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ABSTRACT. We present a new variant of relaxation algorithms for the continuous
and discrete p-center problems. We have conducted an experimental study that
demonstrated that these new variants are very efficient, and often outperform other
optimal algorithms.
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1. INTRODUCTION

The p-center problem (see, for example, [13]), also known as the minimax location-
allocation problem, deals with the optimal location of emergency facilities. The
locations of n demand points are given, and the objective is to locate p service
facilities so as to minimize the maximum distance between a demand point to its
nearest service facility. It is assumed that all the facilities perform the same kind
of service, and that the number of demand points that can get service from a given
center is unlimited.

Relaxation (in the context of this paper) [13, 5] is a simple method to optimally
solve a large location problem by solving a succession of small sub-problems. For-
tunately, optimality can be achieved even though each sub-problem need not be
solved to optimality. Relaxation algorithms are iterative; at each step a candidate
solution to the original full problem is considered, which provides us with an up-
per bound on the optimal solution. We search, at each step, for a solution which
improves upon the current candidate solution, until we prove that none exists.

Algorithm 1 describes the skeleton of a relaxation algorithm.
When Algorithm 1 halts, Best_Candidate contains a solution to the original (full)

location problem with value Upper_Bound. Furthermore, the algorithm halts af-
ter FINDFEASIBLESOLUTION fails to find a feasible solution with value better than
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Algorithm 1 Skeleton of Relaxation Algorithms.
Upper_Bound←∞
Sub← CHOOSERANDOMSUBSET()
while (solution not found)

Feasible←FINDFEASIBLESOLUTION(Sub, Upper_Bound)
if (no feasible solution found for sub-problem)

halt and return Best_Candidate
else

if (Feasible is a feasible solution to the original full problem)
Best_Candidate← Feasible
Upper_Bound←GETVALUE(Feasible)

else
ADDDEMANDPOINT(Sub)
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Upper_Bound. Since there exists no solution to the sub-problem with value better
than Upper_Bound, there could be no solution to the original problem with value
better than Upper_Bound. Therefore the returned solution is optimal.

There are two main variants of the p-center problem in the literature; they differ
by the possible location of the service points. Many authors deal with the contin-
uous problem in which the points to be located optimally can be anywhere in the
plane, but another interesting problem is the discrete case where there is a finite
set of potential points (xj , yj) out of which one wishes to find the points which fulfill
the minimax condition. In some cases, weights wi are associated with the service
points (ai, bi). Another classification of the problems is associated with the rele-
vant metrics. In many cases, the distances between demand and service points are
Euclidean (e.g. [9]). Also considered are problems where the distances are defined
by minimal distances on a graph; this variant was first solved by Minieka [20].

The formulation of the Euclidean unweighted p-center problem is:

min
X1,...,Xp

{
max

1≤i≤n

[
min

1≤j≤p
rij

]}
where Xj = (xj , yj) for j = 1, . . . , p is the location of the new facility and rij =[
(ai − xj)

2 + (bi − yj)
2] 1

2 . Megiddo and Supowit [19] have shown that both the p-
center and p-median problems are NP-hard and that it is NP-hard even to approxi-
mate the p-center problems sufficiently closely. On the other hand, Hochbaum [14]
has shown that given certain assumptions on the input distribution, there are
polynomial algorithms that deliver a solution asymptotically close to the optimum
with probability that is asymptotically one.

Most of the methods developed for solving the continuous Euclidean problem
are geometrical in nature. When we are looking for a single service point (p = 1),
the solution of the problem will be the center of the smallest circle enclosing n
given points in the plane (see e.g. [6]). This can occur in one of two ways. The
smallest circle can be determined by three demand points on its circumference or,
alternatively, by two points on the two ends of a diameter. In the former case, the
three points are the edges of an acute triangle [22]. The geometrical methods are
based on a sophisticated search for the smallest enclosing circle among the circles
built on subsets of two and three demand points. This includes the repeated solu-
tion of relaxed, smaller sub-problems as described below in the broader context of
the p-center problem.

