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LETTER  TO THE EDITOR 

On  the  order of kinetics  in  the  study of 
thermoluminescence 

Reuven  Chen 
Department of Physics and Astronomy, Tel Aviv University,  Tel Aviv 69978, Israel 

Received 27 January 1983 

Abstract. The definition of first-order,  second-order and  other possible kinetics in thermo- 
luminescence are discussed in relation  to  a  recent  paper by Hagekyriakou and Fleming. The 
definitions offered  for ‘first-order kinetics’ include ‘classical’ and ‘pseudo’-first-order kinet- 
ics, all of which have  the  same  properties  and therefore  are usually indistinguishable. 
Second-order kinetics are defined in a  quite restrictive manner which leaves many inter- 
mediate cases which are  neither of first nor of second order.  The properties of the different 
kinetics in thermoluminescence  peaks are compared as  well  as the kinetic order tests. The 
conclusions given by Hagekyriakou  and Fleming are examined critically, and somewhat 
different conclusions are  reached. 

1. Introduction 

In two recent  papers, Hagekyriakou and Fleming  (1982a,  b)  gave a  set of criteria for 
determining the  order of kinetics of thermoluminescence (TL) peaks. In a similar fashion 
to discussions previously given in the  literature, some ambiguity seems to exist in the 
definitions of  first- and second-order kinetics as related to TL theory. One of the  purposes 
of the present  Letter is to remove this ambiguity and  to  attempt  to set a  standard 
nomenclature in this field. In  particular, it  will  be stressed that, in the  general  case,  the 
kinetics may be of neither first- nor second-order kinetics and, in fact,  the first- and 
second-order cases should be considered to be  only limiting cases occurring when some 
special relations exist between the relevant trapping parameters. According to  the 
present definition, cases referred  to by Hagekyriakou and Fleming (1982a) as ‘pseudo’ 
first-order will be included in the general framework of first-order kinetics. 

Hagekyriakou and Fleming (1982a) also give some tests to determine  the kinetic 
order of the TL emission process. One of these (test 2) is based on the fact that the 
dependence on the dose of  a first-order peak is expected to be such that  the intensity of 
TL emission is proportional to  the dose and  that  the  shape of the  peak remains the  same 
for different initial concentrations of carriers in traps.  It has not been proven,  however, 
that similar situations may not occur with non-first-order peaks, although it  is quite 
obvious that  a distortion in the  shape of the  peak does occur in purely second-order 
cases. An example will be given of a non-first-order TL peak which does not change its 
shape with the  amount of irradiation  and which  is expected to  depend linearly on the 
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excitation  dose. More  generally, it is argued  that  one  should consider  thoroughly  the 
sensitivity of the  method  to identify  deviations  from  the  strict  first-order  property,  The 
possible  complications  related to  the  combined effect of a  number of TL peaks in a given 
temperature  range will also  be discussed briefly.  Finally, the ‘pseudo’-first-order  kinetics 
from  ‘geminate’  electron-hole  recombination will be  reconsidered in view of previous 
works (Chen  and  Halperin 1965, Land  1969, Chen 1976, Chen  and Kirsh 1981). 

2. Order of kinetics in TL theory 

The  term ‘first-order  kinetics’  in TL theory  has  been  taken  from chemistry  where  a 
first-order  reaction is said to  be  one in which the  rate is directly  proportional to  the 
concentration of one reactant  (Glasstone  and Lewis 1960).  In the first theoretical  account 
of  TL, Randall  and Wilkins (1945) showed that a TL peak resulting  from  a single electron 
trapping  state  and a  single  kind of centre results in first-order  kinetics if one assumes no 
retrapping of the  electrons  released.  The  equation governing the process in this  case is 

Z(t) = - dn/dt = sn  exp( - E/kT) (1) 

where Z(t)  is the emission  intensity,  n is the  instantaneous  concentration of trapped 
electrons  (m-3), t is the  time ( S ) ,  S is the  pre-exponential  (frequency)  factor ( S - ’ ) ,  E is 
the activation  energy (eV), k is Boltzmann’s  constant (eVK-l) and  T is the  absolute 
temperature (K). The fact that  the  assumption of no  retrapping resulted in equation (l), 
in which - dn/dt is proportional to  n,  made  the  Randall  and Wilkins  case  a ‘classical’ 
first-order  case  among  investigators  dealing with TL,  and, in some cases, the physical 
situation of ‘negligible  retrapping’  has been  termed ‘first-order  kinetics’  (Hagekyriakou 
and Fleming  1982a). In  fact,  other physical circumstances may lead to a  governing 
equation of the  same  form  as  equation (1); these  were  termed by the  same  authors 
‘pseudo’-first-order  kinetics. So far this  looks  like  a  mere  difference in taste  concerning 
terminology;  however,  the  more basic ambiguity starts when one deals with non-first- 
order cases.  Hagekyriakou  and  Fleming (1982b) say that ‘if the  probability of retrapping 
before  recombination is non-zero,  we  have  second-order  kinetics’. On  the  other  hand, 
in their 1982a paper  they  say, following the chemical  convention,  that  a  reaction  follow- 
ing second-order  kinetics  may  be  written  as 

