and hole concentrations m1(t), n1(t), n2(t), m2(t) as shown
in detail in appendix B. By substituting equations (9)
and (11) in the differential equations (1)–(4) and carrying
out the integrations of the first order differential equations,
the following approximate analytical expressions for the
concentrations m1 , m2 , n1 and n2 are obtained in appendix B:

n1(t) = N1

(
1 − exp

(
− An1Xt

An2N2 + An1N1 + Am1m10

))
,

(19)

n2(t) = N2

(
1 − exp

(
− An2Xt

An2N2 + An1N1 + Am1m10

))
,

(20)

m1(t) = [
Am1m10(B1M1 + B2M2e−DtX)

+ B1(M1(1 − e−DtX) + m10)(An1N1 + An2N2)
]

×[
Am1B1M1+Am1B2M2 + An1B1N1 + An2B1N2

]−1
,

(21)

m2(t) = [B2M2(1 − e−EtX)(An1N1 + An2N2 + Am1m10)
]

×[
Am2(B1M1 − B1m10 + B2M2)

+ B2(Am1m10 + An1N1 + An2N2)
]−1

, (22)

with the initial concentrations of n1 , n2 and m2 taken to be
zero. The constants D and E appearing in equations (21)
and (22) are given in appendix B. The numerical accuracy of
the analytical expressions in this section is investigated in the
next section.

3. Simulation—numerical results

We choose a set of numerical values for the parameters in the
model from Pagonis et al [5]. These authors showed that the TL
dose response of three different samples of Al2O3 : C could be
described quantitatively by the model presented in this paper.
The approach of Pagonis et al [5] was that the rate constants
An1, Am1, B1, etc should be fixed constants for this material,
but that the concentrations N1, M1, etc will vary from sample
to sample.

The luminescence properties of the three samples termed
Chip101, D320 and B1040 were studied extensively in
Yukihara et al [9]. The values used for the present simulation
are those obtained by Pagonis et al [5] for sample Chip101,
and were based on the experimental data of Yukihara et al [9].
Specifically the values used in the simulations of this paper are
M1 = 1017 cm−3; M2 = 2.4×1016 cm−3; N1 = 2×1015 cm−3;
N2 = 2 × 1015 cm−3; Am1 = 4 × 10−8 cm3 s−1; Am2 = 5 ×
10−11 cm3 s−1; B1 = 10−8 cm3 s−1; B2 = 4 × 10−9 cm3 s−1;
An1 = 2 × 10−8 cm3 s−1; An2 = 2 × 10−9 cm3 s−1; m10 =
9.4 × 1015 cm−3 (Pagonis et al [5], table 1). The value of
the irradiation dose rate is taken as X = 1.7 × 1015 cm−3 s−1

which was shown to correspond to a dose rate of 1 Gy s−1 for
this material (Chen et al [4]). The initial carrier concentrations
in the model are taken equal to zero, except for the initial value
m10 of the activated holes in the radiative centre. The chosen
value of m10 for sample Chip101 corresponds to a 9.4% initial
activation of the available recombination centres (m10/M1 =
9.4 × 1015/1017 = 0.094).

The simulation consists of two stages; firstly in the
irradiation stage the differential equations (1)–(6) are solved
for an irradiation time tD. The RL intensity is simulated
numerically by using equation (7). In the next stage of the
simulation, a relaxation period has been simulated by setting
the excitation dose rate X = 0 to zero, and solving the same
set of equations for a short period of time so as to have the
concentrations of the electrons, nc, and free holes, nv, go
to negligible values. The initial values of the concentration
functions for the relaxation stage are the final values at the
excitation stage. In some of the simulations described later
in this section these two stages are followed by a third stage,
in which the sample is optically bleached for a few seconds in
order to optically empty the optically active traps, as is done
commonly experimentally between successive RL pulses.

Figure 3 depicts the simulated RL intensity I (t) for a
total irradiation time of 1 s, using the parameters of sample
Chip101 and for several different values of the dose rate X

in the range 0.1–0.5 Gy s−1. The simulated RL signals in
figure 3 are similar in shape to the experimentally measured
RL signals from Al2O3 : C shown in figure 1(a). An initial
short period in which the RL signal increases is followed by
an approximately linear region, followed by a fast decreasing
signal region. The solid lines through the simulated data
points in figure 3 represent the analytical solutions given by
the approximate equation (12) and with the constants C1, C2

given by equations (16)–(17). The agreement between the
simulation results and the analytical expressions is very good
for all times during the short irradiation pulses.
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concentrations using the analytical expressions in the text.

