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Review 
Methods for kinetic analysis of thermally 
stimulated processes 

REUVEN CHEN 
Department of P h y s i c s  and Astronomy, TeI-Aviv University, TeI-Aviv, Israel 

Several methods are known for the evaluation of the main kinetic parameters related to a 
thermoluminescence (TL) curve, namely the activation energy, the pre-exponential factor 
and the kinetic order. These methods can easily be applied under certain conditions to a 
series of related thermally stimulated phenomena which are governed by similar 
differential equations. These include thermally stimulated conductivity (TSC), thermally 
stimulated electron emission (TSEE), ionic thermocurrent (ITC), derivative thermo- 
gravimetry (DTG), differential thermal analysis (DTA), thermal desorption and other 
phenomena. The similarities and differences between these phenomena are considered and 
the applicability of the various methods to the different cases is discussed. 

1. Introduction 
In a number of phenomena, a certain property of a 
sample is measured as a function of temperature, 
when the sample is heated under a given heating 
scheme from a certain "low" temperature. In some 
of these phenomena the effect of interest appears 
only after the sample has been excited in oiae of 
various ways, while being held at the "low" tem- 
perature or during its cooling to  this low tempera- 
ture, prior to heating. 

The following phenomena will be discussed: 
thermoluminescence (TL); thermally stimulated 
conductivity (TSC); thermally stimulated electron 
emission (TSEE); ionic thermoconductivity (ITC); 
thermal annealing; partial thermoremanent mag- 
netization (PTRM); thermal desorption; evolved 
gas analysis (EGA); derivative thermogravity 
(DTG); differential thermal analysis (DTA); dif- 
ferential scanning calorimetry (DSC). 

Some emphasis will be placed on thermo- 
luminescence (TL), sometimes called thermally 
stimulated luminescence (TSL). A TL curve may be 
obtained when a solid sample, usually an insulator 
or semiconductor, is heated after having been 
exposed to various irradiations such as nuclear 
irradiation (a, /3, 7 irradiations and particle bom- 
bardment), X-rays, ultraviolet light and sometimes 
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visible and infra-red light at low temperature. 
Energy absorbed by the sample is emitted, during 
the heating, as light in the form of a "glow curve". 
The position, shape and intensity of the glow 
peaks are related to the various parameters of the 
trapping states which are responsible for the TL. 

The first theoretical treatment for a well iso- 
lated TL peak was given by Ranuall and Wilkins 
[ 1 ] who suggested the following equations 

I = - -C(dn/dO = C.s.n e x p ( - - E / k T )  (1) 

where I is the TL intensity, s the frequency factor 
(the pre-exponential factor) (sec -1 ), n the concen- 
tration of trapped electrons (cm -3) ,  T the absolute 
temperature, k Boltzmann's constant (eVK-~), 
and C a proportionality factor which can be set 
equal to unity without any loss of generality as 
long as it remains constant with temperature (see 
below). 

The solution of this equation gives, for the TL 
intensity, assuming C = 1 and using a linear heating 
scheme 

I = nos exp(--E/kT) 

e x p [ - - ( s / ~ ) f ~ e x p ( - - E / k T ' ) d T ]  (2) 
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where no is the initial concentration of the 
trapped electrons, To the initial "low" tempera- 
ture, and /3 is the constant heating rate (Ksec -1), 
i.e. T = To + fit. 

Garlick and Gibson [2] suggested another 
approximation, more suitable for some of the glow 
peaks, which is represented by 

I = - d n / d t  = s'n 2 e x p ( - - E / k r )  (3) 

where s', the pre-exponential factor, is a constant 
with dimensions of cm 3 sec -1 which should, there- 
fore, not be referred to as the "frequency" factor. 
This case is usfially called "second order kinetics", 
whereas the previous case is "first order kinetics". 
The solution of Equation 3 is 

I = n2os ' e x p ( - - E / k T )  

1 + (noS'/~) e x p ( - - E / k r ' ) d r  . (4) 

Equations 1 and 3 do not cover every possible 
isolated peak; this is apparently covered by a set of 
three simultaneous differential equations (see 
Section 2). Many authors [3-10] found it attract- 
ive and very useful to assume a "general" order 
kinetics, namely, assuming that the glow curve is 
governed by 

I = - - d n / d t  = s'n b e x p ( - - E / k T )  (5) 

where b is the kinetic order, and s' the pre- 
exponential factor in sec -1 cm 3(b-1). 

The pre-exponential factor s', while sometimes 
considered to be temperature independent, may in 
other cases be slightly dependent on temperature 
(e.g. T 2) [11-13] .  Under appropriate conditions, 
thermally stimulated conductivity (TSC) (see 
Section 3) peaks would follow the same equation 
with s' proportional to T a and where a is not 
necessarily 2 but rather has various values in the 
range --2 ~<a~<2 [14-15] .  These values result 
from the various dependences on temperature of 
the cross-section for recombination [16-17] .  
Equation 5 and the dependence of s' on tempera- 
ture were summed up by Razdan et  al. [18] as 
follows: 

I = - C ' d n / d t  = Cs"Tan b e x p ( - - E / k T )  (6) 

where s' = s "T  ~, s" being a constant. 
Many methods for evaluating the activation 

energy of a glow curve were developed. Shalgaonkar 
and Narlikar [19] gave a review summing up many 
of these methods (see also [20]). Some methods 
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for evaluating the pre-exponential factor and the 
kinetic order were also given [4, 21] (for details 
see Section 2.1). Some of these methods were 
independently developed for other thermally 
stimulated processes. The main purpose of the 
present paper is to indicate the similarities (and 
differences) between the various phenomena, and 
especially to show that methods known to be 
suitable for analysis of TL peaks can quite easily 
be applied to many of the other cases. Thus, the 
analysis of a thermally stimulated peak would be 
the same, no matter what specific phenomenon 
is being investigated. In addition, some properties 
of the individual effects will be discussed. 