- dn/dt = kzn(t)m(t) (2) 

where  n(t)  and  m(t)  are  the  concentrations of the reacting  substances. As will be  shown 
here,  these  two definitions are  not necessarily  identical and, since  they are utilised 
alternatively by people in the field, an  attempt  should  be  made  to establish  an unam- 
biguous  terminology. The main  point  to  be  made is that  the  general  shape of a TL curve 
is governed by a  set of three  simultaneous differential  equations  as given by Halperin 
and  Braner (1960). 

Z(t) = - dm/dt = A@n, (3) 

= - dn/dt = sn  exp( - E/kT) - nXN - n)A. (4) 

= dm/dt = dn/dt + dn,/dt ( 5 )  

where n, is the  concentration of free  electrons  in  the  conduction  band  (m-3)  and A, and 
A ,  are  the  retrapping  and  recombination  probabilities  (m3 S-’), respectively.  Making  a 
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conventional  assumption  (Halperin  and  Braner 1960, Shenker  and  Chen 1972) that  the 
concentration  of  free  electrons is much  smaller  than  that of trapped  electrons  and  that 
the  rate  of  change of the  former is much  smaller  than  that of the  latter,  one  gets  the 
equation 

Z(t) = - dn/dt = S exp( - E/kT)nmAd[mA, + ( N  - n)A ,l. (6) 

This  can be considered  as  a  general single equation in the  unknown  functions n and  m. 
It  can  be  solved  only  when  certain  relations  between n and  m  and  the  constant  parameters 
are  established.  Thus,  the  first-order  equation (1) is the case  when  recombination 
dominates, 

A,m + A,(N - n ) ,  (7)  

and, using the relation  dm/dt = dnldtwhich  results  from  equation ( 5 )  using the  assump- 
tion  mentioned, I dnddtl G 1 dn/dt~. 

In  order  that  equation (6) will reduce  to  equation ( 2 ) ,  which is one of the possibilities 
for defining second-order  kinetics,  one  should  assume  that  the  denominator in equation 
(6) is constant.  Garlick  and  Gibson (1948) asserted  that nA, = nA, whereas  an  alter- 
native  assumption is N + n (excitation which is far  from  saturation)  as well as 
mA, e A,N. One should  remember,  however,  that since  m(t) and n(t)  are  functions 
rather  than  parameters,  these  relations hold true  at  part of the TL peak  and fail to  do so 
at  other  parts. 

An  even  more  important  point  to  be  made is that  many  authors, including 
Hagekyriakou  and  Fleming  (1982b),  make  the  assumption  that  n(t) = m(t)  which,  while 
assuming  a constant  denominator in equation  (6), results in the  equation 

~ ( t )  = S’ exp( - ~ / k T ) n ’ .  (8) 

This is usually termed  ‘second-order  equation’  rather  than  the  more  general  equation 
(2); S’ is a  constant with  dimensions of m3 S-’. The main  question is related  to  the 
probability  that  the  relation n = m  holds. At  first sight,  this  seems  very  plausible  as  long 
as one considers  only  one  trapping  state  and  one kind of recombination  centre.  The 
likelihood  that  such  a  simple  condition  between n and  m holds  is,  in fact,  rather small in 
actual  cases. The samples  used  for TL purposes  usually  have  a  large  number of impurities 
and  defects which  may  act  as  trapping  states and  luminescence  centres.  It is possible that 
in  a  certain  temperature  range mainly one kind of  trap is releasing  carriers and mainly 
one  kind of centre is involved in recombination,  but it is not plausible in most  cases that 
the  number of active electrons in traps is the  same as that of holes in centres.  The 
condition  m = n should  usually be replaced by m = n + c where c is a  constant, positive 
or negative,  which  represents  the  net  concentration of trapped  carriers which are  not 
involved in the particular  peaks in question  (see,  e.g.,  Chen et a1 1981).  The main  lesson 
of this  discussion is that first- and  second-order kinetics are  only  extreme cases and 
different  kinds of intermediate cases are  to  be  considered.  These  include  the  general- 
order kinetics (Chen 1969) and  mixed-order  kinetics  (Chen et ~11981)  as well as various 
other possibilities (see,  e.g.,  Moharil1982). 