Figures 4 and 5 depict the corresponding simulated
occupancies of the non-radiative centre m2, of the radiative
centre m1, of the dosimetric trap n1 and of the competitor trap
n2, during the irradiation stage. The dose rate in figures 4
and 5 was 0.1 Gy s−1 and the duration of the RL pulse was
1 s. All four concentrations increase linearly during the
irradiation stage. Also shown in figures 4 and 5 are the
calculated concentrations using the analytical expressions in
equations (19)–(22). The results in figures 4 and 5 show again
good agreement between the simulated results obtained from
the solution of the differential equations, and the approximate
analytical expressions.

Figure 6 shows the simulated initial RL signal Io from
figure 3 plotted as a function of the dose rate X, yielding
a linear dependence. This result is in agreement with the
empirical dose rate dependence of the initial RL intensity
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Figure 5. Simulated occupancy of the radiative centre m1 during the
irradiation stage, showing a linear increase with irradiation time.
The solid line represents the calculated concentrations using the
analytical equation (21) in the text. The initial concentration of
radiative centre, m10 = 9.4 × 1017 cm−3.
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Figure 6. The initial RL signal Io from figure 3 plotted as a function
of the dose rate X, yielding a linear dependence. This result is in
agreement with the empirical experimental data shown in
figure 1(b), and with the exact analytical expression given in
equation (15).

from Al2O3 : C shown in figure 1(b), and with the exact
analytical expression given in equation (16). Figure 7 shows
the simulated dependence of the slope of the linear part of
the RL signal in figure 3, as a function of the square of the
dose rate X2. This dependence is again linear, as observed
empirically previously in this material and as shown in the
experimental data of figure 1(c). The linearity shown in
figure 7 is in agreement with the analytical expression given
in equation (17).

An important experimental consideration is whether the
Al2O3 : C samples can be reused during a medical radiotherapy
session. For example, the system developed by Andersen
et al [1] provides in vivo measurements of the dose rate
X during radiotherapy. Immediately after the treatment the
CW OSL signal is used to determine the integrated dose, by
optically bleaching the Al2O3 : C samples (see for example,
Aznar et al [2]). We have simulated the delivery of 100
successive RL pulses, with each pulse followed by an optical
bleach, with the simulated results shown in figure 8. As seen
in figure 8 there is a very small change in the shape of the
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successive RL pulses, and even after 100 such pulses the RL
intensity is changed by only a few per cent of its initial value.

Our main goal in this paper is to show that the
analytical expressions can accurately describe the results
of the simulation, rather than attempting to reproduce the
exact experimental behaviour in figure 1(a). Nevertheless,
it is possible to reproduce the experimental behaviour in
figure 1(a) by modifying the initial concentration of holes in
the recombination centre (m10) in the model. Figure 9 shows
the results of the simulation when using a much smaller value
of m10 = 4 × 1013 cm−3 in the model, while the rest of the
parameters in the model were left unchanged. The dose rate in
the simulation was adjusted so that the simulation results match
the horizontal time-axis of the experimental data in figure 1(a).
The simulated results for the RL intensity as a function of
time shown in figure 9 compare well with the experimental
behaviour in figure 1(a). The inset of figure 9 shows the
corresponding time dependence m1(t) of the concentration of
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Figure 9. Simulation of the RL experiment using a much smaller
initial value of m10 = 4 × 1013 cm−3 in the model, while the rest of
the parameters in the model were left unchanged. The simulated
results for the RL intensity in this figure compare well with the
experimental behaviour shown in figure 1(a). The inset shows the
corresponding time dependence m1(t) of the concentration of holes
in the recombination centre during irradiation. Both the
concentration m1(t) and the RL intensity change by ∼40% during
the short RL pulse.

holes in the recombination centre during irradiation, indicating
an ∼40% change in both the concentration m1(t) and in the
RL intensity.

Several previous experimental studies of this material
[7, 9, 10] have shown that the non-radiative recombination
centre (m2) plays a critical role in determining the behaviour
of this material during TL/OSL measurements. Within the
RL simulations presented in this paper, this centre plays
a rather minor role and serves as a weak competitor for
the main radiative centre during irradiation. However, our
previous simulations [4–6] have shown that this centre plays
an important role in determining the non-monotonic dose
behaviour of Al2O3 : C.

4. Discussion–conclusions

The model presented in this paper can provide a quantitative
description of RL signals from Al2O3 : C. By assuming that
the quasi-steady conditions hold, analytical expressions were
derived for the concentration of traps and centres during sample
irradiation with short pulses. The numerical solutions of the
differential equations are found to be in close agreement with
the derived analytical expressions for short irradiation pulses.

