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Abstract
The simultaneous release of electrons and holes by what seems to be a single trap has
been observed experimentally. We previously performed numerical simulations on a
phenomenological model which showed similar behaviour. Here, we provide an analytical
solution to this model. This model explains trends in radioluminescence, thermoluminescence
and thermally stimulated conductivity of a material with one electron trap, one hole trap and
one radiative recombination centre, in which thermal excitation of the electron trap occurs
before that of the hole trap. It is shown that TL emission due to electron recombination at
centres can be controlled by a hole trap and the electron recombination will have a peak shape
associated with the hole trap’s parameters. When this happens, the peaks in free electron
concentration, free hole concentration and TL all occur nearly simultaneously. The analytical
model allows this to be explained along with scaling laws and initial rise behaviour. Under the
conditions illustrated by this model, the usual methods used to distinguish between electron
traps and hole traps will give incorrect results.

1. Introduction

After exposure to ionizing radiation, insulators and semi-
conductors often exhibit thermoluminescence. Measurement
of this luminescence can be used to infer the dose which
makes this phenomenon useful for dosimetry and for dating
of rocks and antiquities (Aitken 1985, McKeever 1985, Chen
and McKeever 1997). The luminescence is generally believed
to be due to the radiative recombination of holes or electrons
after their thermal release from traps. For several decades,
substantial effort has been devoted to distinguishing electron
traps from hole traps and identifying the other properties of
each trap. We investigate herein a situation where a trap of
one type may masquerade as a trap of the other type. In a
previous paper (Chen et al 2008), we studied this effect using
numerical methods. Herein, we provide an analytical solution.

The simplest model which exhibits this effect has one
electron trap, one hole trap and one recombination centre from
which radiation is emitted when an electron recombines at
the centre. Under some circumstances, this model shows

4 Author to whom any correspondence should be addressed.

two peaks in the TL glow curve. The first peak is due
to thermal stimulation of electrons from the electron trap.
These recombine with holes in the centre until those holes
are depleted. At this point, the TL emission due to electron
recombination is stopped and, due to lack of holes in the centre,
electrons emitted from the electron trap are re-trapped. This
continues until free holes start to be created from thermal
stimulation of the hole trap. This replenishes holes in the centre
and allows electron recombination to continue. This results
in a second TL peak. We show that, even though the
emission is due to electron recombination and thus its spectral
emission appears the same as for other electron traps, the
second TL peak has the initial rise and peak shape associated
with the hole trap, not the electron trap. The thermally
stimulated conductivity (TSC) curves will also be shown to be
anomalous. Consequently, the usual method for distinguishing
electron traps from hole traps may fail in this circumstance.
The analytical results allow this duplicitous behaviour to be
explained and trends quantified.

Three assumptions are used to simplify the model. First,
we assume that, during heating, the electron trap experiences
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Figure 1. The energy level diagram of one electron and one hole
trapping states, along with one kind of recombination centre. Solid
lines indicate transitions occurring during excitation. Transitions
taking place during read-out are shown by dashed lines.

significant thermal excitation well before the hole trap. This
enables the duplicitous peak behaviour that is of interest
in this paper. Second, we assume that the occupancy of
all levels is well below saturation. Saturation is not of
interest in this paper and assuming levels well below saturation
allows the equations to be simplified significantly. Lastly,
we assume that irradiation and the subsequent heating occur
slowly enough that the quasi-steady assumption may be made
for free electrons and free holes. The quasi-steady assumption
seems to correspond to the usual experimental situation (Sunta
et al 2001, 2002) and it also simplifies the equations allowing
us to focus on the issues of interest here.

The analytical theory is developed in the next section. This
development is divided into three parts: (1) irradiation, (2) the
first TL peak and (3) the second TL peak. This is followed by a
section showing results which illustrate the interesting features
of this model. Lastly, conclusions are drawn.

