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a b s t r a c t

Optically stimulated luminescence (OSL) signals can be obtained using a time-resolved optical

stimulation (TR-OSL) method, also known as pulsed OSL. During TR-OSL measurements, the stimulation

and emission of luminescence are experimentally separated in time using short light pulses. This paper

presents analytical expressions for the TR-OSL intensity observed during and after such a pulse in

quartz experiments. The analytical expressions are derived using a recently published kinetic model

which describes thermal quenching phenomena in quartz samples. In addition, analytical expressions

are derived for the concentration of electrons in the conduction band during and after the TR-OSL pulse,

and for the maximum signals attained during optical stimulation of the samples. The relevance of the

model for dosimetric applications is examined, by studying the dependence of the maximum TR-OSL

signals on the degree of initial trap filling, and also on the probability of electron retrapping into the

dosimetric trap. Analytical expressions are derived for two characteristic times of the TR-OSL

mechanism; these times are the relaxation time for electrons in the conduction band, and the

corresponding relaxation time for the radiative transition within the luminescence center. The former

relaxation time is found to depend on several experimental parameters, while the latter relaxation time

depends only on internal parameters characteristic of the recombination center. These differences

between the two relaxation times can be explained by the presence of localized and delocalized

transitions in the quartz sample. The analytical expressions in this paper are shown to be equivalent to

previous analytical expressions derived using a different mathematical approach. A description of

thermal quenching processes in quartz based on AlO4
�/AlO4 defects is presented, which illustrates the

connection between the different descriptions of the luminescence process found in the literature.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction—time resolved luminescence experiments in
quartz

The technique of time-resolved optically stimulated lumines-
cence (TR-OSL) is an important experimental tool for studying
relaxation phenomena in a variety of materials. During the past
decade, extensive TR-OSL measurements have been carried out
using samples of both quartz and feldspars, due to the importance
of these materials in dating and retrospective dosimetry applica-
tions ([1–8]). During TR-OSL measurements the stimulation is
carried out with a brief light pulse, and photons are recorded
based on their arrival at the luminescence detector with respect
to the light pulse. Summing signals from several pulses gives rise
to a typical TR-OSL curve that shows the buildup of luminescence

during the pulse and the subsequent decrease when the optical
stimulation is turned off. The decaying luminescence signal
immediately following any light pulse is commonly analyzed
using the linear sum of exponential decays, and can therefore
be characterized using decay constant(s) or luminescence life-
time(s). The main advantage of TR-OSL over continuous-wave
optically stimulated luminescence (CW-OSL) measurements is
that it allows study of recombination and/or relaxation pathways
in the material, and therefore provides an important information
on the underlying luminescence mechanisms.

Several researchers have studied the temperature dependence
of luminescence lifetimes and luminescence intensity from time-
resolved luminescence experiments in quartz (see for example,
Refs. [9–13] and references therein). Luminescence lifetimes for
unannealed sedimentary quartz are typically found to remain
constant at �42 ms for stimulation temperatures between 20 and
100 1C, and then to decrease continuously to �8 ms at 200 1C.
These phenomena are usually described within the framework of
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thermal quenching of luminescence in quartz, which has been
well-known for several decades. Thermal quenching has also been
observed in both thermoluminescence (TL) and optically stimu-
lated luminescence (OSL) experiments on quartz ([14,15]), and is
commonly described using the Mott–Seitz mechanism (see for
example Refs. [16–18], and references therein).

Recently Pagonis et al. [19] published a new kinetic model for
thermal quenching in quartz, which is based on the Mott–Seitz
mechanism. In this model all recombination transitions are
localized within the recombination center (in contrast to deloca-
lized models in which all charge transitions take place to or from
the conduction and valence bands—e.g. Ref. [18]).

The purpose of this paper is to present analytical expressions
for the luminescence intensity observed during and after the
short pulses used during a TR-OSL experiment. These analytical
expressions are obtained from the recent model of Pagonis et al.
[19], by assuming that the traps are well below saturation. In
addition, analytical expressions are derived for the concentration
of electrons in the conduction band during and after the TR-OSL
pulse, and for the maximum signals attained during optical
stimulation of the samples. The relevance of the model for
dosimetric applications is examined, by studying the dependence
of the maximum TR-OSL signals on the degree of initial trap filling
and on the probability of electron retrapping into the dosimetric
trap. Finally, the expressions derived in this paper are shown to be
equivalent to published analytical expressions previously derived
using a completely different physical approach (Chithambo [12]).

2. Recent modeling of thermal quenching in quartz

Pagonis et al. [19] presented a numerical model for thermal
quenching in quartz based on the Mott–Seitz mechanism. The
model involves electronic transitions between energy states within
the recombination center, and is used in this work to derive
analytical expressions for the TR-OSL process in quartz. The Mott–
Seitz mechanism is usually shown schematically using a configura-
tional diagram as in Fig. 1a, and consists of an excited state of the
recombination center and the corresponding ground state. In this
mechanism, electrons are captured into an excited state of the
recombination center, from which they can undergo either one of
two competing transitions. The first transition is a direct radiative
recombination route resulting in the emission of light and is shown
as a vertical arrow in Fig. 1a. The second route is an indirect
thermally assisted non-radiative transition into the ground state
of the recombination center; the activation energy W for this non-
radiative process is also shown in Fig. 1a. The energy given up in the
non-radiative recombination is absorbed by the crystal as heat,
rather than being emitted as photons. One of the main assumptions
of the Mott-Seitz mechanism is that the radiative and non-radiative
processes compete within the confines of the recombination center,
hence they are referred to as localized transitions.