2. T h e r m o l u m i n e s c e n c e  
2.1. General  t h e o r y  
Halperin and Braner [12] wrote a set of three 
linear simultaneous equations to account for a 
single TL peak as follows 

I = - - d m / d t  = A m m n  e (7) 

- - d n / d t  = sn e x p ( - - E / k T ) - - A n ( N - - n ) n c  (8) 

d n J d t  = d m / d t - - d n / d t ,  (9) 

where N is the concentration of traps (cm-3); n 
the concentration of electrons in traps (cm-3);nc 
the concentration of free electrons in the con- 
duction band (cm-3); Am and A n the recom- 
bination and retrapping probabilities (cm 3 sec -1), 
respectively; and m is the concentration of holes in 
recombination centres (cm-3). Here, the pro- 
portionality factor between the intensity I and 
- d m / d t  was set arbitrarily to unity, I ( T ) w o u l d ,  

therefore, be given in arbitrary units. These 
equations still deal with a single TL peak but are 
much more general than the Randall-Wilkins or 
Garlick-Gibson cases which assumed negligible 
and dominating retrapping, respectively. It is to be 
noted that the same equations are valid for the 
"inverse" case where the TL results from holes 
thermally released from hole traps into the valence 
band and subsequently recombining with electrons 
in centres. A by-product of a solution of this set 
of differential equations is n e - n e ( t ) ,  which is 
closely related to the conductivity (TSC) curve 
(see below). A slightly different set of equations 
has also been given by Halperin and Braner [12] 
for the case of electrons (or holes) which are 
thermally elevated to an excited state in the for- 
bidden gap rather than the conduction (valence) 
band. 



Halperin and Braner [12], as well as other 
workers [13, 2 2 - 2 5 ] ,  looked for a solution to 
these equations, by assuming that 

[dne/dtl  ~ [dn/dt[; n o ~ n (10) 

which are reasonable in many cases. By doing so, 
Halperin and Braner found that 

I = - - d m / d t  

= sn e x p ( - - E / k T ) A { n "  m / [ A m  m + A n ( N - -  n)].  

(11) 

It is important at this point to note the con- 
ditions for obtaining the first and second order 
kinetics equations from Equation 11. The Randall 
and Wilkins [1] case is known to be the case of 
negligible retrapping; under the present notation 
this would mean A m m ~ A n ( N - - n ) ,  by which 
Equation 11 reduces to 

I = - - d m / d t  = sn e x p ( - - E / k T ) .  (12) 

Using Conditions 10, Equation 9 reduces to 
dn/d t  = d m / d t ,  and therefore Equation 12 becomes 
the regular first order case, namely Equation 1 
with C =  1 as assumed above. The second order 
kinetics can result from Equation 11 by either of 
two sets of assumptions. A necessary condition in 
both cases is n = m, which is a quite restrictive 
condition by itself. In addition, Garlick and 
Gibson [2] assumed predominating retrapping 
which in our notation would be A n ( N  -- n)  >> A m m .  

If we assume, in addition, that we are far from 
saturation, i.e. N >> n, we get 

I = - - d n / d t  = ( s A m / U A n ) n  2 exp( - -E/kT)  (13) 

which is Equation 3 with s' = s A m / N A  n. Alterna- 
tively, if we assume in addition to n = m, equal re- 
combination probabilities for centres and traps 
[26] (i.e. Am =An) ,  an equation equivalent to 
Equation 3, with s' = s / N ,  is again obtained. 

It is evident that first and second order kinetics 
are only special cases whereas many TL single 
peaks are neither of  first nor of second order. One 
way of analysing a TL peak, obtained using a 
linear heating function, is by considering its sym- 
metry properties. The second order peaks are 
characterized by a practically symmetrical peak, 
whereas the first order peaks are asymmetrical, 
where r - the half-width at the low temperature 
side of the peak - is almost 50% bigger than 8 - 
the half-width towards the fall-off of the glow 
peak (see Fig. 1). An empirical way to deal with 
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Figure 1 An isolated glow peak showing the parameters 

o 3 = T  2 - T I , r = T  m - T 1 , 6  = T  2 - T  m. 

intermediate cases is "general order" kinetics 
mentioned in Equation 5 with b being different 
from 1 or 2. This empirical approach [3-10]  was 
found to be satisfactory for explaining the occur- 
rence of various symmetry factors, /~g =6/00 ,  

where co = r + 6  is the total half-width. The 
activation energies found by using this approach 
[4] were also satisfactory [27] (for details see 
Section 2.2). 

It is of interest to note that equations identical 
with Equation 1 can be found where s is replaced 
by other constants having different physical 
meanings [28]. One possibility is to take Equation 
7, which has quite general meaning (see Section 3), 
and to assume that the concentration of the con- 
duction electrons depends exponentially on tem- 
perature and is only slightly affected by the 
excitation. This should fit the case of n-type semi- 
conductors when the electrons from donor levels 
are released thermally into the conduction band 
and emit light, on recombination, at luminescence 
centres emptied during excitation. The analogous 
case of p-type semiconductors might fit the glow 
peaks obtained in semiconducting diamonds. In 
this case, measurements of conductivity as a 
function of temperature show that the concen- 
tration of free carriers (free positive holes) rises 
exponentially with temperature [29, 30], namely, 
n o = a e x p ( - - E / k T ) ,  where the factor a is directly 
connected with the concentration of holes in 
acceptor levels. Therefore, from Equation 7 

I = - - d m / d t  = a ' A m r n e x p ( - - E / k T )  (14) 

This is the Randall-Wilkins equation with the fre- 
quency factor s replaced by a �9 A m . 