2. Theory

In this model, we consider three levels. The electron trap
has a total concentration of N1 and an occupancy of n1. The
recombination centre has a total concentration of M1 and an
instantaneous occupancy of m1. We assume that this is a
hole-type recombination centre, meaning that, after annealing
but before irradiation, m1 = 0. The hole trap has a total
concentration of M2 and an occupancy of m2. The energy-
level diagram for this model is shown in figure 1. We are
analysing this because it is the simplest model that enables the
demonstration of the ‘duplicitous’ peak, which results from
the release of electrons and holes from trapping states, with
recombination occurring in one centre. While this model is not
expected to compare quantitatively with real, i.e. complicated,
materials, it does allow us to explore how some unintuitive
behaviours occur without excess complication.

2.1. Irradiation

During irradiation, electron–hole pairs are created. The free
holes may be captured by the centre, M1, or by the hole

trap, M2. The rate constants for capture for these two levels are
B1 and B2, respectively. The free electrons can be captured by
the electron trap, N , with rate constant A, or recombine at the
centre, M1 with rate constant Am. The occupancies of these
levels are governed by the following equations:

dn

dt
= A(N − n)nc, (1)

dnc

dt
= X − A(N − n)nc − Amm1nc, (2)

dm1

dt
= B1(M1 − m1)nv − Amm1nc, (3)

dm2

dt
= B2(M2 − m2)nv, (4)

dnv

dt
= X − B1(M1 − m1)nv − B2(M2 − m2)nv, (5)

where nc and nv are the concentrations of free electrons and
free holes, respectively. n, m1, and m2 are the instantaneous
occupancies of the electron trap, the recombination centre and
the hole trap, respectively. N , M1 and M2 are the respective
total populations of these levels. X is the rate of electron–
hole pair creation induced by the radiation. The various rate
constants have meanings as identified in figure 1.

For initial conditions, we assume the traps and centre are
empty at the beginning of irradiation: n = m1 = m2 = nv =
nc = 0. Since, for this paper, we are not interested in saturation
effects, we will assume n � N , m1 � M1 and m2 � M2.
Thus, equation (1) through equation (5) can be simplified to

dn

dt
= ANnc, (6)

dnc

dt
= X − ANnc − Amm1nc, (7)

dm1

dt
= B1M1nv − Amm1nc, (8)

dm2

dt
= B2M2nv, (9)

dnv

dt
= X − B1M1nv − B2M2nv. (10)

Examination of equations (7) and (10) shows that the lifetimes,
in seconds, of free electrons and free holes are 1/(AN +Amm1)

and 1/(B1M1 +B2M2), respectively. For usual ranges of cross-
sections and trap populations, these lifetimes are very short,
often measured in microseconds or nanoseconds (Lax 1960,
Rose 1963, Sunta et al 2001, 2002). Consequently, we make
the quasi-steady assumption for nc and nv so that equations (7)
and (10) are replaced by

nc = X

AN + Amm1
, (11)

nv = X

B1M1 + B2M2
. (12)
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It follows that the remaining conservation equations can be
simplified to

dn

dt
= AN

AN + Amm1
X, (13)

dm1

dt
= B1M1

B1M1 + B2M2
X − Amm1

AN + Amm1
X, (14)

dm2

dt
= B2M2

B1M1 + B2M2
X. (15)

From equation (13), one can see that, initially, n grows linearly
with dose: n ≈ Xt . Initially, m1 and m2 also grow linearly
with dose, although not as fast as n. As time progresses,
an increasing number of free electrons may recombine at the
centre, m1 rather than be captured by trap N1. This causes
sublinear growth for both n1 and m1. Note that this sublinearity
occurs even though both populations are, by assumption, well
below saturation. This type of sublinearity was discussed
previously (Lawless et al 2008).

Equation (15) can be integrated to find m2 as a function
of dose, Xt :

m2 = B2M2

B1M1 + B2M2
Xt. (16)

Equation (14) can also be integrated. After some math:

Xt = −AN

Am

(
B1M1 + B2M2

B2M2

)2

log

(
1 − B2M2

B1M1

Am

AN
m1

)

− B1M1 + B2M2

B2M2
m1. (17)

Given m1, equation (17) provides an explicit value for the dose
required to achieve that level of m1. Alternatively, if the dose
is known, one can solve equation (17) numerically to find m1.
The electron trap population can then be found from the above
by conservation of charge:

n = m1 + m2. (18)

If one monitors the emission intensity during irradiation, it is
I = Amm1nc. Using equation (11), this becomes

I = Amm1

AN + Amm1
X. (19)

Equation (16) through equation (19) are the solution
to the irradiation of a material with one electron trap,
one recombination centre and one hole trap subject to the
assumptions that nv and nc are quasi-steady and that all
populations remain well below saturation.