Fig. 1b shows the energy level diagram corresponding to the
model. The arrows in Fig. 1b indicate the electronic transitions
which are likely to be taking place during a typical TR-OSL
experiment. This simplified model consists of an optically sensi-
tive electron trap referred to in this paper as the dosimetric trap
and shown as level 1, and several additional levels labeled 2–4
representing energy states within the recombination center.
During the transition labeled 1, electrons from the dosimetric
trap are raised by optical stimulation into the conduction band
(CB), with some of these electrons being retrapped with a
probability An as shown in transition 2. Transition 3 corresponds
to an electronic transition from the CB into the excited state
located below the conduction band, with probability ACB. Transi-
tion 5 indicates the direct radiative transition from the excited

level into the ground electronic state with probability AR, and
transition 4 indicates the competing thermally assisted route. The
probability for this competing thermally assisted process (transi-
tion 4) is given by a Boltzmann factor of the form ANR exp
(�W/kBT), where W represents the activation energy for this
process, and ANR is a constant representing the non-radiative
transition probability. Transition 6 denotes the non-radiative
process into the ground state. The details of the non-radiative
process in the model are not important for the purposes of this
paper; what is critical in determining the thermal quenching
effects is the ratio of the non-radiative and radiative probabilities
ANR/AR, and the value of the thermal activation energy W.

Thermal quenching within this model is caused by the com-
peting transitions 4 and 5 in Fig. 1b. As the temperature of the
sample is increased, electrons are removed from the excited state
level 2 to the excited state level 3 according to the Boltzmann
factor described above. This transition (level 2- level 3) leads to
both a decrease of the intensity of the luminescence signal, and to
a simultaneous decrease of the luminescence lifetime with
increasing stimulating temperature.

The parameters used in the model are defined as follows; N1 is
the total concentration of dosimetric traps (cm�3), n1 is the
corresponding concentration of trapped electrons (cm�3), N2 is
the total concentration of luminescence centers and N2�n2 is the
corresponding concentration of activated luminescence centers
(cm�3). A detailed discussion of the connection between the
electronic concentrations n2, N2�n2, N2 and the concentrations
of specific defects in quartz is presented in Section 6 of this paper.

W¼0.64 eV is the activation energy for the thermally assisted
process (eV), An is the conduction band to dosimetric electron trap
transition probability coefficient (cm3 s�1), AR and ANR are the
radiative and non-radiative transition probability coefficients
(s�1), respectively, and ACB is the transition probability coefficient
(cm3 s�1) for the conduction band to excited state transition. The
parameter nc represents the instantaneous concentration of elec-
trons in the conduction band (cm�3) and P denotes the probability
of optical excitation of electrons from the dosimetric trap (s�1).

The equations used in the model are as follows:

dn1

dt
¼ ncðN1�n1ÞAn�n1P, ð1Þ

dnc

dt
¼�ncðN1�n1ÞAnþn1P�ACBncðN2�n2Þ, ð2Þ

dn2

dt
¼ ACBncðN2�n2Þ�ARn2�n2ANRexpð�W=kBTÞ: ð3Þ

The instantaneous luminescence I(t) resulting from the radiative
transition is defined as

IðtÞ ¼ ARn2: ð4Þ

It is noted that transitions 4, 5 and 6 in Fig. 1b are of a localized
nature, while transition 3 involves electrons in the CB and hence
is of a delocalized nature. The difference in the nature of these
transitions can also be seen in their mathematical forms in
Eqs. (1)–(4). The term ACBnc(N2�n2) in Eqs. (2) and (3) expresses
the fact that there are N2�n2 empty electronic states available for
electrons from the CB; these are excited states of the recombina-
tion center, in agreement with the general assumptions of the
Mott–Seitz mechanism of thermal quenching.

The values of the parameters used in the model of Pagonis
et al. [19] are as follows:

An¼5�10�10 cm3 s�1, AR¼1/42 ms¼2.38�104 s�1, ACB¼10�8

cm3 s�1, P¼0.2 s�1, ANR¼1.3�1011 s�1, N1¼1014 cm�3, N2¼

1014 cm�3, and W¼0.64 eV. The initial conditions for the different
concentrations in the model are taken as: n1(0)¼9�1013 cm�3,
n2(0)¼0, nc(0)¼0.
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The value of the delocalized transition probability ACB was
chosen in the model of Pagonis et al. [19], so that the conduction
band empties quickly during the TR-OSL experiment after the
optical stimulation is turned off, on a time scale of �1 ms. On the
other hand, the value of the radiative transition probability AR¼

1/42 ms¼2.38�104 s�1 was chosen so that the excited states (n2)
empty much slower during the TR-OSL experiment, and also so
that it corresponds to the experimentally observed quartz lumi-
nescence lifetime of t¼42 ms at room temperature.