Another possibility is when the transition is 
within one localized centre [13, 28].  In other 
words, traps and recombination centres form 
associated pairs, and thermal excitation raises the 
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trapped electrons to an excited level from which 
they may either be retrapped or emit luminescence 
by falling down to the ground level of the centre. 
The kinetics in this case are formulated by the 
following equations 

I = - - d r n / d t  = Pn  e 

- -  d n / d t  = s exp ( - - E / k T ) n  - -  sne 

m = n + ne (15) 

where P(sec -1 ) is the probability for recombination 
of an excited electron and ne is the concentration 
of excited electrons. We again assume ne < n and 
hence n = m .  From Equations 15 we now have 
ne = s exp(- -E/kT)n/ (P  + s), and inserting this 
expression into the first of Equations 15 we obtain 

I = - -  d m / d t  = [Ps / (P  + s)] m exp ( - - E / k T ) .  (16) 

This is again the Randall-Wilkins equation, but 
with ~-= P s / ( P  + s) replacing s. It is obvious that 
for very high recombination probabilities (P >> s), 
g reduces to s. On the other hand, for relatively 
low recombination rate (s >>P), ?-reduces to P. 
This can explain the appearance of the relatively 
low effective frequency factor s. 

Coming back to the solution of Equations 7 - 9 ,  
these have been numerically solved without 
Conditions 10; Kelly e t  al. [31] used the Runge-  
Kutta-Gill  fourth order process and by properly 
choosing the step size, obtained the exact 
solutions for given sets of  parameters. The validity 
of the approximations given in Conditions 10 were 
found by Kelly e t  aL to depend critically on N, the 
number of active traps. For N <  10 is cm -3 they 
found that the conventional approximations are 
inadequate. Shenker and Chen [27] used a change 
of variable by which the high sensitivity of the 
solution to small numerical errors is overcome; 
another version of the Runge-Kutta method has 
been employed. The symmetry parameters of the 
calculated peaks were used to calculate the acti- 
vation energy of the peak. Although a method 
derived from an approximate empirical model 
(Equation 5) is used for an exact solution peak, 
the results of E (see Section 2.2) were found to be 
correct within 5% of the given activation energy. 

It is to be mentioned here that as a by-product 
of either the approximate or the exact solution, 
one obtains the values of ne as a function of T. 
This enables the calculation of the corresponding 
TSC peak by a ( T ) =  ep.n e provided that /~(T)is 
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known (see Section 3). This mobility is usually 
known from separate measurements and is some- 
what temperature dependent, like T - s ,  a being 
typically between 1.5 and 3. 

Kelly e t  al. [25,31 ] claim that dealing with the 
general three equations model, one cannot extract 
any information other than the value of E from 
TL and TSC data (and simultaneous measurement 
of both) unless one knows at least the luminous 
efficiency and the mobility. As is shown in Section 
3.2, we can evaluate another important parameter, 
the recombination probability (and the recom- 
bination cross-section therefrom) knowing only 
the mobility, which, as mentioned above, can be 
found separately. 

It is relevant at this point to mention the main 
difficulties in analysing a glow curve; some of 
these difficulties occur in the other thermally 
stimulated processes as well. A crystal usuafly 
has several kinds of defects and impurities and, 
therefore, it may possess various traps and centres. 
This usually produces a number of  glow peaks; as 
long as these peaks are far apart, each of them can 
be considered to be a single peak. The situation 
becomes more difficult when two or more peaks 
overlap. This can be partly improved by thermal 
cleaning of a peak, heating the sample up to a 
certain temperature so as to thermally bleach all 
the components except for one, then cool the 
sample and reheat it in order to examine the re- 
maining clean (or, at least, partially clean) peak. 
Another possible method to distinguish between 
neighbouring peaks is to take spectrally separated 
emitted fight in cases where different recom- 
bination centres are involved. Another problem is 
that in addition to the possibility of several peaks 
resulting from several electron traps and recom- 
bination centres, other peaks may occur in the 
same temperature range resulting from holes 
released from hole traps and subsequently re- 
combining into electron centres. These two cases 
can be discerned by the TSEE effect (see Section 
4). The possible case of a TL peak resulting from 
thermal elevation into an excited state which is 
not a band, then recombining into a centre in the 
close vicinity, can be perceived by the lack of both 
TSC and TSEE peaks. 

Recent work by Wintle [32, 33] should be 
mentioned here. Wintle introduces the possibility 
of a recombination probability which depends, in 
a certain temperature range, exponentially on the 
t e m p e r a t u r e ,  A m o z e x p ( W / k T ) ,  where W is an 



energy depth characterizing a non-radiative 
process. Under these special circumstances, the 
glow intensity for the first order kinetics would be 
given by altering Equation 2 to give 

I = Ksno exp [(W--E)/kT]  

exp[--(S/(3)fTT exp(--E/kT')dT']. (17) 

The activation energies calculated by certain 
methods (see Section 2.2) would yield the value E 
whereas by other methods the value E-W will be 
found. 

2.2. Methods for evaluating the activation 
energy 

The various methods for evaluating the activation 
energies will be mentioned here only briefly, 
reference is made to the review article by 
Shalgaonkar and Narlikar [19, 20]. The methods 
to be mentioned in this section can be classified as 
follows: (1)Methods based on the temperature ai 
the maximum. (2) the initial rise method. (3) 
Methods employing the shape parameters of the 
peak. (4) Numerical curve fitting. (5) Various 
heating rates. (6) Isothermal decay. 