2.2. Readout

The governing equations for thermoluminescence with one
electron trap, one hole trap and one recombination centre are

dn

dt
= A(N − n)nc − s1e−E1/kT n, (20)

dnc

dt
= s1e−E1/kT n − A(N − n)nc − Amm1nc, (21)

dm1

dt
= B1(M1 − m1)nv − Amm1nc, (22)

dm2

dt
= B2(M2 − m2)nv − s2e−E2/kT m2, (23)

dnv

dt
= s2e−E2/kT m2 − B1(M1 − m1)nv − B2(M2 − m2)nv,

(24)

where s1 and s2 are the pre-exponential factors and E1 and E2

are the activation energies for thermal excitation of the electron
trap and hole trap, respectively. We assume that recombination
between a free electron and the centre produces TL emission
so that the TL intensity is given by

I = Amm1nc. (25)

Since, for this paper, we are not interested in the saturation
effects associated with high doses, we will assume n � N ,
m1 � M1 and m2 � M2. Thus

dn

dt
= ANnc − s1e−E1/kT n, (26)

dnc

dt
= s1e−E1/kT n − ANnc − Amm1nc, (27)

dm1

dt
= B1M1nv − Amm1nc, (28)

dm2

dt
= B2M2nv − s2e−E2/kT m2, (29)

dnv

dt
= s2e−E2/kT m2 − B1M1nv − B2M2nv. (30)

We will assume that the free electron lifetime, 1/(AN+Amm1),
is much shorter than the time scale on which nc changes,
nc/(dnc/dt). Similarly, for free holes we assume that the free
hole lifetime, 1/(B1M1 +B2M2), is much shorter than the time
scale on which nv changes, nv/(dnv/dt). Further, we assume
that nv and nc are both small compared with other populations.
This allows us to make the quasi-steady assumption for free
electrons and free holes. Experiments indicate that these
lifetimes are short (Lax 1960, Rose 1963), and consequently
the quasi-steady assumption is usually valid (Sunta et al 2001,
2002). In this case equations (27) and (30) simplify to

nc = s1e−E1/kT n

AN + Amm1
, (31)

nv = s2e−E2/kT m2

B1M1 + B2M2
. (32)

It follows that the remaining conservation equations
simplify to

dn

dt
= − Amm1

AN + Amm1
s1e−E1/kT n, (33)

dm1

dt
= B1M1

B1M1 + B2M2
s2e−E2/kT m2

− Amm1

AN + Amm1
s1e−E1/kT n, (34)

dm2

dt
= − B1M1

B1M1 + B2M2
s2e−E2/kT m2. (35)
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As a consequence of making the quasi-steady approximation in
equation (27), the net rate at which electrons leave the electron
trap, −dn/dt as per equation (26), is equal to the recombination
rate at the centre, Amm1nc, which, via equation (25), is equal
to TL intensity, I . This leads to the useful relation:

I = −dn

dt
. (36)

Equation (35) can be immediately integrated to yield

m2 = m2,0 exp

(
−s ′

2

∫ t

0
e−E2/kT (t ′) dt ′

)
, (37)

where s ′
2 is a convenient abbreviation defined by

s ′
2 = B1M1

B1M1 + B2M2
s2. (38)

For the common case of a linear heating profile, T (t) = T0+βt ,
the above can be integrated analytically to find

m2 = m2,0 exp

(
− E2s

′
2

kβ
(�(−1, E2/kT )

−�(−1, E2/kT0))

)
, (39)

where T0 is the initial temperature and �(−1, E2/kT ) is the
incomplete gamma function as defined by Abramowitz and
Stegun (1970). The analytical forms of the integral for other
temperature profiles are reviewed by Lawless and Lo (2001).

Equations (31), (32) and (37) (or equation (39)) provide
the analytical solutions for nc, nv, and m2 during readout.
To complete the analytical model of thermoluminescence, we
need to find expressions for n and m1. To do this, we need to
consider thermal excitation of the first trap, n, separately from
thermal excitation of the second trap, m2. This is done in the
following subsections.