3. Derivation of the analytical expressions

In this section it is shown that the system of Eqs. (1)–(4) can be
solved analytically by assuming that the electron traps (levels

1 and 2 in Fig. 1b), are away from saturation. No other assump-
tions or approximations are necessary for deriving these analy-
tical equations within the model. Analytical expressions will be
derived for the luminescence intensity I(t) and for the concentra-
tions n2(t) and nc(t) during and after the TR-OSL pulse.

3.1. Analytical expressions for the electron concentration nc(t)

We begin by deriving analytical equations for the concentra-
tion of electrons nc(t) in the CB as a function of time. During a
TR-OSL experiment it is assumed that a small number of electrons
are raised into the CB by optical excitation of the dosimetric trap. It
is then reasonable to assume that during and after a TR-OSL pulse,
the concentration of electrons in the dosimetric trap n1(t) does
not change significantly; one can then approximate n1(t)En1(0),

Fig. 1. (a) Configurational diagram for quartz, based on the Mott–Seitz mechanism of thermal quenching and (b) kinetic model of Pagonis et al. [19] for thermal quenching

in quartz, based on the Mott–Seitz mechanism.
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where n1(0) is the value of n1(t) at the beginning of the TR-OSL
experiment. We further assume that both electron traps n1 and n2

are far from saturation, i.e. n25N2 and n15N1. With these
reasonable physical assumptions, Eq. (2) yields:

dnc

dt
¼�ncðN1�n1ÞAnþn1P�ACBncðN2�n2Þ

��ncðN1�n1ð0ÞÞAnþn1ð0ÞP�ACBncN2: ð5Þ

This can be rearranged to yield a first order differential equation
for nc(t):

dnc

dt
¼�nc AnðN1�n1ð0ÞÞþACBN2½ �þn1ð0ÞP: ð6Þ

The solution of this first order equation is given by:

ncðtÞ ¼
n1ð0ÞP

AnðN1�n1ð0ÞÞþACBN2
1�e�½AnðN1�n1ð0ÞÞþACBN2 �t
� �

for 0ototo ðduring pulseÞ, ð7Þ

where to represents the pulse width. Eq. (7) tells us that during a
TR-OSL pulse the concentration of electrons nc in the CB will grow
exponentially, and will reach an equilibrium value. The charac-
teristic time tnc for the increasing concentration nc(t) during the
pulse is found by inspection of Eq. (7), and is given by:

tnc ¼
1

AnðN1�n1ð0ÞÞþACBN2
: ð8Þ

This characteristic time tnc depends on the parameters An, N1,
n1(0), N2 and ACB in the model; this is discussed in some detail in a
subsequent section of the paper. The equilibrium value (nc)EQ

reached by nc during the TR-OSL pulse, is found by setting t-N

in Eq. (7) to obtain the following expression:

ðncÞEQ �
n1ð0ÞP

AnðN1�n1ð0ÞÞþACBN2
: ð9Þ

This equilibrium value of nc will be reached within a time interval
of �5 characteristic times tnc, and nc will remain constant after
this initial transient time. As mentioned previously, the values of
the parameters in the model of Pagonis et al. [19] were chosen so
that this characteristic time has a value of tnc¼1/[An(N1�n1(0))
þACBN2]¼1 ms. The equilibrium value of (nc)EQ in Eq. (9) depends
on the parameters P, An, N1, n1(0), N2 and ACB in the model; this is
also discussed later in this paper.

The corresponding solution nc(t) after the end of the optical
stimulation, i.e. when the LED is turned OFF, is obtained by setting
P¼0 into Eq. (6) to obtain:

dnc

dt
¼�nc AnðN1�n1ð0ÞÞþACBN2½ �: ð10Þ

The solution of this equation is a simple decaying exponential of
the form:

ncðtÞ ¼ ncðtoÞe
�½AnðN1�n1ð0ÞÞþACBN2 �ðt�toÞ for t4to ðafter pulseÞ, ð11Þ

where nc(to) represents the concentration nc at the end of the
TR-OSL pulse of duration to. The value nc(to) can be obtained easily
from Eq. (7) by setting t¼to. Eq. (11) shows that the concentration
nc(t) after the end of the optical stimulation will decay with the
same characteristic time tnc given by Eq. (8).

Eqs. (7) and (11) express the time variation of the concentra-
tion of electrons in the CB during and after the short optical
stimulation pulse, respectively. These concentrations nc(t) can in
principle be measured simultaneously with the intensity of the
TR-OSL signal, by recording the optically stimulated conductivity
of the quartz sample. Although such TR-OSL conductivity mea-
surements have not been reported in the literature for quartz, the
results of the model suggest that their measurement could provide
important information for the charge movement in quartz samples.