Chen [4] suggested a method that enables both the solution of the minisum
and minimax location-allocation problems by using a differentiable approximation
to the objective function and solving it by using nonlinear programming. This
enabled the solution of relatively large problems, but the result was not necessar-
ily optimal since local minima may have been reached. Drezner [9, 10] presented
heuristic and optimal algorithms for the p-center problem in the plane. The heuris-
tic method yielded results for problems with up to n = 2000 and p = 10 whereas the
optimal method solved problems with up to n = 30, p = 5 or n = 40, p = 4. Watson-
Gandy [27] suggested an algorithm that can optimally solve problems with up to
about 50 demand points and 3 centers in reasonable time. The p-center problem
on networks has been solved by Minieka [20] and by Toregas et al. [25]. A finite
method, which is rather inefficient for large problems was suggested. An improve-
ment based on the use of relaxations was offered by Handler and Mirchandani [13].
In section 2 we elaborate on relaxation methods.

Some other papers dealing with the continuous p-center problem include the
following. Hwang et al. [15] describe a slab-dividing approach, which is expected
to efficiently solve the Euclidean p-center problem. These authors show that their
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algorithm has time complexity of O
(
nO(√p)

)
. Suzuki and Drezner [24] propose

heuristic procedures and upper bounds on the optimal solution where the demand
points are distributed on a square. One of the methods they use employs the
Voronoi heuristic. The same method has been recently used by Wei et al. [28]; the
authors explore the complexity of solving the continuous space p-center problem in
location planning. Agarwal and Sharir [1] discuss efficient approximate algorithms
for geometric optimization, which includes the Euclidean p-center in d dimensions.
Hale and Moberg [12] give a broad review on location problems, which includes the
Euclidean p-center problem.

Another version of the p-center problem [11, 21] deals with the minimax p-
center problem where the Euclidean distances are dij = d(ui, vj) and where U =
{u1, u2, . . . , um} is a set of m users and V = {v1, v2, . . . , vn} a set of n potential
locations for facilities in the plane. In these works, Tabu search and Variable
Neighborhood Search methods as well as an optimal method are used, and the
efficiency of these methods for small and large problems is evaluated. It should
be noted that this Euclidean problem is equivalent to the p-center problem on net-
works where the possible location of the facilities are on the vertices and where the
minimum distances between the demand and potential supply points are given.
This discrete problem is also known to be NP-hard [18]. For a review on discrete
network location models see Current et al. [7]. Recent works on these two versions
of the discrete problem include algorithms given by Caruso et al. [3] and by Ilhan
et al. [16]. The latter authors describe an efficient exact method for this p-center
problem. Their algorithm finds the solution by updating, at each step, an upper
or lower bound on the optimal solution. A tight lower bound to the optimal value
is found in an initial phase of the algorithm, which consists of solving linear pro-
gramming sub-problems. Good computational results are reported for each of an
extensive list of test problems derived from OR-Lib and TSP-Lib problems with up
to 900 data points.

In the present work, we present a new variant of existing relaxation algorithms
for the continuous and discrete p-center problem. Past relaxation algorithms
solved a set-covering problem at each step. We, on the other hand, solve a slightly
easier problem at each step, namely Ilhan et al.’s feasibility sub-problem [16]. We
have implemented this new variant of the relaxation algorithm3. Our experimen-
tal study shows that combining the strength of the relaxation method with the
strength of state-of-the-art integer programming methods (used to solve the feasi-
bility sub-problem) yields extremely efficient algorithms. For the discrete case, our
algorithm often outperforms other optimal algorithms; for the continuous case,
our algorithm solves problems which were previously considered too large. We an-
alyze the advantages and disadvantages of relaxation methods compared to other
optimal algorithms. We show that relaxation algorithms are best suited for prob-
lems where the number of demand points (n) is large, while the number of service
points (p) is relatively small (for instance, p < 20).

We report computational results for both the continuous and discrete cases.
In the continuous case, we show that for n = 300 demand points we can solve
problems for any value of p (1 ≤ p ≤ n). Also, a “large” problem with n = 1000 and
p = 10 is solved to optimality. In the discrete case, we solved problems taken from
OR-Lib [2] and TSP-Lib [23] with up to 1817 demand points, and the run-times
were compared to those reached by previous methods.