2.2.1. Region I: first peak. By assumption, the kinetic
parameters (s1, E1, s2 and E2) are such that thermal excitation
of the electron trap, n, occurs before that of the hole trap, m2. In
this subsection, we consider thermal excitation of the electron
trap, n. To solve for n, we begin by rearranging equation (33)
to find

AN + Amm1

Amm1

dn

n
= −s1e−E1/kT dt. (40)

But, conservation of charge requires n = m1 + m2 and, since,
by assumption, negligible thermal excitation of the hole trap
occurs during the first peak, m2 ≈ m2,0 = constant, then
dn ≈ dm1 and equation (40) simplifies to

AN + Amm1

Amm1

dm1

m1 + m2,0
= −s1e−E1/kT dt. (41)

Since m1 < n � N , it might be tempting to drop Amm1 from
the term (AN + Amm1). However, it is possible to choose
parameters such that Am � A in which case the term Amm1

could be important even though m1 � N . Thus, to include
that case, we keep the term as is.

Equation (41) can be readily integrated to yield

AN

Amm2,0
ln

(
m1

m1,0

m1,0 + m2,0

m1 + m2,0

)
+ ln

(
m1 + m2,0

m1,0 + m2,0

)

= −
∫ t

0
s1e−E1/kT (t ′) dt ′. (42)

The right-hand-side of the above can be integrated analytically
for various temperature versus time profiles. For the usual
linear profile, the right-hand-side becomes an incomplete
gamma function:

AN

Amm2,0
ln

(
m1

m1,0

m1,0 + m2,0

m1 + m2,0

)
+ ln

(
m1 + m2,0

m1,0 + m2,0

)
= −s1

[
�(−1, E1/kT ) − �(−1, E1/kT0)

]
. (43)

Further, if AN/(Amm2,0) is either large or small, then we can
find an explicit solution for m1 as a function of T but we will
not pursue that here.

The TL intensity, equation (25), is I = Amm1nc.
Substituting in the quasi-steady concentration of nc,
equation (31), the TL intensity during readout is given by

I (t) = Amm1

AN + Amm1
s1e−E1/kT (m1 + m2,0). (44)

Equation (44) completes the solution for region I.
Equation (42) or, as appropriate, equation (43) provide the
solution for m1 in region I. n can then be found from n =
m1 + m2. Combined with equations (31), (32) and (37), we
have the complete solution for region I. This solution is valid
as long as m2 has not started to empty during the heating stage,
that is, as long as m2 ≈ m2,0.

The TL emission in this region, as given by equation (44),
drops precipitously as the centre population, m1 becomes
depleted. The TL emission does not rise again until thermal
stimulation of m2 becomes significant but that is the subject of
the next subsection.

2.2.2. Region II: second peak. At the end of region I,
recombination with electrons had depleted the population of
the centre. We now develop a model valid when the centre
population, m1, is small. We assume

m1 � m2. (45)

Consequently, by conservation of charge, n ≈ m2. Consistent
with equation (45), we further assume∣∣∣∣dm1

dt

∣∣∣∣ �
∣∣∣∣dm2

dt

∣∣∣∣ . (46)

From equations (29), (30) and the quasi-steady assumption for
free holes, nv, we know that the net rate at which m2 loses
holes is equal to the net rate at which the centre captures holes:
−dm2/dt = B1M1nv. Combining this with equation (46)
yields ∣∣∣∣dm1

dt

∣∣∣∣ � B1M1nv. (47)

Consequently, dm1/dt may be neglected in equation (28)
and equation (28) simplifies to a balance between the rate of
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hole capture by the centre, B1M1nv, and the rate of electron
recombination, Amm1nc:

B1M1nv = Amm1nc. (48)

There is only one value of m1 that satisfies this balance and it is

m1 = B1M1

Am

nv

nc
. (49)

The behaviour of equation (49) is intuitively reasonable: it
says that larger values of nv, which mean faster hole capture
by the centre, result in a larger centre population, m1, while
larger values of nc, which mean faster electron recombination
with the centre, result in smaller values of m1.