3. Dose dependence 

Hagekyriakou  and  Fleming (1982a, b) rightly  suggest that  an  important  property of a 
first-order  peak is that,  at  small  radiation  doses,  the  shape of the  peak  (or  combination 
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of first-order peaks) is independent of the  dose  and  the TL intensity  varies  linearly with 
the  dose.  The use of this  as  a  test  for first order  should  be applied  very  cautiously  since 
the  opposite, namely that this  property is exclusive to first-order peaks,  has not  been 
proven.  Even if such  a  proof  were possible in principle (and  apparently it is not),  one 
should  consider  the sensitivity of this  test to distinguish between  first-order  peaks which 
are strictly  linear  with the  dose  and whose shape  does not  vary and a  non-first-order 
peak  where  the  non-linearity  and  distortion may be very slight. 

To exemplify  this  possibility,  let us consider  the following example. If one considers 
nc(t)  as  a  known  function, one can solve equation (3) (see  Chen 1971) to yield 

I ( t )  = AmmOnc(t) exp( - A ,  rnc ( t ’ )   d t ’ ) .  (9) 

It is plausible to think of a physical situation in which nc(t) is hardly  dose  dependent, say 
if the  trapping  states in question  are close to  saturation,  whereas  the  recombination 
centre involved is far  from  saturation, which means  that m. is practically linear with the 
dose.  Examining  equation (9) we can  readily see  that  the TL peak will not  change  its 
shape with the varying  dose  and that  each  part of the  peak including the maximum is 
linear  with  the  dose.  The  peak should  not be  considered,  however,  to  be a  first-order 
peak since  its shape may be strongly dependent on the  shape of nc(t) and,  therefore, Z(t )  
may be substantially  different  from the  expected first-order  curve. 

0 

4. Localised  transitions 

The subject of localised transitions  has  been discussed in the  literature  (Chen  and 
Halperin 1965, Land 1969, Chen 1976, Chen  and Kirsh 1981, Hagekyriakou  and  Fleming 
1982b).  Hagekyriakou  and  Fleming  termed  this  situation  where  an  electron  recombines 
with a  hole  trapped in the  centre in a  close vicinity to  that of the  electron ‘geminate’ 
electron-hole  recombination.  The  equations  governing  this  situation  are 

I ( t )  = - dm/dt = pn, (10) 

wherep is the  probability (s-l) for  an excited  electron  to  recombine with the  neighbouring 
hole  and  ne is the  instantaneous  population of excited  electrons,  each of which can ‘see’ 
effectively only one  trapped  hole.  The  charge  conservation  equation 

m = n + n ,  (11) 

combined with the usual  assumption  ne G n  reduces to 

m = n,  

which in this  case  should  not be  considered as  a limiting assumption. The balance 
between  excited and  retrapped  electrons can be  written  here  as 

- dn/dt = sn  exp( - E/kT)  - me,  (13) 

the  same coefficient S appearing in both  terms  due  to  the principle of detailed  balance 
(Halperin  and  Braner 1960). Equations  (lo), (12) and (13) can  be  combined to yield 

I = - dm/dt = [ps/(p + s)]m  exp( - E/kT) .  (14) 

It is obvious  that,  for all practical  purposes,  this is a  first-order  kinetics equation with an 
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effectivefrequencyfactoroff = ps/(p + S). Itisreadilyseenthatforp 4 s,S+pwhereas 
p S s implies f +  S .  The  former case  may  account  for  very low values of the  measured 
frequency  factor  appearing in the  literature.  The main  point to be  made in this  respect 
is that, since the  results of a physical case represented by equation (14) are,  in  principle, 
indistinguishable from  the ‘usual’ first-order  case,  there is no  important  reason  to  term 
them  ‘pseudo’-first-order  kinetics. 

5. Conclusion 

The  main  points in this  Letter can be  summarised as follows. 
(1) Any TL peak  governed by an  equation of the  form (1) (or (14))  can be  termed 

‘first-order  kinetics  peak’,  since the  rate of  change  of  the  population of the  relevant 
trapping  state is proportional  to  the  concentration.  This may  include the Randall- 
Wilkins  case  (negligible  retrapping)  and the case of localised (geminate)  transitions  as 
well as  other possibilities  (for example,  see  the discussion on extrinsic  semiconductors, 
page 37 of Chen  and Kirsh  (1981)). 