The rest of the paper is structured as follows. Section 2 explains the principles
of relaxation and presents our own variant. In section 3 we present the results of
our experimental study. Section 4 contains conclusions and open problems.

3Our code is publicly available at http://www.tau.ac.il/~chenr/or_research.html
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2. RELAXATION ALGORITHMS FOR THE P -CENTER PROBLEM

2.1. Theory. Relaxation is a simple method to optimally solve a large location
problem by solving a succession of small sub-problems. Although one cannot
know in advance how many sub-problems need to be solved, once the global op-
timum is reached, it is identified as such. This as opposed to some heuristic
methods which usually yield local minima. Though in the worst case, relaxation
may be very slow, it is usually very efficient.

Chen and Handler [5] adapted the relaxation method to the problem in contin-
uous Euclidean two-dimensional space. In the solution of the p-center problem
there is usually only one circle which is critical in the sense that two or three de-
mand points are on its circumference. There is much freedom in the exact position
of the other circles and therefore, in the location of all but one of the centers. The
value of the solution is determined by the radius of this critical circle, whereas the
radii of the other circles may vary in size below this critical value. Thus, the num-
ber of possible optimal solutions is usually infinite. Chen and Handler [5] proved
a theorem stating that among all the optimal solutions to the minimax problem of
serving n demand points in Euclidean space by p service points, there is at least
one in which all demand points are covered by critical circles, the largest of which
has a radius rp, which is the value of the solution. With the aid of this theorem,
the search can be reduced to a finite number of critical circles.

The number of critical circles to be considered is
(

n
3

)
+

(
n
2

)
+n, where

(
n
3

)
is the number of circles determined by three points on their circumference,

(
n
2

)
is the number of circles defined by two points determining the diameter and n is
the number of null circles; a null circle is a service point located at a demand
point, the former serving only the latter. The number of possible combinations to
cover n points by p critical circles becomes very large when n is large. However,
geometrical considerations associated with a known upper bound and with the
properties of relevant triangles defined by demand points, significantly reduce the
size of the sub-problem to be solved.

The discrete case is slightly simpler. Each critical circle is defined by a single
potential service point and a single demand point. Here too, we can significantly
reduce the size of the sub-problem. We only consider a single circle for each
potential service point: a circle centered at the service point and whose radius is
the distance to the furthest demand point still within the upper bound.

2.2. New Variant. We now explain the changes we made to the relaxation algo-
rithms [13, 5] so as to improve their performance.

The main change that we have made was to utilize Ilhan et al.’s feasibility sub-
problem. Recall (from Algorithm 1) that at each step we need to solve:

Feasible←FINDFEASIBLESOLUTION(Sub, Upper_Bound).

In other words, given a subset of the n demand points, we need to find a feasible
(not necessarily optimal) solution to the relaxed (smaller) p-center problem, with
value less than Upper_Bound. As we have explained, in both the discrete and the
continuous cases, we need only consider a finite number of critical circles in order
to solve the problem. Therefore, our problem is reduced to checking whether, given
a finite set of circles, there exist p circles that cover all of the demand points (in
our relaxed problem).

How is this sub-problem solved? For each circle c we attach a binary vector vc.
The size of each vector is the number of demand points in the relaxed problem.
For each circle c, the value of vc in the position corresponding to demand point i
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is 1 if and only if point i is covered by circle c:

vc(i) =

{
1 circle c covers point i
0 otherwise

.

Finding p circles that cover all demand points is equivalent to finding p vectors
such that their sum is greater than zero in all positions. This is almost exactly
the set-covering problem, which can be stated as “find the minimal number of
vectors whose sum is greater than the 1-vector”. Minieka [20] was the first to
propose using set-covering algorithms to solve the p-center problem. Subroutine
FINDFEASIBLESOLUTION can be implemented by using a set-covering algorithm to
find a minimal set of covering vectors, and checking whether the size of this set is
less or equal to p (to determine whether a feasible solution exists).

Note that although set-covering algorithms return an optimal solution in terms
of the minimal number of vectors, they do not return an optimal solution to the
relaxed p-center problem. This is due to the fact that when we convert our circle-
covering problem to the set-covering problem, we ignore the radius of each circle;
we only take into account which demand points are within each circle. Therefore
such implementation of FINDFEASIBLESOLUTION returns a feasible, not necessarily
optimal, solution to the relaxed p-center problem.