Using the quasi-steady assumption for nc (equation (31))
and nv (equation (32)), equation (49) becomes

m1 = AN + Amm1

Am

s ′
2

s1
e−(E2−E1)/kT , (50)

where s ′
2 was defined by equation (38). However, as discussed

above, the reason that m1 was driven to a small value was
that free electrons were made available for recombination at
the centre at a rate much faster than that at which holes were
replenishing the centre’s population: s1 exp(−E1/kT ) �
s ′

2 exp(−E2/kT ). Consequently, most of the freed electrons
must be re-trapped by n1 rather than recombine: AN � Amm1.
In this case, we can further simplify region II equations for both
nc and m1 to

nc = s1e−E1/kT

AN
m2, (51)

m1 = AN

Am

s ′
2

s1
e−(E2−E1)/kT . (52)

The TL intensity is I = Amm1nc. But from equation (48), this
is the same as

I = B1M1nv. (53)

Since B1 and M1 are both constants, this shows that, in
region II, the TL intensity is proportional to nv. Substituting
in the quasi-steady value for nv, the TL intensity is given by

I = s ′
2e−E2/kT m2, (54)

where m2 is already known as a function of time from
equation (37). We now have the complete solution for region II.

According to equation (37), the value of m2 drops towards
zero as heating progresses. Consequently, at some time during
heating, equation (45) will cease to be valid. After that
happens, the equations for region II can no longer be used.
Note also that m2, via equation (16), depends on dose but
m1, as given by equation (52), does not. Thus, for given
set of rate constants, the approximations of region II are not
useful if the dose is small enough that m2 fails to satisfy
equation (45). However, for a given dose, the approximations
of this region become more accurate if recombination is
stronger relative to recapture for the free electrons, i.e.
as AN/Am decreases, since this reduces the magnitude of
m1 in equation (52). Also, m1 becomes smaller as the
ratio s ′

2 exp(−E2/kT )/s1 exp(−E1/kT ) decreases. This ratio
decreases and thus the approximations of region II are more
accurate as the two peaks become more widely separated in
temperature.

Table 1. Summary of equations. Note that for linear heating
profiles, equations (39) and (43) may be substituted for
equations (37) and (42), respectively.

Readout

Quantity Irradiation Region I Region II

m2 Equation (16) Equation (37) Equation (37)
nv Equation (12) Equation (32) Equation (32)
m1 Equation (17) Equation (42) Equation (52)
n Equation (18) Equation (18) Equation (18)
nc Equation (11) Equation (31) Equation (31)
I Equation (19) Equation (44) Equation (54)

2.2.3. Summary of equations. To summarize, we have
developed solutions for the intensity and population during
irradiation, thermal excitation of the first trap (region I) and
the later excitation of the second trap (region II). The equations
needed for each solution are presented in table 1.

For numerical calculations of irradiation, it is convenient
to use m1 as a parameter. Given m1, one can use equation (17)
to calculate the dose, Xt , explicitly. Then, knowing the dose,
all the other parameters can be calculated explicitly using the
equations as given in table 1.

3. Results and discussion

We will illustrate the behaviour of this model with sample
calculations for two different sets of rate constants. Each set
illustrates different features of the model but both display the
duplicitous peak behaviour in which nv, nc and I all exhibit
nearly simultaneous peaks.

We will start using the rate constants of our previous
numerical solution (Chen et al 2008) which are as shown in
table 2. The growth of level populations during irradiation
is shown in figure 2. The hole trap population, m2 grows
linearly while the centre, m1, and electron trap, n, are both
growing slightly sublinearly. The free electron and free hole
populations remain small throughout the irradiation process.
At the end of 1000 s of irradiation, the population closest to
saturation is n which reaches about 3 × 1010 cm−3 which is
3% of N . Our model is only valid as long as all populations
remain well below saturation.

More interesting are the results during heating as shown
in figure 3. From room temperature up to 405 K, the equations
from region I are used. Above 408 K, the equations for region II
are used. Observe that the thermoluminescence curve reaches
its first peak at 370 K and a second peak at 481 K. Note that
there are two peaks even though the TL emission is due solely
to electron recombination and there is only one electron trap.
What happens is that, during readout of the electron trap, the
centre population becomes depleted: m1 drops by four orders
of magnitude from its initial population. The readout of the
electron trap cannot be completed until the temperature is
high enough that holes from the hole trap become available
to replenish the centre population.