The first method for calculating activation 
energies by TL curves was given by Urbach [34] 
who found empirically that a reasonable estimate 
for the trap energy, E, in eV is given by E = Tin~ 
500 where Tm is the temperature of the glow 
maximum in K. Garlick and Gibson [2] suggested 
the method, usually considered to be more general 
than others, known as the initial rise method. 
Studying Equation 5 (which includes as special 
cases Equations 1 and 3 for b = l  and b = 2  
respectively), we can see that at the beginning of 
the glow peak n changes only slightly with tem- 
perature and, therefore, I ~  exp(--E[kT). Thus, 
plotting hal as a function of lIT should yield a 
straight line in this region, the slope of which is 
--Elk. The method has further been developed by 
Gobrecht and Hofmann[35] who used sub- 
sequent heating and cooling cycles to obtain the 
"spectroscopy of the traps". Another improve- 
ment, by Halperin et aL [36, 37] suggests the 
plotting of ln(I/n b) versus lIT where the kinetic 
order b is known, thus obtaining a broader range 
in which the curve is a straight line. When the 
kinetic order is not known, several lines are drawn 
with various values of b (1, 2 and intermediate 
values) and the best straight line is chosen. Thus, 
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Figure 2 An isolated glow peak. The shaded area is pro- 
port ional  to the concent ra t ion  of  carriers in the  trap 
at the  tempera ture  T i. 

the best value for E is found as well as an evaluation 
of the kinetic order b. The value of n is estimated 
by the area of the glow peak from a given point 
Ti in the initial rise region to the end of the peak 
as shown in Fig. 2. One should have from I =  

2 n = Id t  = (1/~) IdT  (18) 

where T~ is the end of tile glow peak (theoretically 
r~ = oo). 

The initial rise method is expected to be valid 
beyond the limitations of Equation 5. Considering 
the set of Equations 7 to 9, one should note that 
in the initial rise range, n e should behave like 
exp(--E/kT) (therefore, the method can be used 
for TSC and TSEE as well). Equation 7 guarantees 
that as long as m ~ mo, which occurs in the initial 
rise range, I o: exp(--E/k T). 

Some theoretical [38, 39] as well as experi- 
mental [40] reasons limit the use of the initial rise 
method. Thus, Br~iunlich [39] showed that if a 
trap is filled to saturation, too small values of the 
activation energy will be found. One should also 
note that in Wintle's case [32, 33], the initial rise 
method should yield E -  W rather than E (Equation 
17). In cases where the pre-exponential factor is 
temperature dependent as T a [38] the initial rise 
range would behave like I o: T ~ exp(--E/kT). The 
initial rise method would mean finding 

Ei.r. = --k d(lnI)/d(1/T) (19) 

which in the present case is 

Ei.r. = E + a k T - ~ E  = Ei.r .--akT. (20) 

This may amount to a few percent correction in 
the value of E. 
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TABLE I Coefficients appearing in Equation 24 for the various methods of calculating activation energies 

First order Second order 

e r 6 to r 8 co 

e a 1 .51  0 . 9 7 6  2 . 5 2  1 .81  1 .71  3 . 5 4  

ba 1.58 + (a/2) a/2 1 + (a/2) 2 + (a/2) a/2 1 + (a/2) 

Another method, based on the Randall-  
Wilkins [1 ] solution involves the measuring of Tin. 
Differentiating Equation 2 and equating to  zero 
one gets 

[3E/kf~ = s exp ( - -E /kTm) .  (21) 

If one assumes a certain value for s, this transcen- 
dental equation can serve for calculating E. An 
interesting feature, unique to the first order case 
results from Equation 19; the initial concentration 
no does not appear in this equation, therefore, the 
first order peak is not expected to shift with 
various doses of excitation. An explicit expression 
for the evaluation of E was found by numerical 
calculations [26, 41] as follows 

E(eV) = [T m - -  To([J/s)]/K(s/[3) (22) 

where To and K are numerical factors given in 
tables as a function of (~/s). This equation, which 
is an improvement of Urbach's method, still has 
the disadvantage that one has to assume the value 
of the frequency factors beforehand. 

A number of methods have been developed 
which do not require an a priori assumption on the 
pre-expenential factor. Grossweiner [42] gave the 
following approximate equation for the first order 

case 
E = 1.51 ~rm r l / r  (23) 

where T~ is the lower half intensity temperature 
and r = Tm--7"1. The numerical factor 1.51 has 
been replaced by 1.41 [15] following a more 
detailed numerical study. 

Lushchik [43] suggested methods based on the 
measurement of 6 = T 2 -  Tm for the first and 
second order cases, where 7"2 is the higher half 
intensity temperature. Halperin and Braner [12] 
suggested a method based on the measurement of 
r for both the first and second order cases. They 
also introduced the symmetry factor #g = 8/w, 
where co = T2 --T1.  Chen [15] presented a 
method based on the measurement of Tm and co 
and suggested numerical corrections to the method 
of Lushchik and Halperin and Braner. It is to be 
noted here that once we find the value of E by any 

method, its substitution in Equation 21 would 
yield the frequency factor s. 

The r, 6 and co methods can be summed up in 
the following formula 

E a = Cc~(kT2m/cO--ba(2kTm) (24) 

where a is r, 6 or co. The values of ca and b e for 
the three methods and for the first and second 
order processes are given in Table I. The factor a 
appearing in ba is related to the possible depen- 
dence of the pre-exponential factor on tempera- 
ture, like T a. The addition of a/2 is equivalent to 
the subtraction of a k T  from the otherwise cal- 
culated value of E a. This is the equivalent to the 
subtraction of a k T  under the same condition 
while using the initial rise method (Equation 20). 

Chen [15] has also discussed the comparative 
merits of the three kinds of methods (r, 8, co) for 
various cases and also showed that for a first order 
peak /lg = 0.42 whereas a second order peak is 
characterized by /lg =0 .52 .  In another paper, 
Chert [4] showed that when one has a "general 
order" case (Equations 5 and 6), one can evaluate 
the kinetic order by the value of/lg. A calculated 
graph of/lg,  ranging from 0.36 to 0.55 for values 
of b between 0.7 and 2.5 is given, which can be 
used for the evaluation of b from a measured gg. 
The coefficients ca and ba in Equation 24 are cal- 
culated by interpolation as follows 

c r = 1.51 +3.0( jug--0 .42) ;  

br = 1.58 + 4.2 ~g  -- 0.42) + (a/2) (25) 

c~ = 0.976 + 7.3 (/1g -- 0.42); b~ = a/2 (26) 

coo = 2.52 +10 .2  (/~g -- 0.42); b w =  1 +(a /2)  

(27) 

These methods were applied to calculated general 
order peaks and yielded activation energies 
deviating only by a few percent from the known 
o n e s .  