Several previously reported empirical results are
explained within the model. Previously, the linear dependence
of the initial RL intensity Io on the dose rate X was interpreted
as due to sensitivity changes taking place in the material during
irradiation. Specifically, a possible explanation was offered by
Polf et al [10], who describe a similar increase in the RL in-
tensity and state that ‘in a general model, an increase in the
RL is expected with the filling of all electron traps, including
shallow and deep electron traps, as the trapping probability
decreases and more electrons become available for recombi-
nation’. The results presented in this paper show that at least
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within the range of parameters used in our model, this lin-
ear dependence of Io on the dose rate X is actually due to
the increase in the concentration of holes (m1) in the radiative
recombination centre during irradiation. This increase leads to
an apparent change in the RL sensitivity of the sample, as seen
in figures 5 and 9. This previous empirical experimental result
has now been given an analytical description in this paper, in
the form of equation (21).

However, it is quite possible that in a different sample
of this material, in which the traps and centres are closer to
saturation, the experimentally observed sensitivity change is
caused by the filling of the traps and centres as saturation is
approached.

The empirically observed linear dependence of the slope
of the RL intensity on the square of the dose rate X2

was expressed analytically in equation (17) and is in close
agreement with the numerical results from the model.

This paper also presents the results of simulations in which
several successive pulses are followed by optical bleaching,
to test whether the shape and intensity of RL pulses change
between successive uses of the same Al2O3 : C samples in
medical dosimetry. The results of the simulations show that
at least within the kinetic parameters presented in this paper
for sample D320, there is very small change in the shape and
intensity of the successive RL pulses, and therefore it should
be possible to reuse the same optical fibres several times during
medical dosimetry.

Appendix A: derivation of the coefficient C2 for the
RL intensity I(t)

In this appendix we derive a rigorous general expression for
the RL intensity I (t). The only assumptions used during
this derivation are that the quasi-steady conditions hold and
that the initial concentrations of electrons and holes in the
model are m1(0) = m10 and n10 = n20 = m20 = 0. Due
to the complex nature of the algebra involved, the derivation
of several algebraic expressions in the two appendices were
checked using the symbolic manipulation capability of the
package Mathematica.

For short irradiation pulses the RL intensity I (t) can be
expanded as a Taylor series about t = 0. Our goal is to find
the first two terms of the series expansion:

I (t) = C1 + C2t + O(t2), (23)

with the coefficients C1 and C2 given by

C1 = I (0), (24)

C2 = dI (t)

dt

∣∣∣∣
t=0

. (25)

In order to calculate the constant C2 we proceed as follows:

C2 = dI (t)

dt

∣∣∣∣
t=0

= d(Am1m1nc)

dt

∣∣∣∣
t=0

= Am1
d(m1nc)

dt

∣∣∣∣
t=0

= Am1

[
nc

dm1

dt
+ m1

dnc

dt

]
t=0

. (26)

Substituting the exact value of nc from equation (10) into
equation (26) we obtain

C2=Am1

[
nc

dm1

dt

+m1
d

dt

(
X

An1(N1−n1)+An2(N2−n2)+Am1m1+Am2m2

)]
t=0

.

(27)

After differentiating,

C2 = Am1


nc

dm1

dt

+ m1X




An1
dn1

dt
+ An2

dn2

dt
− Am1

dm1

dt
− Am2

dm2

dt

(An1(N1−n1) + An2(N2 − n2) + Am1m10)2







t=0

.

(28)

To replace the denominator in equation (28) we can use
equation (10) again to obtain

C2 = Am1

[
nc

dm1

dt

+
m1n

2
c

X

(
An1

dn1

dt
+ An2

dn2

dt
− Am1

dm1

dt
− Am2

dm2

dt

)]
t=0

.

(29)

Collecting the dm1
dt

terms:

C2 = Am1nc(0)

X

[
(X − Am1m1nc)

dm1

dt

+ m1nc

(
An1

dn1

dt
+ An2

dn2

dt
− Am2

dm2

dt

)]
t=0

. (30)

Substituting the values of the derivatives from equations (1)
through (4) in (30) gives

C2 = Am1nc(0)

X
[(X − Am1m1nc)(B1(M1 − m1)nv

−Am1m1nc) + m1nc(A
2
n1(N1 − n1)nc + A2

n2(N2 − n2)nc

−Am2B2(M2 − m2)nv + A2
m2m2nc)]t=0. (31)

We can now evaluate all the terms in (31) at time t = 0:

C2 = Am1nc0

X
[(X − Am1m10nc0)(B1(M1 − m10)nv0

−Am1m10nc0) + m10nc0(A
2
n1N1nc0 + A2

n2N2nc0

−Am2B2M2nv0)]. (32)

Rearranging to factor out another nc term yields

C2 = Am1n
2
c0

X

[(
X

nc0
− Am1m10

)
(B1(M1 − m10)nv0

− Am1m10nc0) + m10(A
2
n1N1nc0 + A2

n2N2nc0

− Am2B2M2nv0)

]
. (33)
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From equation (10) we know that (X/nc0) − Am1m10 =
An1N1 + An2N2, so we can write