If the free electron concentration was measured, such as
via TSC, it would show only one peak despite the TL curve
showing two peaks. The peak in nc also coincides closely with

5
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Table 2. Rate constants used in calculations shown in figures 2 and 3. For irradiation, X = 5 × 107 cm−3 s−1 and t = 1000 s and, for
heating, β = 1 K s−1.

Electron trap Centre Hole trap

Total concentration (cm−3) N = 1012 M1 = 1014 M2 =1013

Electron capture rate constant (cm−3 s−1) A = 10−7 Am = 5 × 10−6 —
Hole capture rate constant (cm−3 s−1) — B1 =2 × 10−8 B2 =3 × 10−8

Activation energy (eV) E1 = 1 — E2 = 1.3
Pre-exponential factor (s−1) s1 = 5 × 1012 — s2 = 3 × 1012
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(c

m
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)

0 200 400 600 800 1000
Time (s)

m2
m1
n
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108×nv

Figure 2. Analytical calculation of level populations as a function
of irradiation time. These calculations were performed using the
parameters of table 2.

the peak for holes, nv, and the second TL peak. The reason
for this can be readily understood from the model of region II.
From equation (53), we see that I ∝ nv. This means that
region II TL peak and the peak in hole concentration, nv, must
coincide. Thus it is not surprising that the analysis of peak
shape parameters in Chen et al (2008) found that I and nv

had the same peak shape accurate to all decimal places shown.
The close similarity between nv and nc can be understood by
looking at equation (48) which shows that nc ∼ nv/m1. In
region II, as seen in figure 3, m1 is a slowly rising function of
temperature. As a consequence of nc ∼ nv/m1 and the fact
that m1 is slowly rising with temperature, it is clear that the
peak of nc will be at a lower temperature but near the peak of
nv. The reason that m1 grows slowly in region II is also easily
understood. From equation (50), it is seen that m1 grows as
m1 ∼ exp(−(E2 − E1)/kT ). Since, from the parameters of
table 2, E2 −E1 is positive, then m1 grows in this region. Since
E2 −E1 is only 0.3 eV, this growth rate is small compared with
other variables.

The initial rises preceding the second peak are also
interesting. The initial rise of free electrons in region II, see
equation (51), is determined by E1. Even though TL is due to
recombination of these free electrons, I = Amm1nc, the initial
rise of TL in region II does not scale as nc does but rather is
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Figure 3. An analytical solution of the readout for the duplicitous
peak is shown. The gap in the curves at 406 K is due to the switch
from region I model to region II model. These calculations were
performed using the parameters of table 2.

determined by E2, as is seen from equation (54). The reason
that this is possible is because, as noted above, m1 has a rise
determined by E2 − E1. The initial rise of free holes, nv, is
determined, via equation (32), by E2. Since, in general, the
TSC signal could be dominated either by free holes or free
electrons, the initial rise of TSC could depend on either E2 or
E1. For the example parameters of table 2, the results show
that nv � nc, so the TSC signal is likely dominated by nc and
its initial rise would scale as E1.

The shape of the second TL peak can be understood by
combining equation (54) with equation (37) to find

I = s ′
2e−E2/kT m2 (55)

= s ′
2e−E2/kT m2,0 exp

(
−s ′

2

∫ t

0
e−E2/kT (t ′) dt ′

)
. (56)

This shows that region II TL intensity has the shape of a first-
order Randall–Wilkins peak with the activation energy of the
hole trap, E2, and an effective pre-exponential factor of s ′

2 as
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Table 3. Rate constants used in the calculation of figures 4 and 5. For irradiation, X = 5 × 107 and t = 1000.0 s and, for heating, a heating
rate of β = 1 K s−1 was used.