TO conclude the discussion about the general 
order kinetics, it seems fit to write explicitly the 
solution of Equation 5 in this general case [4] 
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,b [ I = s no exp(--E/kT).  [(b - 1)s'n(ob-a)/[3] 
k ]-b/(b-1) fr~ exp( - -E /kT ' )dr '+  l j  . (28) 

This, certainly, includes the better known second 
order case (b = 2) given in Equation 4. s'nbo -1 has 
the units of sec -1 and in this sense it is similar to s 
in the first order case. If one writes s instead of 
s'n~ -l  , one has 

/ 

sno exp(- -E/kT) .  { [(b -- 1)sfl3] I 
k 

T } -b/(b-1) 

f%exp( --E/kr ')dT'+ 1 (29) m 

Although Equation 29 is not valid for the case 
b = 1, it can easily be shown that it reduces to 
Equation 2 when b ~ 1. 

The condition for maximum is found by 
equating the derivative of Equation 29 to zero 

T m  

[(b--1)s/t31 f exp(--E/kT)dT+ 1 
O T  o 

(sbkT2m/13E) exp(--E/kTm). (30) 

Owing to the dependence of s on no for b 4: 1, and 
through it, on the excitation dose, one should 
expect Tm, as found from Equation 30 to be dose 
dependent. For the case of b = 2 this dependence 
has further been investigated ]2, 44]. Once the 
activation energy E is calculated and the kinetic 
order b is evaluated, Equation 30 can be used for 
finding s = s'nbo -1 . The constant s' can be found 
only if information on no is available independently. 

Another class of methods is the numerical 
curve fitting, which was shown to be more 
accurate (although somewhat tedious) than 
previous methods. Curve fitting was used for the 
initial rise region [45] and for the entire curve. 
First order [46, 47], second order [48] and 
general order [21] cases were studied. In the 
latter, the activation energy, Pre-exponential 
factor and the kinetic order could thus be 
evaluated. The use of these methods was facili- 
tated by employing a computer. 

Another group of important methods is that of 
various heating rates. Bohun [50] and Parfianovitch 
[51] suggested that if a sample is heated at two 
different linear heating rates, t31 and ~2, the peak 
temperature Tm will be different. Equation 21 
can, therefore, be written once for/31 and once for 

/32 with their corresponding Tml and Tm2. Dividing 
these equations one by the other, one gets an 
explicit equation for the calculation of E: 

E = [kTml Tm2/(Tml - -  Tin2)] 

In [(fll/~2)(Tm2/Tml)2]. (31) 

Hoogenstraaten [52] suggested the use of 
several (linear) heating rates; plotting ln(Tm2/~) 
versus 1/Tm should yield, according to Equation 
21, a straight line from whose slope Elk, E is 
found. It is to be noted that even in Wintle's case 
[32, 33] mentioned above, using this method 
would yield E rather than E -  W which is found by 
the initial rise method. This is so, since the 
equation corresponding to Equation 21 in this case 
is 

(3(E-- W)/kT2m = s exp(--E/kTm). (32) 

Thus, by finding E by one method and E - W  by 
another, a good estimate of W can be found. Osada 
[53] proved that Equation 21 is true for an 
exponential heating function, T = T= -- (T= -- To) 
exp(--at)  where e(sec -1) is a constant. The linear 
heating rate 13 should be replaced here by the 
instantaneous heating rate/3 m at Tm. Haering and 
Adams [54] have shown that for first order TSC 
peaks the maximum intensity is proportional to 
exp(--E/kTm) (which is also true for first order 
TL peaks). Thus, plotting ln(om) (or ln(Im)) as a 
function of 1~Tin should give a straight line with 
a slope of --Elk. Another approximate method 
using various linear heating rates [22, 55] suggests 
the plotting of ln(lh3) versus 1/T m which should 
yield a straight line whose slope is Elk. 

Chen and Winer [44] proved that Equation 21 
is correct for any heating rate where t3m, again 
replaces t3. This leads directly to the validity of 
Equation 31 for this general case as well as to 
the method of Hoogenstraaten. They also showed 
that for the general order case, one can plot 
In [Ibm-X(T2m/(3) b] versus 1/Tm and get a straight 
line with a slope of 1/Tm. Moreover, they showed 
that even for cases other than first order (including 
b = 2) and for non-linear heating rates, plotting 
lnI m or ln(/3m/Tm 2) versus 1~Tin would yield a 
straight line having a slope o f - -E /k  to a very good 
approximation. 

A number of other methods are briefly to be 
mentioned here (see also Shalgaonkar and 
Narlikar's review article [19, 20]). Another 
method based on the measurement of T1, Tm and 
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T2 is that of Keating [14]. Land [13] suggested 
a method which uses, in addition to Tin, the two 
inflection points in the TL curve rather than the 
half intensity temperatures T~ and T2. Maxia et al. 
[56] suggested a somewhat complicated method 
for evaluating the activation energy and frequency 
factor. They deal with a multiple peak glow curve 
and assume that the various peaks result from the 
evaluation of electrons from a single trap and their 
recombination into various recombination centres. 
Onnis and Rucci [57] discussed an alternative 
explanation of obtaining several glow peaks, 
namely, having several traps and a single recom- 
bination centre. A shortcoming of this method is 
the assumption that the electrons can be retrapped 
only in the levels from which they have been 
released. Moreover, the possible general case of a 
series of peaks resulting from several traps as well 
as various recombination centres (in the same 
sample), has not been considered. Under these 
assumptions, they could find, in addition to E and 
s, the ratio between the probabilities for recom- 
bination and retrapping. 