3.2. Analytical expressions for the electron concentration n2(t)

One can also obtain analytical expressions for the concentra-
tion n2(t) of electrons in the excited state of the recombination
center, as follows. As discussed above, after a short initial time
interval of the order of �1 ms, the concentration of electrons in
the CB during the optical stimulation will remain constant, and
equal to the quasistatic equilibrium value (nc)EQ given by Eq. (9).
By substituting the constant value (nc)EQ from Eq. (9) into Eq. (3)
and using n25N2, one obtains:

dn2

dt
¼ ACBncðN2�n2Þ�n2ðARþANRexpð�W=kTÞÞ

�
n1ð0ÞPACBN2

AnðN1�n1ð0ÞÞþACBN2
�n2ðARþANRexpð�W=kTÞÞ

¼ f�n2ðARþANRexpð�W=kTÞÞ, ð12Þ

where the constant f is defined by:

f ¼
n1ð0ÞPACBN2

AnðN1�n1ð0ÞÞþACBN2
: ð13Þ

The solution of the first order differential Eq. (12) is a saturating
exponential of the form:

n2ðtÞ ¼
f

ARþANR expð�W=kTÞ
ð1�e�½ARþANRexpð�W=kTÞ�tÞ

for 0ototo ðduring pulseÞ, ð14Þ

where to represents the pulse width.
The corresponding solution n2(t) after the end of the light

pulse, i.e. when the LED is turned OFF, is obtained by setting P¼0
and f¼0 into Eq. (12) to obtain:

dn2

dt
¼�n2ðARþANRexpð�W=kTÞÞ: ð15Þ

The solution of this equation is a simple decaying exponential of
the form:

n2ðtÞ ¼ n2ðtoÞe
�½ARþANRexpð�W=kTÞ�ðt�toÞ for t4to ðafter pulseÞ, ð16Þ

where as previously to is the pulse width, and n2(to) represents
the concentration of n2 at the end of the TR-OSL pulse. Eqs. (14)
and (16) are the desired analytical expressions for the concentra-
tion n2(t) during and after the short optical pulse.

3.3. Analytical expressions for the luminescence intensity I(t)

By combining Eqs. (4), (14) and (16) we obtain analytical
expressions for the luminescence intensity I(t) measured during
and after the TR-OSL pulse:

IðtÞ ¼ AR
f

ARþANRexpð�W=kTÞ
ð1�e�½ARþANRexpð�W=kTÞ�tÞ

for 0ototo ðduring pulseÞ, ð17Þ

IðtÞ ¼ ARn2ðtoÞe
�½ARþANRexpð�W=kTÞ�ðt�toÞ

for t4to ðafter pulseÞ: ð18Þ

Eqs. (17) and (18) express the time-dependence of the lumines-
cence intensity during the two stages of the TR-OSL experiment.
These two equations agree with experimental results showing
that the TR-OSL intensity for quartz during the stimulating light
pulse can be described as a saturating exponential, while I(t) after
the stimulation light pulse is found to be a decaying simple
exponential function.

From Eq. (17) we can find the maximum intensity Imax reached
by the luminescence signal during the optical stimulations by
setting t-N:

Imax ¼ AR
f

ARþANRexpð�W=kTÞ
: ð19Þ
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From Eqs. (17) and (18) we also find that the relaxation time for
electrons from the excited into the ground state of the recombi-
nation center is:

t¼ 1

ARþANRexp �W=kT
� � ¼ 1=AR

1þ ANR

AR
exp �W=kT

� � : ð20Þ

This expression is of the same form as the following empiri-
cally derived equation for the luminescence lifetime of quartz as a
function of the stimulation temperature T:

t¼ to

1þCexpð�W=kTÞ
, ð21Þ

where to is the experimental lifetime for the radiative recombi-
nation process in the material at low temperatures, and C is an
empirical dimensionless parameter. As the temperature T of the
sample is increased during the optical stimulation, the lifetime
t(T) of the electrons decreases according to Eq. (20). By comparing
Eqs. (20) and (21) we find that the luminescence lifetime at low
temperatures is given by

to ¼
1

AR
¼

1

2:38� 104 s�1
¼ 42 ms ð22Þ

and that the empirical dimensionless constant C is given by:

C ¼
ANR

AR
¼

1:3� 1011 s�1

2:38� 104 s�1
¼ 0:55� 107: ð23Þ

The expression in Eq. (23) for the empirical constant C is also
consistent with the original Mott–Seitz formulation, in which
C represents the ratio of non-radiative probability ANR over the
radiative recombination probability AR (see the discussion in
Pagonis et al. [19]). It should also be noted that in some previous
studies (e.g. Chithambo [12], Akselrod et al. [20]), the parameter C

was expressed as a product of two parameters n and tR, i.e. C¼ntR.
In these previous studies n was defined as the frequency factor
applicable to the non-radiative process and tR as the radiative
lifetime at absolute zero. This previous description is consistent
with the formulation in Eq. (23), where the corresponding para-
meters can now be identified as n¼ANR and tR¼1/AR.

Another physical result from the model can be found by
inspection of Eq. (19), in which the maximum intensity during
the optical pulse is found to be:

Imax ¼ AR
f

ARþANRexpð�W=kTÞ
¼

f

1þðANR=ARÞexpð�W=kTÞ

¼
f

1þCexpð�W=kTÞ
: ð24Þ

This expression is of the same form as the following empirically
derived equation for the maximum luminescence intensity as a
function of the stimulation temperature T:

Imax ¼
Io

1þCexpð�W=kTÞ
, ð25Þ

where Io is the experimental luminescence at low temperatures
(see for example Ref. [19]). As the stimulation temperature T of
the sample is increased during the optical stimulation, the
maximum intensity Imax decreases according to Eq. (25).