Electron trap Centre Hole trap

Total concentration (cm−3) N = 1014 M1 = 1014 M2 = 1014

Electron capture rate constant (cm−3 s−1) A = 10−9 Am = 5 × 10−6 —
Hole capture rate constant (cm−3 s−1) — B1 = 2 × 10−8 B2 = 3 × 10−8

Activation energy (eV) E1 = 1.1 — E2 = 0.89
Pre-exponential factor (s−1) s1 = 1014 — s2 = 108
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Figure 4. Analytical calculation of level populations as a function
of irradiation time using the parameters as shown in table 3. Note
that the centre population approaches an asymptotic value even
though m1 � M1.

defined by equation (38). Peak shape analysis on the numerical
simulation of the second peak (Chen et al 2008) shows a shape
factor of µg = 0.417 which is consistent with a first-order
peak and this theory.

By changing some parameters, we can observe some
different features of this system. For the second case, we
chose parameters as shown table 3. Using these parameters,
the growth of the level populations during irradiation is
shown, figure 4. In contrast with the previous case, the
centre population, m1, does not continue growing but instead
approaches an asymptotic value of about 1.3 × 1010 cm−3. On
the plot, it looks like m1 is saturating but it is important to
note that M1 = 1014 cm−3 so that, for the observed saturation,
m1 � M1.

For readout, the parameters of table 3 also show some
interesting differences. The populations and TL intensity
during readout are shown in figure 5 with region I model being
used up to 385 K and region II model shown for temperatures
between 390 and 550 K. Note that the second TL peak, the
duplicitous one, is now much stronger than the first. This is
because, as per equation (36), the integrated intensity,

∫
I dt ,

of the first (region I) peak is close to n0 − m2,0 and the
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Figure 5. An analytical solution of the readout for the parameters of
table 3 is shown. The gap in the curves at 406 K is due to the switch
from region I model to region II model.

integrated intensity of the second (region II) peak is close
to m2,0. Because of the rate constant changes that affect the
irradiation phase, m2,0 is, in this case, almost as large as n0, so
the second peak is relatively stronger. Separately, s1, E1, s2 and
E2, were adjusted so that E1 > E2. Consequently, the centre
population, m1, which grew with temperature in the first case
instead declines with temperature in this case. However, it can
still be seen that the peaks in nv, I and nc are still at nearly the
same temperature. Since m1 is declining, however, the peak
of nc now appears slightly after the peak of TL emission, I .

We also performed numerical solutions of the full non-
quasi-steady governing equations and the results agreed very
closely with the analytical results that are presented in this
section.

4. Conclusion

An analytical model of a three level TL system, covering both
irradiation and readout, was developed. The three levels are

7
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an electron trap, a recombination centre and a hole trap. The
analytical solution was obtained using three main simplifying
assumptions: (a) the dose was low enough that all levels remain
below saturation, (b) free electrons and holes are quasi-steady
and (c) the TL readout of the electron trap begins well before
thermal excitation of the hole trap is significant.

This model has the surprising feature, first shown
numerically (Chen et al 2008), that the hole trap can be
responsible for a TL peak that is observed at the same
wavelength spectrum as a TL peak due to an electron trap.
Further, both the free electrons and free holes reach a peak
near this duplicitous TL peak giving the false impression that a
single trap is responsible for emitting both holes and electrons.

The existence of this duplicitous TL peak is understood
by considering the initial conditions before readout where the
electron trap population is n0, the centre population is m1,0 and
the hole trap population is m2,0. By conservation of charge,
n0 = m1,0 + m2,0. Thus, readout of the electron trap stops not
when the electron trap population is depleted but when centre
population, m1, is depleted. When this occurs, conservation of
charge tells us that the remaining concentration in the electron
trap is n = m2,0. That concentration remains in that trap until
thermal excitation of the hole trap begins. At that time, the
readout of the electron trap occurs at a rate determined by
replenishment of holes in the recombination centre with holes
from the hole trap. Thus the second peak is observed to have
an initial rise and peak shape associated with the hole trap even
though TL emission is due to electron recombination.

This model also shows anomalous behaviour for TSC.
The first TL peak, for example, has no TSC peak associated

with it. The second TL peak is associated with peaks in both
free electrons and free holes. The initial rise in the TSC peak
can depend on either the electron trap energy, E1, or the hole
trap energy, E2, depending on whether the mobilities and other
parameters are such that free electrons or free holes dominate
the conductivity.

Various experimental observations which inspired the
development of this phenomenological model were reviewed
by Chen et al (2008).
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