Since we need not solve the relaxed p-center problem to optimality, we can
utilize Ilhan et al.’s feasibility sub-problem [16] and avoid solving the set-covering
problem to optimality. Rather than solving “find the minimal number of vectors
whose sum is greater than the 1-vector”, Ilhan et al. suggest solving a slightly
easier problem, “find a subset of at most p vectors whose sum is greater than
the 1-vector (if such a subset exists)”. Although this problem is also NP-hard,
eliminating the need to find a minimal set of vectors at each stage often improves
the performance of the algorithm.

Chen and Handler [5] proposed to solve the p-center problem by first solving,
optimally, the 1-center, then the 2-center, and eventually the (p−1)-center problem.
The motivation is to start solving the p-center problem when you already have a
reasonably tight upper bound on the solution. It turns out that when using state-
of-the-art algorithms for the set-covering problem (or in our case, the feasibility
sub-problem), this approach hinders, rather than improves, performance. We have
improved performance by starting-off, immediately, solving the p-center problem.

3. EXPERIMENTAL RESULTS

3.1. Methodology. For the discrete p-center problem, we compare the perfor-
mance of our relaxation code to that of Ilhan et al.’s [16], which is, to the best
of our knowledge, the best code currently available for the optimal solution of the
discrete p-center problem. Ilhan et al. use an iterative algorithm which is a variant
of Minieka’s algorithm [20].

Comparing our algorithm to that of Ilhan et al. gives us insight to the strengths
and weaknesses of relaxation, although it should be noted that we made little effort
to optimize either code.

3.2. Experimental Setup. The experiments were conducted on a 3.2 GHz Pen-
tium 4 computer with 2 GB of main memory. The computer runs the Linux 2.6.17.
The code is written in C and compiled using gcc-4.0.

The feasibility sub-problem can be formulated as an Integer Programming prob-
lem4. We used CPLEX version 7.5 [17] for the solution of the Integer Programming
problems. CPLEX implements optimizers based on the simplex algorithms. We

4This is also true for the p-center problem and the set-covering problem.
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FIGURE 1. The performance of Ilhan et al.’s algorithm and our re-
laxation algorithm on a discrete problem with Euclidean distances
(d657.tsp) with n = 657 demand points.
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found that best results are achieved when CPLEX uses the primal Simplex algo-
rithm for our Integer Programming sub-problems.

3.3. Experimental Analysis. Relaxation-based iterative algorithms represent a
different approach to previous optimal iterative algorithms for the discrete p-center
problem, such as those suggested by Ilhan et al. [16], Daskin [8] and Elloumi et
al. [11]. The traditional iterative algorithms update, at each step, an upper or lower
bound on the optimal solution, until the optimal solution is reached.

Roughly speaking, while traditional algorithms need to solve few large problems,
relaxation algorithms need to solve many small problems.

Our experiments show that relaxation is particularly suited for problems with
relatively small values of p (for instance, p < 20). Figure 1 shows the results for
a typical problem; relaxation performs very well for smaller values of p, but as p
grows larger, it loses its advantage over traditional iterative algorithms. The graph
shows the performance of Ilhan et al.’s algorithm and our relaxation algorithm on
problem d657.tsp, taken from TSP-Lib [23], for p = 1, 3, 5, . . . , 39. The figure also
demonstrates that the behavior of both algorithms is rather unpredictable.

For the continuous p-center problem, relaxation enables us to solve problems
which were previously considered too large.

3.3.1. Discrete p-center. Like Ilhan et al. [16], we tested the performance of our
relaxation algorithm on the p-median (pmed) inputs5 from OR-Lib [2]. We have
found that the relaxation algorithm solved the entire 40 problems in 55.02 sec-
onds, whereas Ilhan et al.’s algorithm (the Minieka sub-problem variant) took
83.58 seconds. We get a better understanding of the advantages and disadvan-
tages of relaxation algorithms when we sort the problems by the values of p. We
divided the pmed problems to three: problems with “small” p values (p = 5, 10),
“medium” p values (20 ≤ p ≤ 67), and “large” p values (70 ≤ p ≤ 200). Table 1 sums
up the total running times for the “small”, “medium”, and “large” sets of problems.
For complete information on the performance of relaxation versus Ilhan et al.’s
algorithm on the pmed problems, see the appendix.