Last to be mentioned is the method of iso- 
thermal decay [58] which is not exactly a TL 
method but enables, however, the measurement 
of E and s in the first order case. If one holds a 
sample at a constant temperature in a range where 
TL appears during heating, one can measure the 
isothermal decay (phosphorescence) which is given 
as the solution of Equation 1 for the T =  const. 
case as follows 

I(t) = ns exp (--E/kT) exp [ - s t  exp (--E/kT)] . 

(33) 

Plotting In [I(t)] as a function of t would give a 
straight line (the occurrence of a straight line 
ensures the first order property) the slope of 
which is 

M = s exp(--E/kT). (34) 

Repeating the measurement at various tempera- 
tures, one gets various values of M. Plotting In(M) 
as a function of 1/Tshould give a straight line with 
the slope --Elk, thus enabling the evaluation of E, 
and by substituting into Equation 34, the value of 
s. As mentioned by Wintle [32, 33],  this method 
should yield the value of E (rather than E-W) in 
the case of exponentially temperature dependent 
recombination probability (see above). 

Tables of experimental values obtained by 
applying some of these methods to TL curves in 
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KC1 and KBr can be found, for example in the 
papers by Ratnam and Gartia [59]. Similar tables 
for ITC curves appear in [153]. 

2.3. The integrals appearing in TL theory 
The problem of evaluating the integrals appearing 
in the theory of glow curves will be discussed in 
this section. The solutions of, for example, 
Equations 1, 3 and 5 involves the integral 

J = exp(--E/kT)dO (35) 
o 

when one deals with temperature independent pre- 
exponential factor. A number of authors [60-63] 
suggested the use of hyperbolic heating func- 
tions to facilitate the evaluation of J in Equation 
35. The hyperbolic heating function defined by 
T-oo 1 -- T -acc t is characterized by dT/dt ec T 2 

which transforms Equation 35 into 

f; J =  (3`/T'2)exp(--E/dT')dT ' (36) 
o 

where 3' is a constant. This is an elementary integral 
giving 

J = (3`k/E) [exp(-- E/kT) -- exp(-- E/kTo)]. 
(37) 

When the more frequently used linear heating rate 
T -= To + j3t is taken, one gets 

J = (1/~) exp(--E/kT' )dT' .  (38) 
To 

The integral in Equation 38 can be written as  

f T  exp ( -E / kT ' )  d T' = F(T,E)- -F(To,  E) 
o (39) 

where F(T, E) is defined as 
�9 

F(T, E) = exp(-- s  dT'. (4O) 

Since F(T, E) is a very strongly increasing func- 
tion of T, it is conventional to neglect F(To, E) 
in comparison to F(T, E). In the theory of ther- 
mally stimulated processes, E/kT is practically 
always of the order of 10 or more; for this range 
of values, a very useful method for evaluating 
F(T,E)  is by the asymptotic series found by 
successive integrations by parts [40, 42, 64] 

F(T, E) = T exp(-- E/kT) 

(kT/E)n(--1)n-tn! (41) 
n = l  



The series on the right hand side of Equation is 
divergent, but may give a good approximation 
for the value of the integral as follows. If one 
takes N terms in this asymptotic series, 

N 

su=Y~ 
n = l  

the absolute value 

(kT/E)" ( - l ) " - l n ! ,  (42) 

of the maximal error I RNI 
would not exceed the absolute value of the 
(N + 1)th term, aN+l, thus 

IRNI = laN.l[ = (kT/E)N+I(N+ 1)! (43) 

Chen [64] showed that an optimal value of F(T, E) 
is found when one takes the terms in the series 
down to the smallest one (in which (kT/E~-- 1) 
and adding one half of the following term. Follow- 
ing Dingle [65], Chen [66] showed that the adding 
of one half of the next term, reduces the possible 
error to (1/100) laN+l r, namely 

(l /100) (kT/E)N+I(N -t- ])r. 

It has also been shown [64, 66] that a convenient 
expression for the relative possible error is 

IRN/F(T,E)I ~ (1/lO0) x/[Z,r(E/kr) 3] 

exp(-- E/kT). (44) 

For E/kT = 10 one can thus calculate F(T, E) to a 
relative error of "- 3 • 10 -s [67] ; for E/kT = 15 
the relative possible error would be 4 • 10 -7. As 
seen from Equation 44, the bigger E/kT, the 
smaller the relative error. 

Alternative methods for the evaluation of 
F(T,E) were given by Squire [68] and Paterson 
[69]. Sullivan [70] extended the method to the 
case of non-linear heating rates. Another extension 
was given [71] for the cases of temperature depen- 
dent pre-exponential factors, s = s"T a, where s" is 
a constant. Here 

fo F(T, E, a) = T '~ exp ( -  E/kT ' )  aT' (45) 

is evaluated using the asymptotic series 

F(T, E, a) = (kTa+~/E) exp(--E/kT)" 

{ 1-[1/F(a+2)ly'(kT[E)n-~(-1)"-lp(a+n+l)},,+2 

(46) 
where F(x) is the gamma function. Again, one takes 
the terms down to the smallest one in which N 
E/kT-- a and adds one half of the following term. 

The possible relative error in this case is 

[RN/F(T, E, a) l = (1/lO0)x/(21r) (E/kT) a+3/2 

exp(--E/kT)/F(a + 2). (47) 

3. Thermally stimulated conductivity (TSC) 
3.1. Analysis of TSC measurements 
A TSC curve is observed when a sample having two 
electrical contacts is excited by any of the ways 
described in the TL case (nuclear radiation, X-rays, 
etc) at a certain "low" temperature and sub- 
sequently heated when a constant voltage is applied 
between the terminals. In certain temperature 
ranges, changes in the conductivity occur in the 
form of "electrical glow curves". The conductivity 
o is directly related to no, the concentration of 
electrons in the conduction band (or holes in the 
valence band) through the equation 

o = el.m e (48) 

where e is the electronic charge and p the mobility. 
Since/.t is usually only slightly temperature depen- 
dent (the possible dependence on temperature will 
be separately discussed in Section 3.2) this means 
that o is almost exactly proportional to n c. 