C2 = Am1n
2
c0

X
[(An1N1 + An2N2)(B1(M1 − m10)nv0

−Am1m10nc0) + m10(A
2
n1N1nc0 + A2

n2N2nc0

−Am2B2M2nv0)]. (34)

Rearranging to collect together terms involving nc0 and terms
involving nv0 yields

C2 = Am1n
2
c0

X
[nc0m10(A

2
n1N1 + A2

n2N2

−Am1(An1N1 + An2N2))

+ nv0((An1N1 + An2N2)B1(M1 − m10)

−Am2B2M2m10)]. (35)

Now substituting the quasi-steady values of nc0 and nv0 from
equations (9) and (11) yields the desired exact expression for
the constant C2:

C2 = Am1X
2

(An1N1 + An2N2 + Am1m10)2

×
(

m10
A2

n1N1 + A2
n2N2 − Am1(An1N1 + An2N2)

An1N1 + An2N2 + Am1m10

+
(An1N1 + An2N2)B1(M1 − m10) − Am2B2M2m10

B1(M1 − m10) + B2M2

)
.

(36)

This is the result quoted in equation (17).

Appendix B: calculation of the concentrations m1(t),
m2(t), n1(t), n2(t)

By substituting equations (9) and (11) into equation (1) we
obtain
dm1

dt
= −Am1m1nc + B1(M1 − m1)nv

= −Am1m1
X

An1N1 + An2N2 + Am1m10

+B1(M1 − m1)
X

B2M2 + B1(M1 − m10)
(37)

This is a first order differential equation for m1(t) with the
initial condition m1(0) = m10. and its solution is obtained
using standard integration methods to yield

m1(t) = [
Am1m10(B1M1 + B2M2e−DtX)

+ B1(M1(1 − e−DtX) + m10)(An1N1 + An2N2)
]

×[
Am1B1M1 + Am1B2M2 + An1B1N1 + An2B1N2

]−1
,

(38)

with the constant D equal to

D = Am1B1M1 + Am1B2M2 + An1B1N1 + An2B1N2

(B1M1 − B1m10 + B2M2)(Am1m10 + An1N1 + An2N2)
.

(39)

Equation (38) indicates that the concentration of holes in the
radiative centre increases with time, in the form of a saturating
increasing exponential function. The limit of this equation
as t → 0 is m1(t) → m10, as may be expected on physical
grounds. The limit of m1(t) for very large times t → ∞ is
a finite value which depends on the numerical values of the
parameters in the model.

In a similar manner we can obtain the desired expression
of the concentration m2(t) of the non-radiative centre, by
substituting equations (9) and (11) into equation (2) to obtain
dm2

dt
= −Am2m2nc + B2(M2 − m2)nv

= −Am2m2
X

An1N1 + An2N2 + Am1m10

+ B2(M2 − m2)
X

B2M2 + B1(M1 − m10)
. (40)

This is again a first order differential equation for m2(t) with
the initial condition m20 = 0. Its solution is

m2(t) = [
B2M2(1 − e−EtX)(An1N1 + An2N2 + Am1m10)

]
×[

Am2(B1M1 − B1m10 + B2M2) + B2(Am1m10

+ An1N1 + An2N2)
]−1

. (41)

With the constant E given by the expression

E = [
Am2(B1M1 − B1m10 + B2M2)

+ B2(Am1m10 + An1N1 + An2N2)
]

×[
(B1M1 − B1m10 + B2M2)(Am1m10 + An1N1

+ An2N2)
]−1

. (42)

Equation (41) indicates that the concentration of holes in the
non-radiative centre also increases with time, in the form of
a saturating increasing exponential function. The limit of this
equation as t → 0 is m2(t) → 0. The limit of m2(t) for very
large times t → ∞ is a finite value which depends on the value
of the parameters in the model.

In a similar manner we obtain the following analytical
expressions for the concentrations of electrons n1, n2 in the
dosimetric trap and in the deep electron trap correspondingly:

n1(t) = N1

(
1 − exp

(
− An1Xt

An2N2 + An1N1 + Am1m10

))
,

(43)

n2(t) = N2

(
1 − exp

(
− An2Xt

An2N2 + An1N1 + Am1m10

))
.

(44)

Equations (43) and (44) indicate that the electron concentra-
tions in the dosimetric trap (n1) and in the deep electron trap
(n2) increase continuously with irradiation time during a RL
experiment, in the form of saturating exponential functions.

For short irradiation times such that (An1Xt/An1N1+
An2N2 + Am1m10) � 1, the exponential in expression (43)
can be approximated with a linear function n1(t), as shown in
the simulation results of figure 4. Similar conditions for the
time t corresponding to short irradiation pulses can be obtained
for m1(t), m2(t) and n2(t) from equations (38), (41) and (44)
correspondingly.
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