5In these problems, the set of demand points and the set of potential service points are the same.
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TABLE 1. Total running times of Ilhan et al.’s algorithm and our
relaxation algorithm on discrete pmed problems.

Ilhan et al. (secs) relaxation (secs)
small 58.73 7.16

medium 5.44 9.46
large 19.41 38.4

TABLE 2. The performance of our relaxation algorithm on large
discrete problems from TSP-Lib. The two rightmost columns are
for the maximal size of a relaxation sub-problem, and the total
number of relaxation sub-problems.

input n p obj
relaxation

(secs)
max prob no. sub

rl1323 1323 5 4543 7.82 119 214
rl1323 1323 10 3077 263.13 390 613
rl1323 1323 15 2347 822.49 593 967
rl1323 1323 20 2016 4866.53 762 1268
rl1323 1323 25 1765 52939.65 836 1452
u1817 1817 5 715 6.4 117 200
u1817 1817 10 458 885.68 475 653
u1817 1817 15 359 50218.35 665 888
u1817 1817 20 309 153036.37 870 1119

TABLE 3. Total running times of Ilhan et al.’s algorithm and our
relaxation algorithm on discrete problems with Euclidean dis-
tances from TSP-Lib.

Ilhan et al. (secs) relaxation (secs)
p = 5 89.82 8.17
p = 10 64.92 48.73
p = 20 120.77 248.9
p = 40 457.61 808.61

Like Elloumi et al. [11], we tested the performance of our relaxation algorithm
on problems rl1323 and u1817 from TSP-Lib [23]. Given the coordinates of the
demand points in the plane, the Euclidean distance is computed and rounded
to the nearest integer for every pair of demand points. Besides running times,
table 2 shows, for each problem, the size of the maximal sub-problem solved by
the relaxation algorithm, and the total number of sub-problems solved by the
relaxation algorithm.

3.3.2. Discrete p-center problems with Euclidean distances. Like Ilhan et al. [16],
we tested the performance of our relaxation algorithm on problems from TSP-
Lib [23]. Table 3 sums up the total running times for p = 5, 10, 20, 40. For more
details on the performance of relaxation versus Ilhan et al.’s algorithm on the TSP-
Lib problems, see the appendix.

3.3.3. Continuous p-center problems with Euclidean distances. Combining the power
of relaxation with a state-of-the-art integer programming software (CPLEX), allows
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FIGURE 2. Running times of relaxation on a random continuous
p-center problem with n = 300.
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us to solve continuous p-center problems which were previously considered too
large.

Figure 2 shows the running times of relaxation on a problem with n = 300
demand points randomly chosen in a square. We solve the problem for p =
5, 10, . . . , 295 service points. For complete information on the performance of re-
laxation on this problem, see the appendix.

As graph 2 shows, when p is sufficiently large, the p-center problem becomes
relatively easy. That is due to the fact that the bounds obtained from feasible
candidate solutions are small enough to rule out most of the critical circles. It is
interesting to note that for p ≥ 16, the size of the maximal relaxation sub-problem
we need to solve is greater than 200, which is not particularly small compared
to n = 300. Relaxation works well in these cases because the earlier stages, when
the sub-problems are small, yield tight bounds on the solution, which simplify the
problems we need to solve as the relaxation subsets become bigger.

We have run our algorithm on a random continuous p-center problem with
n = 1000 and p = 10. After about 27 hours, it has still not reached the solution.
At that point the value of the best candidate solution was 20.292586. We ran the
algorithm again with an initial upper bound of 20.292586; the algorithm solved the
problem to optimality within twelve minutes (the optimal value was 20.001561). This
suggests two things:

• Having a tight upper bound on the solution greatly improves the running
time.

• In problems of this magnitude (n = 1000), once the relaxation sub-problems
become too large, it is a good idea to abandon the current relaxation sub-
set, and to start over with a small new random subset, using the value of
the current candidate solution as an upper bound.