Several investigators [14, 46, 54, 72-79]  
assumed a constant lifetime r; in our notation this 
would mean that m in Equation 7 is practically 
constant. The meaning of r in this case is (1~mAre). 
Making this assumption, one gets TSC curves 
which are exactly the Same as the TL curves dis- 
cussed above. Most of these authors measured TSC 
peaks that looked like first order curves and used 
the various methods known from TL theory for 
the evaluation ofs  andE for the TSC curves. These 
include the initial rise method, the various shape 
methods and the methods based on various heating 
rates. 

Haering and Adams [54] investigated two 
extreme cases, slow retrapping and fast retrapping. 
Slow retrapping is characterized by (Ni--ni)  
Sv ~ r -I where Ni is the concentration of trapping 
states, n i the concentration of electrons in traps, 
S the cross-section for trapping an electron and v 
the thermal velocity of electrons in the conduction 
band. Under these conditions and assuming a linear 
heating rate T = To +/3t, one gets 

o(T) = NeSvellrno e x p ( -  E/kT) 

exp[--(NcSV/[3) fT~exp(--E/kT')dT' } 

(49) 
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where Arc ~ is the density of thermally available 
states in the conduction band. The product NeSv, 
which has the dimensions of sec -a, replaces here 
the frequency factor s in the TL case. Otherwise 
this is a simple first order function that can be 
treated as any first order TL peak. The other case 
is fast trapping in which (N i --ni)Sv>~ "i "-1.  The 
conductivity curve is given here as 

o(T) = (Nc/Ni) peno exp(-- E/k T) 

exp {-- [Nr l" T exp(--E/k T')dT'l 
~ T  o J 

(50) 

In this equation Nc/(Nir) replaces the frequency 
factor, the curve being still of the first order kind. 
Both NeSv in Equation 49 and Ne/(Nir ) in Equa- 
tion 50 may be slightly temperature dependent 
and, therefore, should not be taken out of the 
integrals as constants. This dependence is expec- 
ted, however, to behave like T a and, therefore, 
the same treatment as in the TL temperature 
dependent frequency factor, can be given. This 
case for a = 2 was discussed by Buehler [76]. 

Nicholas and Woods [72] examined first and 
second order TSC curves and used many of the 
methods previously developed for TL glow curves, 
for the TSC peaks. Among other things, they 
evaluated the cross-section for retrapping from the 
effective frequency factors found for several peaks 
in CdS. A recent paper by Rabie and Rumin [80] 
discussed first order TSC peaks assuming a constant 
lifetime for a given sample. In their samples of  Zn 
compensated Si, however, the lifetime r depended 
strongly on the concentration of negatively 
charged Zn ions. Thus they got a series of samples 
having the same activation energy E, but various 
values of  ~-. Assuming fast retrapping, a condition 
for the maximum, similar to Equation 21 would 
be in this case 

exp(E/kTm) = NekT2m/Ni~rE) (51) 

and thus, the maximum temperature would 
depend on ~-. This effect cannot be seen in the 
slow retrapping case. Equation 51 can be written 
as 

l/Tin = (k/E) In (T~/r) + A. (52) 

In  a way somewhat similar to the various heating 
rates method, one can plot In (T2m/r) versus (1 ~Tin) 
and get a straight line, the slope of which yields 
the value of E. The various values of ~- are separ- 
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ately determined from steady state photocurrcnt 
measurements. In a series of papers, Simmons 
et al. [81-86]  investigated various aspects of TSC, 
in particular in metal-insulator-semiconductor 
(MIS) systems. For evaluating the activation 
energy they used an approximate equation by 
which E is found. 

E = T m  [1.92 x 10-41oglo(S//3) 

+ 0 . 3 2 x 1 0  -3 ] - - 0 . 0 1 5 5 e V .  (53) 

Here too, one has to have a priori a good estimate 
on the value of s for obtaining accurate values of  E. 

Taylor [73] discussed the case of a general 
kinetic order assuming a constant life time r, 
and found orders ofb = 1.; 1.3; and 1.6 in different 
TSC peaks in KBr. The assumption that ~- remains 
always constant has been questioned by Saunders 
[87] who claimed that since ~-= 1~(Atom), it 
should increase with temperature as m decreases. 
For the second order case, (which includes the 
assumption n = m), he obtained the expression 
for the conductivity, 

o = eprI = (Sl/S)peN e exp(--E/kT). 

[ s; ]1 1 + (sdD exp(--E/gT')dT (54) 
o 

where s is the regular frequency factor, sl = nos/N, 
no and N were defined in Section 1. Chen [88] 
further investigated this expression and showed 
that it is characterized by very slow fall-off at the 
high temperature region, namely, that characteristic 
values of pg = 6/6o are in this case about 0.8. 
Manchanda and Mathur [89] studied this case 
when the hyperbolic heating function is used. The 
simplification, as mentioned before for other cases, 
is due to the simple expression for the integral 
in Equation 54. 