4. Comparison of analytical expressions and simulated results

The calculated values of I(t) and nc(t) using the analytical
expressions (7), (11), (17) and (18) are shown in Fig. 2, together
with the exact numerical solutions of the system of Eqs. (1)–(4).
The agreement between the analytical and numerical solutions in
Fig. 2 can be seen to be very good. One can also check numerically
the quasistatic equilibrium values reached by the various concen-
trations during the TR-OSL experiment. The quasistatic equilibrium

value for free electrons in the conduction band is given by Eq. (9):

ðncÞEQ �
n1ð0ÞP

AnðN1�n1ð0ÞÞþACBN2
¼ 1:8� 107 cm�3: ð26Þ

This equilibrium value of nc is in close agreement with the values
shown in Fig. 2b.

Similarly, the asymptotic luminescence Imax reached by the
luminescence signal I(t) can be found from Eq. (24):

Imax ¼ AR
f

ARþANRexpð�W=kTÞ
: ð27Þ

At room temperature the term ANRexp �W=kT
� �

is negligible
compared to the probability AR, and this equation combined with
Eq. (13) gives

ðImaxÞRT � f ¼
n1ð0ÞPACBN2

AnðN1�n1ð0ÞÞþACBN2
: ð28Þ

By inserting the numerical values of the parameters we find

ðImaxÞRT � f ¼ 1:8� 1013 cm�3: ð29Þ

This asymptotic value of the intensity is in close agreement with
the value shown in Fig. 2a.
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Fig. 2. Simulated results for (a) the luminescence intensity I(t) and (b) the

concentration nc(t) of electrons in the conduction band, during and after a

TR-OSL pulse. The analytical expressions (7), (11), (17) and (18) are shown

together with the exact numerical solutions of the system of Eqs. (1)–(4). The

agreement between the analytical and numerical solutions can be seen to be very

good. A break is introduced on the time-axis, so that the details of the graph can be

better seen.
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4.1. Discussion of Eq. (8)

It is also instructive to examine how the characteristic time tnc

in Eq. (8) depends on the parameters of the model, namely
parameters An, N1, n1(0), N2 and ACB. On the basis of the numerical
values of these parameters used in Pagonis et al. [19], the
retrapping term nc(N1�n1)An in Eq. (1) is much smaller than the
optical excitation term n1P in the same equation. Under these
conditions Eq. (8) can be approximated as:

tnc �
1

ACBN2
: ð30Þ

This equation indicates that the characteristic time tnc for
electrons in the conduction band will be inversely proportional
to the total concentration of recombination centers N2 in the
sample. We have carried out simulations by varying the value of
N2, while all other parameters in the model are kept fixed. The
results of these simulations are shown in Fig. 3, in which the
concentration nc(t) after the end of the optical stimulation is
plotted for several values of N2. As the value of N2 is increased, the
concentration nc(t) can be seen in Fig. 3 to decay faster. The inset
of Fig. 3 shows the characteristic time tnc obtained by fitting
exponential decay curves to the simulated data. The dashed line
in the inset shows the values of tnc calculated from Eq. (8),
showing a very good agreement between the simulations and the
analytical equation.

4.2. The effect of retrapping: simulations varying the initial

concentration of dosimetric traps n1(0)

From an experimental point of view, the easiest controllable
parameter is the initial concentration of electrons in the dosi-
metric trap n1(0). The value of n1(0) clearly depends on the
irradiation and thermal history of the sample. For a freshly
annealed and irradiated sample, the value of n1(0) is in many
situations proportional to the irradiation dose D received by the
freshly annealed sample immediately before the TR-OSL experi-
ment. As seen in Eqs. (8) and (28), the value of the initial
concentration of electrons in the dosimetric trap n1(0) will affect
two quantities which can be evaluated experimentally, namely

the maximum TR-OSL intensity Imax, and the characteristic life-
time tnc for electrons in the conduction band.

Two different cases are considered next, depending on the
value of the probability An of electron retrapping from the
conduction band into the dosimetric trap.

4.2.1. Case #1: negligible retrapping in the dosimetric trap

We have carried out simulations by varying the degree of
trap filling of the dosimetric trap, which is expressed by the ratio
n1(0)/N1. During these simulations, all parameters are kept fixed as
previously, and the value of n1(0)/N1 is varied from 0 (empty
dosimetric traps) to 1 (completely filled traps). The results from the
simulations are shown as solid circles in Fig. 4, using the original
values of the parameters in the model of Pagonis et al. [19].