4. CONCLUSIONS AND OPEN PROBLEMS

4.1. Conclusions. Relaxation is a simple method to optimally solve a large loca-
tion problem by solving a succession of small sub-problems.

We presented new variants of relaxation, for the discrete and continuous p-
center problems. We have conducted an experimental study that demonstrated
that these new variants are very efficient. For the discrete case, our algorithm
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often outperforms other optimal algorithms; for the continuous case, the algorithm
solves problems which were previously considered too large.

Our experiments show that relaxation is particularly suited for problems with
small values of p. When p is not very large (for instance, p < 20), we need to solve
relatively few small sub-problems until the optimal solution is reached. As p grows
larger, the number and the size of the sub-problems grow larger too, and relaxation
may lose its advantage over traditional iterative algorithms.

4.2. Open Problems. One remaining question is whether our relaxation algo-
rithms can be improved by applying a heuristic to efficiently find a feasible so-
lution, and thus provide a tight initial upper bound on the solution.

Another open question is whether we can employ Vijay’s method [26] to solve
the reduced problems and improve our relaxation algorithm for the continuous
case.

It would also be interesting to investigate heuristics which determine the points
in time in which it is beneficial to abandon the current relaxation subset (which
could get extremely large), and to start over with a small new random subset, using
the value of the current feasible solution as an upper bound.
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[21] N. Mladenović, M. Labbé, and P. Hansen. Solving the p-center problem with tabu search and variable

neighborhood search. Networks, 42:48–64, 2003.
[22] H. Rademacher and O. Toeplitz. The spanning circle of a finite set of points. In The enjoyment of

mathematics, pages 103–110. Princton University Press, Princeton, NJ, 1957.
[23] G. Reinelt. TSP-Lib. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html .
[24] A. Suzuki and Z. Drezner. The p-center location problem in the area. Location Sci., 4:69–82, 1996.



RELAXATION-BASED OPTIMAL ALGORITHMS FOR THE P -CENTER PROBLEMS 10

[25] C. Toregas, R. Swain, C. ReVelle, and L. Bergmann. The location of emergency service facilities. Oper.
Res., 19:1363–1373, 1971.

[26] J. Vijay. An algorithm for the p-center problem in the plane. Trans. Sci., 19:235–245, 1985.
[27] C. D. T. Watson-Gandy. The multi-facility min-max Weber problem. Eur. J. Oper. Res., 18:44–50,

1984.
[28] H. Wei, A. T. Murray, and N. Xiao. Solving the continuous space p-center problem: Planning applica-

tions issues. IMA J. Manag. Math., 17:413–425, 2006.



RELAXATION-BASED OPTIMAL ALGORITHMS FOR THE P -CENTER PROBLEMS 11

TABLE 4. The performance of Ilhan et al.’s algorithm and our re-
laxation algorithm on discrete problems with “small” values of p.
The two rightmost columns are for the maximal size of a relaxation
sub-problem, and the total number of relaxation sub-problems.

input n p obj
Ilhan et al.

(secs)
relaxation

(secs)
max prob no. sub

pmed1 100 5 127 0.27 0.12 23 51
pmed6 200 5 84 0.38 0.19 23 52
pmed11 300 5 59 0.81 0.19 19 35
pmed16 400 5 47 1.15 0.19 17 33
pmed21 500 5 40 1.82 0.45 27 48
pmed26 600 5 38 4.35 0.23 21 36
pmed31 700 5 30 3.86 0.27 24 39
pmed35 800 5 30 4.88 0.17 14 25
pmed38 900 5 29 7.75 0.25 18 36
pmed2 100 10 98 0.11 0.27 38 96
pmed3 100 10 93 0.09 0.3 38 107
pmed7 200 10 64 0.25 0.24 30 66
pmed12 300 10 51 0.68 0.28 33 64
pmed17 400 10 39 1.18 0.5 45 72
pmed22 500 10 38 2.54 1.36 57 87
pmed27 600 10 32 3.42 0.34 34 52
pmed32 700 10 29 11.01 0.59 41 59
pmed36 800 10 27 5.33 0.78 46 61
pmed39 900 10 23 8.85 0.44 35 49

APPENDIX A. TABLES

A.1. Discrete p-center problems. Tables 4, 5 and 6 show the performance of
relaxation versus Ilhan et al.’s algorithm for problems with “small”, “medium”, and
“large” values of p respectively. The input files are taken from OR-Lib [2]. Besides
running times, the tables show, for each problem, the size of the maximal sub-
problem solved by the relaxation algorithm, and the total number of sub-problems
solved by the relaxation algorithm.