(2) Second-order  peaks,  represented by equation (8), are  characterised by the fact 
that  the  rate of change of the  population is proportional  to n2. This  may be  due  to  the 
Garlick  and  Gibson (1948) circumstances (Am = A,, m = n ) ,  to  the  dominating  retrap- 
ping situation (A,N % Ammo, N % no, m = n)  and possibly to  other cases  as  well. 

(3) The first- and  second-order kinetics  should  be  considered  only  as extreme limiting 
cases  whereas  the  general TL peak resulting  from  a single trapping  state  and a single kind 
of recombination  centre is represented by equations (3)-(5). Cases  like  non-integer 
order of kinetics (Chen 1969), i.e. -dn/dt nb, 1 < b < 2, and  ‘mixed’-order  kinetics 
(Chen et al 198l),  i.e. -dn/dt = sn exp(-E/kT) + s’n2 exp(-E/kT), may sometimes 
occur. One should  keep in mind,  however,  that all these  include simplifying assumptions 
and  real  experimental  peaks  may usually only be  approximated by these two- or  three- 
parameter cases. The fact is that  the  three  simultaneous differential equations include 
eight  relevant  parameters. 

(4) The  important  property of a  first-order  peak, namely that its shape  does  not vary 
with the initial  value of trapping  concentration no and  that  at  each  point  along  the  curve 
the TL intensity is proportional  to no, cannot  be used  automatically in the  reverse 
direction. If a TL peak exhibits  a  linear dependence of the maximum  intensity of  the 
dose  with no appreciable  shift of the maximum temperature with the  dose, it cannot  be 
taken  as conclusive  evidence that  the kinetics are strictly of first order, 
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Reply by J Hagekyriakou and R J Fleming 

Chen  has challenged some of the conclusions  reached in two of our  papers 
(Hagekyriakou  and  Fleming  1982a,  b,  hereafter  referred to as  I  and I1 respectively) 
concerned with the  determination of the kinetic order of the  thermoluminescence (TL) 
emission  mechanism in irradiated  dielectrics. The  purpose of this  communication is to 
reply to  the main  points  raised by Chen. 

Since  most of the  disagreement  seems  to revolve around  the definitions of kinetic 
order in the TL context, we first state  these definitions.  They are  adapted  from physical 
chemistry (Moore 1972). 

(a)  First-order  kinetics  are  described by 

Z ( t )  = kn(t)  (1) 

where Z( t )  is the TL intensity at  time t ,  n(t) is the  concentration of trapped  electrons  at 
time t and k is a  constant,  independent of time. To be  precise,  equation (1) states  that 
the TL emission  mechanism is first order in the  concentration of trapped  electrons.  It is, 
of course,  the filling of empty  luminescent centres,  i.e.  their  recombination with elec- 
trons, which brings about  the TL emission. One can therefore always write 

I ( t )  cc -dm(t)/dt 

where m(t) is the  concentration of empty  luminescence  centres at  time t. Hence  equation 
(1) implies 

dm(t)/dt = -k ln( t )  (2) 

where kl is independent of time. Making the usual  assumptions  that  the  concentration 
nc(t) of electrons in the  conduction  band is much less than n( t ) ,  and  that  dn,(t)/dt 
dn(t)/dt,  it follows that  dm(t)/dt = dn(t)/dt.  Hence,  from (2), 

Z( t )  cc -dn(t)/dt = kln(t) .  (3) 

Since the  rate of release of electrons  from  traps will always be linearly proportional  to 
n(t) ,  equation (3) implies  a  constant  probability that  an  electron, having been  released 
from  a  trap, will recombine with an  empty luminescence centre.  Note  that, following 
Chen, we assume that all the  electron  traps  have  the  same activation  energy. 

As mentioned in 11, the ‘popular’  definition of first-order  kinetics is zero  retrapping, 
i.e. every  electron,  on escaping  from  a trap,  recombines with a  luminescence centre 
without first being retrapped. Obviously  this is a  particular  case of equation (3), which 
we would  expect to find very  rarely,  since  a  complete  absence of retrapping is very 
unlikely in any  dielectric, especially if it is largely amorphous.  More  importantly,  one 
can  readily specify conditions in which there is considerable  retrapping  but  equation (1) 
still holds,  for  example  the  case  described by Chen  where  each  electron is retrapped in 
the  same  trap  from which it escaped,  and can  ‘see’ only the  luminescence centre  nearest 
to  it. 