In the case of quartz samples, the numerical values in the
model are such that the retrapping term nc(N1�n1)An in Eq. (1) is
much smaller than the optical excitation term n1P in the same
equation. Under these conditions the maximum intensity of the
TR-OSL signal during the optical stimulation at room temperature
will be found from Eq. (28), by dropping the term An(N1�n1(0)) in
the denominator:

ðImaxÞRT ¼
n1ð0ÞPACBN2

AnðN1�n1ð0ÞÞþACBN2
� n1ð0ÞP: ð31Þ

This equation tells us that within the parameters of the current
model, the maximum intensity Imax will be strictly proportional to
the initial concentration of electrons in the dosimetric trap n1(0),
and will also be independent of the concentrations N1 and N2.
Therefore any experimentally observed deviations of Imax from
linearity with the irradiation dose, could be indicative of strong
retrapping of electrons from the conduction band into the dosi-
metric trap. The case of strong retrapping is discussed next.

4.2.2. Case #2: strong retrapping into the dosimetric trap

While the effect of retrapping may be very small for quartz
samples for most cases, it may be significant for other materials in
which the retrapping term nc(N1�n1)An becomes comparable in
magnitude to the optical excitation term n1P in Eq. (1). An
example of simulated Imax vs. the trap occupancy n1(0) is shown
as open circles and triangles in Fig. 4. The parameters in the
simulation of Fig. 4 are such that the retrapping probability An is
allowed to vary over several orders of magnitude, from its initial
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value of An ¼ 5� 10�14 cm3s�1, up to a value of An ¼ 5� 10�8

cm3s�1. The simulated results of Fig. 4 show that in the case of
strong retrapping, a nonlinear behavior of Imax is observed as a
function of the trap occupancy n1(0).

When the dosimetric trap is completely filled at the beginning
of the TR-OSL experiment (n10/N1¼1), Eq. (31) indicates that the
value of Imax is equal to Imaxð ÞRT ¼ n1ð0ÞP, independently of the
amount of retrapping. This is in agreement with the simulated
results in Fig. 4, in which the three simulated curves converge at
the point n10/N1¼1.

The presence of retrapping will also affect the relaxation time
of the concentration nc(t). In Fig. 5 we show this concentration
nc(t) as a function time, for different degrees of initial trap filling
n1(0)/N1. The inset of Fig. 5 shows the characteristic time tnc

calculated from fitting decaying exponentials to this simulated
data. As the value of the ratio n1(0)/N1 is increased, nc(t) can be
seen to decay slower with time, and the corresponding time tnc

increases from �0.5 ms for almost empty traps, to a value of
�1 ms for completely filled traps.

In general, the total concentrations N1 and N2 appearing in the
analytical equations in this paper will also be sample dependent,
and they are physical characteristics of the dosimetric trap and of
the recombination center correspondingly. One would therefore
expect that these total concentrations depend on the type of
quartz samples under consideration. For example, the concentra-
tion of recombination centers N2 will also depend on the thermal
annealing history of the sample. Specifically as a quartz sample is
annealed gradually from room temperature to high temperatures
above 600 1C, the value of N2 most likely will decrease with the
annealing temperature, due to a redistribution of holes among
the multiple recombination centers known to exist in quartz (see
for example the discussion in Refs. [9,21,22]).

The results in this section were concerned with the depen-
dence the maximum TR-OSL on the trap occupancy, rather than
with the dose received by the sample. However the trap occu-
pancy may not be linear with dose, and in fact can be expected
to reach saturation at high doses. The overall dependence of the
TR-OSL signal on the dose will arise from the combined effect of
these two dependencies.

In this section we investigated the ‘‘maximum TR-OSL inten-
sity’’ as measured during a TR-OSL experiment involving single
stimulation pulses. The situation will be very different in the case
of time-resolved measurements made using pulses separated by

intervals shorter than the luminescence lifetimes. Such experiments
are usually termed pulsed OSL (POSL), and their mathematical
description will be different than the model presented here.

5. Comparison with the model by Chithambo [12]

It is instructive to compare the model in this paper with the
recent model of Chithambo [12]. In this section it will be shown
that the two approaches yield almost identical results, even
though they are derived using rather different approaches.

Chithambo [12] developed a general analytical model for time-
resolved luminescence consisting of one electron-trapping state
and one type of recombination center, with electronic transitions
taking place from the trap to the center via the conduction band.
The model is formulated in very general terms, by describing the
rate of change of the number of stimulated electrons N by the
differential equation:

dN

dt
¼ sA�lN, ð32Þ

where A represents the initial electron population, s is the prob-
ability of stimulation per unit time, and l is the decay constant
representing the probability per unit time that a stimulated electron
will produce luminescence. This general differential equation can be
compared directly with Eq. (12) derived in this paper:

dn2

dt
¼

n1ð0ÞPACBN2

AnðN1�n1ð0ÞÞþACBN2
�n2ðARþANRexpð�W=kTÞÞ: ð12Þ

By assuming small retrapping probability An(N1�n1(0))5ACBN2, this
equation becomes:

dn2

dt
¼ n1ð0ÞP�n2ðARþANRexpð�W=kTÞÞ: ð33Þ

The constants A and s in Eq. (32) correspond to n1(0), P in Eq. (33)
correspondingly, while the decay constant l¼1/t can be identified
with the luminescence probability per unit time, ARþANRexp
�W=kT
� �

:

l¼ 1=t¼ ARþANRexpð�W=kTÞ: ð34Þ

This equation leads to the decay time as a function of the
stimulation temperature T:

t¼ 1=l¼
1

ARþANRexpð�W=kTÞ
¼

1=AR

1þ ANR

AR
expð�W=kTÞ

, ð35Þ

which is identical to Eq. (20) derived using the model in this
paper. We conclude that the very general formulation by
Chithambo [12] leads to identical results as the model in this
paper, although the two physical approaches are very different.