A.2. Discrete p-center problems with Euclidean distances. Table 7 shows the
performance of relaxation versus Ilhan et al.’s algorithm on discrete p-center prob-
lems with Euclidean distances. The input files are taken from TSP-Lib [23].

A.3. Continuous p-center problems with Euclidean distances. Table 8 shows
the performance of our relaxation algorithm on a random continuous p-center
problem with n = 300 demand points.
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TABLE 5. The performance of Ilhan et al.’s algorithm and our re-
laxation algorithm on discrete problems with “medium” values
of p.

input n p obj
Ilhan et al.

(secs)
relaxation

(secs)
max prob no. sub

pmed4 100 20 74 0.08 0.32 48 142
pmed8 200 20 55 0.18 0.37 58 121
pmed13 300 30 36 0.4 0.7 77 124
pmed5 100 33 48 0.08 0.37 50 147
pmed9 200 40 37 0.17 0.57 84 156
pmed18 400 40 28 0.74 1.21 118 158
pmed23 500 50 22 0.89 2.4 153 194
pmed14 300 60 26 0.3 1.11 136 203
pmed28 600 60 18 2.49 1.77 163 192
pmed10 200 67 20 0.11 0.64 97 170

TABLE 6. The performance of Ilhan et al.’s algorithm and our re-
laxation algorithm on discrete problems with “large” values of p.

input n p obj
Ilhan et al.

(secs)
relaxation

(secs)
max prob no. sub

pmed33 700 70 15 3.92 3.42 222 250
pmed19 400 80 18 0.38 2.06 188 233
pmed37 800 80 15 3.49 3.81 245 276
pmed40 900 90 13 7.11 7.2 314 344
pmed15 300 100 18 0.23 1.16 155 223
pmed24 500 100 15 0.61 2.77 206 253
pmed29 600 120 13 0.8 3.01 264 300
pmed20 400 133 13 0.35 2.68 244 301
pmed34 700 140 11 1.24 3.76 284 327
pmed25 500 167 11 0.55 3.52 262 312
pmed30 600 200 9 0.73 5.01 357 409
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TABLE 7. The performance of Ilhan et al.’s algorithm and our re-
laxation algorithm on discrete p-center problems with Euclidean
distances.

input n p obj
Ilhan et al.

(secs)
relaxation

(secs)
max prob no. sub

kroA200.tsp 200 5 911.412091 0.29 0.36 43 89
kroB200.tsp 200 5 897.669204 0.39 0.24 30 80
gr202.tsp 202 5 19.384514 12.23 0.1 11 38
pr226.tsp 226 5 3720.551034 0.7 0.41 27 102
pr264.tsp 264 5 1610.124219 0.42 0.16 15 46
pr299.tsp 299 5 1336.272801 0.71 0.95 58 160
lin318.tsp 318 5 1101.339639 0.66 0.58 37 94
pr439.tsp 439 5 3196.580204 1.71 0.71 35 85
pcb442.tsp 442 5 1024.74387 2.32 1.79 87 159
d493.tsp 493 5 752.908474 14.75 0.77 38 80
d657.tsp 657 5 880.908537 55.64 2.1 70 175
kroA200.tsp 200 10 598.819672 0.37 1.19 92 209
kroB200.tsp 200 10 582.103943 0.35 1.69 111 256
gr202.tsp 202 10 9.334002 10.67 0.39 38 105
pr226.tsp 226 10 2326.478025 0.21 0.5 34 141
pr264.tsp 264 10 850 0.31 0.46 35 104
pr299.tsp 299 10 888.835755 0.84 2.05 114 252
lin318.tsp 318 10 743.210603 0.52 2.32 106 244
pr439.tsp 439 10 1971.832904 1.39 1.49 64 160
pcb442.tsp 442 10 670.820393 3.57 9.5 194 302
d493.tsp 493 10 458.304571 13.16 2.97 95 228
d657.tsp 657 10 574.744682 33.53 26.17 223 404
kroA200.tsp 200 20 389.307077 0.21 1.9 129 367
kroB200.tsp 200 20 382.280002 0.79 2.23 139 415
gr202.tsp 202 20 5.56569 9.08 1.29 99 286
pr226.tsp 226 20 1365.650028 0.27 0.68 49 185
pr264.tsp 264 20 514.781507 0.28 0.87 80 175
pr299.tsp 299 20 559.016994 0.43 3.58 171 429
lin318.tsp 318 20 496.452415 0.4 2.65 129 352
pr439.tsp 439 20 1185.59057 0.99 2.65 107 286
pcb442.tsp 442 20 447.213595 1.73 16.65 286 471
d493.tsp 493 20 312.744896 55.73 12.47 199 454
d657.tsp 657 20 374.7 50.86 203.93 446 894
kroA200.tsp 200 40 258.259559 0.2 2.68 150 555
kroB200.tsp 200 40 253.237043 0.19 2.89 157 584
gr202.tsp 202 40 2.971363 7.01 2.93 157 564
pr226.tsp 226 40 650 0.21 1.13 91 275
pr264.tsp 264 40 316.227766 20.64 443.51 172 284
pr299.tsp 299 40 355.31676 0.35 4.2 215 567
lin318.tsp 318 40 315.919293 0.66 5.66 188 531
pr439.tsp 439 40 671.751442 0.99 6.92 227 575
pcb442.tsp 442 40 316.227766 140.48 13.1 318 560
d493.tsp 493 40 206.015655 2.03 17.94 321 781
d657.tsp 657 40 249.51541 284.85 307.65 530 1320
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TABLE 8. The performance of our relaxation algorithm on a ran-
dom continuous p-center problem with n = 300 demand points.

p obj relaxation (secs) max prob no. sub
5 28.422647 1.37 54 88
10 18.772435 117.35 143 220
15 14.465007 233.42 193 301
20 12.192055 1318.11 236 393
25 10.48132 589.28 252 414
30 9.251168 324.95 264 429
35 8.402865 256.11 266 437
40 7.683381 255.31 271 464
45 7.135402 236.86 275 497
50 6.429138 141.35 282 496
55 6.027485 174.23 281 529
60 5.622641 110.45 284 514
65 5.241039 121.69 286 539
70 4.943647 96.94 286 538
75 4.701547 108.66 290 575
80 4.521751 89.6 285 551
85 4.226306 102.29 288 603
90 4.087438 86.77 289 582
95 3.789379 79.97 287 568
100 3.593477 87.73 285 608
105 3.505622 89.29 296 592
110 3.395071 84.73 292 588
115 3.305871 90.23 293 658
120 3.159556 96.07 293 691
125 3.049413 98.83 294 684
130 2.936309 97.13 296 679
135 2.819311 92.42 294 665
140 2.745859 95.8 294 679
145 2.575867 112.43 297 745
150 2.464594 106.62 297 721
155 2.39577 116.26 297 764
160 2.34536 115.73 297 762
165 2.304482 118.92 297 819
170 2.195573 118.99 297 814
175 2.133524 114.46 296 818
180 2.024234 120.55 297 829
185 1.932473 125.02 297 851
190 1.834879 124.79 297 847
195 1.759475 124.44 297 846
200 1.639179 119.95 298 837
205 1.598125 133.63 299 885
210 1.53924 125.11 298 869
215 1.472276 124.68 297 874
220 1.436264 127.07 297 882
225 1.406136 131.73 299 890
230 1.336306 132.94 299 893
235 1.281722 140.46 299 926
240 1.228482 138.9 299 937
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p obj relaxation (secs) max prob no. sub
245 1.135185 150.61 299 977
250 1.095122 134.79 298 945
255 0.993977 136 298 949
260 0.932198 143.69 300 960
265 0.864703 140.1 299 946
270 0.804964 145.64 300 969
275 0.718482 142.42 300 953
280 0.685738 144.15 299 987
285 0.525316 141.82 300 1000
290 0.405084 130.82 300 964
295 0.310794 133.4 300 985