6. Comparison of three commonly used descriptions of the
luminescence process in quartz

In this section we compare and contrast three commonly used
descriptions of the luminescence process in quartz. Specifically
we discuss some of the defects which are believed to act as
recombination centers in quartz, and address the relationship
between the localized and delocalized transitions contained in
these three commonly used types of descriptions.

Firstly, we present a general physical description of the
luminescence process based on some of the ionic defects believed
to act as luminescence centers in quartz. Secondly, we discuss a
commonly used description of the luminescence process in quartz
in terms of holes and delocalized transitions involving the con-
duction band. Thirdly, we discuss the equivalent description of
the same luminescence process in terms of electronic states and
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localized transitions; this latter type of description is used in the
present paper. Finally, the relationship between the three descrip-
tions is discussed and the analogies between their mathematical
and physical quantities are pointed out.

The luminescence process in quartz is known to be extremely
complex, and several experimental studies have attempted to
correlate specific defects with the experimentally observed lumi-
nescence emission in this material. For a complete review of the
luminescence properties of quartz including an extensive list of
references, the reader is referred to the recent paper by Preusser
et al. [23].

In this paper we will discuss one specific example of the
luminescence mechanism in quartz which involves the ionic
center AlO4

� which can act as a recombination center. The relevant
physical process creating the luminescence defect in quartz
involves Al3

þ ions, which are known to act as a substitutional
ion in quartz, replacing Si4þ . This substitutional process results in
a positive hole which is trapped in the vicinity of the Al ion.
Several experimental studies have identified the primary role
played by this ionic complex in the luminescence properties of
quartz [23]. For example, it has been suggested that the well-
known 380 nm emission in quartz is likely the result of recombi-
nation processes taking place at these ionic complexes.

7. Description of the luminescence process in quartz in terms
of point defects

In completely general terms, all luminescent solids contain
luminescent ions (or complexes) that we call centers, and lumi-
nescence studies are interested in two versions or states of these
centers. Researchers commonly identify a version of these ions/
complexes with their ‘‘normal’’ charge, as well as an ionized
version of these complexes. A normal version becomes an ionized
version by ‘‘capturing a hole’’, or equivalently by losing an
electron. An ionized version becomes a normal version of the
complex by capturing an electron. Both versions of the ionic
complexes have vibrational states, and either version may also
have electronically excited states.

Specifically in the case of the 380 nm emission of quartz, the
normal version of the luminescent complex is assumed to be
AlO4
� , and the ionized version of the luminescent complex is AlO4.

During irradiation, AlO4
� captures a hole (or equivalently releases

an electron) and becomes AlO4, with the released electron
becoming trapped elsewhere in an electron trap in the crystal.
During a typical TR-OSL experiment, this trapped electron is
optically stimulated out of the trap and recombines with AlO4,
resulting in the creation of ðAlO�4 Þ

�, i.e. an excited state of AlO4
�.

The excited state ðAlO�4 Þ
� relaxes into the ground state AlO�4 by

either photon emission or by a non-radiative transition. Schema-
tically, the process of an electron in the conduction band being
captured by a luminescence complex AlO4 can be written as:

AlO4þe-ðAlO�4 Þ
�: ð36Þ

In the Mott–Seitz model of thermal quenching, ðAlO�4 Þ
� may

decay to the ground state of AlO�4 through the two possible
electronic transitions shown in Fig. 2 of this paper.

8. Mathematical description of the luminescence process
using ‘‘holes’’

There have been several published complex kinetic models
which attempt to describe the luminescence process in quartz,
using delocalized transitions involving the conduction band (see
for example Refs. [18,19,24] and references therein). In such

models, the total concentration of the two versions of the
luminescence complexes is commonly denoted by M. The corre-
sponding concentration of the ionized version of the complex is
denoted by m, and therefore the concentration of the normal
version of the complexes is M�m. Hence in quartz models using
this notation, the concentration of the luminescent complex AlO�4
would be denoted by M�m, while the corresponding concentra-
tion of the ionized luminescent complex AlO4 by m.

The concentration m is changed every time an electron
combines with a trapped hole in the recombination center via
the delocalized transition shown as ACB in Fig. 1. The overall rate of
change of the concentration of holes m in this mathematical
description can therefore be expressed by:

dm

dt
¼�ACBmnc , ð37Þ

in the above notation. This is the common form of writing the rate
of recombination processes, as used in kinetic models involving
only delocalized transitions. In terms of the discussion in the
previous subsection, the term ACBmnc in Eq. (37) represents
mathematically the rate of the electron capture process shown
in Eq. (36).

This mathematical description of the luminescence process in
quartz is based on the concept of holes with concentrations m, and
uses solely delocalized transitions involving the conduction band.
In such models the Mott-Seitz mechanism for thermal quenching
is not given an explicit mathematical form, and no mathematical
description is provided for the localized transitions taking place
within the recombination complex. Thermal quenching effects are
expressed instead as an overall empirical correction factor Z(T)
multiplying the luminescence intensity. Specifically, in such a
model the luminescence intensity I(t) is commonly written in
the form:

IðtÞ ¼�
dm

dt
¼ ZðTÞACBmnc , ð38Þ

with the thermal quenching correction factor given by:

Z Tð Þ ¼
1

1þCexpð�W=kTÞ
: ð39Þ

The thermal quenching parameters C and W in this equation
have the same meaning as in Eq. (25). Clearly this type of
mathematical description is inadequate to describe time-resolved
luminescence experiments in quartz, or the associated effect of
thermal quenching on the luminescence lifetimes. However, such
models do provide a description of the observed effect of thermal
quenching on the overall luminescence intensity via Eq. (38).

9. Mathematical description of the luminescence process
using electronic states

In the model presented in this paper, the luminescence process
is described using electronic states, instead of the concept of holes

used in the previous section. The present model offers a mathe-
matical description of a completely internal mechanism within
the luminescence complex, and is based on electronic transitions
of a localized nature.

In the example of the 380 nm emission for quartz discussed
here, this type of model addresses the behavior of electronically
excited states of AlO4

�. For example, level 2 in Fig. 1b of this paper
would represent an electronically-excited state of AlO4

� , denoted
by ðAlO�4 Þ

�. In terms of the previous discussion based on defects,
ðAlO�4 Þ

� decays to the ground state of AlO4
� through either a

radiative transition or a non-radiative transition. This competition
between radiative and non-radiative transitions within the
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recombination complex ðAlO�4 Þ
� results in thermal quenching

effects in quartz.
Mathematically in this type of model the concentration of

ðAlO�4 Þ
� complexes in the sample is expressed by the concentra-

tion of electrons n2 in Fig. 2. The corresponding concentration of
AlO4 ions will then be denoted by N2�n2, and the total concen-
tration of both possible states (AlO�4 and AlO4) will be N2.

In the model presented in this paper, the internal transitions
occurring within the recombination complex are given a specific
mathematical form involving the concentrations n2 and N2�n2 of
the two types of complexes. It is clear that the mathematical
analog of the transition rate ACBmnc used in Eq. (37) will be
ACB(N2�n2)nc, as shown explicitly in Eq. (3).

Finally, we note the following mathematical correspondence
between the concentration of holes m, the electronic concentra-
tion n2 and the type of defect in quartz:

n2 ¼M�m ðconcentration of AlO�4 Þ,

N2�n2 ¼m ðconcentration of AlO4Þ,

N2 ¼M ðtotal concentration of both AlO4 and AlO�4 Þ:

The luminescence process in quartz is known to be very complex,
involving several types of defects acting as recombination centers,
electron and/or hole traps, and perhaps in some cases acting as
both. Hence the description presented in this paper is certainly a
simplification of a very complex luminescence process. However,
this specific example based on AlO�4 and AlO4 clarifies the
connection between the different descriptions of the lumines-
cence process found in the literature.

10. Conclusions

In this paper we have presented analytical expressions rele-
vant to TR-OSL experiments in quartz. The analytical expressions
are derived using a recently published kinetic model which
describes thermal quenching phenomena in quartz samples, and
are applicable both during and after the optically stimulating
pulse. In addition, analytical expressions are derived for the
concentration of electrons in the conduction band, and for the
maximum intensity signals attained during optical stimulation of
the samples.

Two characteristic times for the TR-OSL process can be studied
using the analytical equations; these times are the relaxation time
for electrons in the conduction band (tnc), as well as the relaxa-
tion time (t) for the radiative transition within the luminescence
center. The former relaxation time (tnc) depends on several
experimentally dependent parameters, as shown in Eq. (8).
However, the latter relaxation time (t) depends only on the
parameters AR, ANR and W, as shown in Eq. (20). The analytical
expressions (8) and (20) for the two relaxation times clearly show
that their fundamental difference lies in the fact that tnc describes
a delocalized process taking place through the conduction band,

while t describes a completely localized process within the
recombination center.

The relevance of the model for dosimetric applications was
shown by studying the dependence of the maximum TR-OSL
signals on the degree of initial trap filling, and also on the
probability of electron retrapping into the dosimetric trap. When
retrapping into the dosimetric trap is small, linearity between the
TR-OSL signal and the initial trap filling can be expected. This in
turn may indicate that in the case of small retrapping, the TR-OSL
signal can be expected to be linear with the irradiation dose. The
analytical expressions in this paper are shown to be equivalent to
previous analytical expressions derived using a different mathe-
matical approach.

The description of thermal quenching processes in quartz
presented in this paper is certainly a simplification, and the
specific example provided here is based on AlO4

�/AlO4 defects.
Other types of defects have also been proposed as possible
recombination centers in quartz, however, the example presented
in this paper illustrates the connection between the different
descriptions of the luminescence process found in the literature.
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