A similar treatment was given [90] (see also 
[25] ) to a TSC peak corresponding in a similar 
manner, to a first order TL peak. The TSC peak 
was found to appear at a lower temperature than 
its TL counterpart (see Section 3.2). The ex- 
pression for o in this case is 

o ( T )  = ( s / A m  ) exp (--E/kT)] 

{I + c~ exp[(s/[J) fTT exp(--E/kT')dT']} 

(55) 
where a =c /no  and where c is the number of  
trapped electrons in traps deeper than the one 
emitting electrons thermally at the range of appear- 



ance of  the peak. This means that in this range 
n + c = m. For very high values of a, Equation 55 
reduces to the simple first order case, but it differs 
from it for a ~ 1. In these cases one gets very low 
values of/~g; for a = 10 -4, for example, a value of 
/ag = 0.267 was found. An approximate method 
for finding the activation energy was found 
empirically 

E = 2.8 kT2m/O (56) 

where 0 = r#g = rco/8. Quite surprisingly, it has 
been found [91] that this equation gives a reason- 
able, although rough, estimate (within an accuracy 
of 15%) for the activation energy in all the above- 
mentioned cases. These include the Saunders TSC 
case given in Equation 54, the first order, second 
order and general order TL cases. It is to be noted 
here that the initial rise method is also applicable 
for the cases in Equations 54 and 55. 

3.2. Simultaneous measurements of TSC 
and TL 

As mentioned above ,while calculating theoretically 
a TL peak for a given set of  parameters 22 -25 ,  
27, 31 ,92] ,  the TSC peak (or more exactly the 
function no(T)) is found as well. In all these cases, 
the calculated TSC peak lagged, to some extent, 
behind its TL counterpart as shown in Fig. 3. A 
similar feature was found, theoretically, in the 
cases mentioned in Section 3.1 [87-90] .  Several 
investigators [93-102] performed simultaneous 
measurements of  TL and TSC (some included 
simultaneous measurements of  thermally stimu- 
lated electron emission, TSEE, see Section 4), and 
found in many cases a shift between a TL peak 
and the corresponding TSC peak. Usually, but not 

l ne ( t 2 c ~  
n j'tn2r {t} dt 

nc tl 
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Figure 3 Quantities measured to find the recombination 
probability A m (see Equation 58). 

always, this shift was in the "right" direction, 
namely, that the TL maximum preceded that of 
the TSC. Chen [103] investigated the relation 
between the TL curve I(T) and the curve of con- 
centration of free carriers no(T) which can be 
found from the experimental conductivity curve 
using Equation 48, no(T) = a(T)I [e#(T)]. 

In this section we will denote the recombination 
probability by A. One can immediately see that 
Equation 7, I = -- dm/dt = Atone, has much more 
general meaning than just describing the situation 
(together with Equations 8 and 9) when only one 
trap and one centre are involved. As long as only 
transitions into one recombination centre are 
measured, one does not mind whether there are 
transitions into other centres. Such transitions 
may change the number of electrons in the con- 
duction band, but Equation 7 holds true for the 
net concentration n e .  Moreover, no information 
about the traps contributing to ne is needed as 
long as ne = no(t) can be measured by conductivity 
measurements. Assuming that no(t) is known and 
that A is temperature independent, the solution 
of Equation 7 is 

I = Amone(t) exp --A Jo ne(t)dt' ; (57) 

no specific heating scheme T =  T(t) has to be 
assumed in this treatment. Writing Equation 57 
for two arbitrary points tl and & and dividing 
one by the other, we have 

I(&)/I(&) = [nc(&)/ne(tO] exp --A . 

(58) 
All the quantities in this equation except for A 
are measurable and thus A can be evaluated. Fig. 3 
shows schematically a peak of nc =no( t )  its 
counterpart I = fit)  and the quantities I(tO, I(&), 
nc(tO, n~(&) and f )  nc(t)dt. It is to be noted that 
only relative value~ of 1(0 are needed whereas 
absolute values of n~(t) are necessary. Since the 
recombination probability A is known [12] to be 
the product of  the thermal velocity v and the 
cross-section for recombination am, one can easily 
evaluate the latter by the values of  A and w Such 
evaluations have been given by Chen [103] for 
insulating and semiconducting diamonds. 

By equating the derivative of Equation 57 to 
zero, one gets 

(dnc/dt)max = A [ne(tmax)] 2 (59) 
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where the subscript "max" indicates that values 
are taken at the maximum of the luminescence 
peak. The right hand side of Equation 59 is always 
positive, and, therefore, the left hand side should 
also be positive. This means that when the TL 
peak reaches the maximum point, the curve of 
ne(t) is still increasing or in other words, that ne(t ) 
maximizes later (at a higher temperature) than I(t). 
Since the dependence of the mobility on tem- 
perature is weak, the TL peak will usually also (but 
not always) precede the TSC maximum. The same 
conclusion was arrived at by Fields and Moran 
[104] using a slightly different line of thought. It 
has also been shown [103] that even if recom- 
binations into more than one centre are involved, 
the appearance of the TL peak at a lower tem- 
perature than the corresponding TSC one, still 
prevails. 

The possible dependence of the recombination 
probability A on temperature has been studied 
[105] using the results of  Lax [16] and Bemski 
[17] who showed that the cross-section for recom- 
bination varies with temperature like T a where 
--4 ~< a ~< 0. Since the thermal velocity depends 
on T 1/2, we have A = A T "  with - -7 /2<a~<�89 
It has been shown [105] that the a(T) curve can 
precede the TL peak if the condition 

A m T m n e m  < a/~ m (60) 

is fulfilled. Here Tm is the temperature of TL 
maximum, ~m the heating rate at Tin, ncm the 
value of  ne at Tm and A m is the recombination 
probability at Tin. Equation 60 holds true under 
certain circumstances, provided a > 0 (i.e. if a = 
in this case). 

If  we now wish to compare peak temperatures 
of TL and TSC (rather than o(T)), we have to take 
into account the temperature dependence of the 
carrier mobility. According to Lax [16] this is 
given by 

/J = /a'T b (61) 

where /~' is a constant and b assumes usually a 
value o f - - ~  (sometimes --2.3). Chen and Fleming 
[105] have shown that the condition for the 

appearance of a TSC peak before the TL is 

Am Tm Umax < C/3ra (62) 

where Am = (.4'/l~'c)T~n and where e = a -- b 
and Om~ is the conductivity at Tin. We now have 
--2~<c~<2 and the inversion or the order of 
appearance may occur more easily, for 0 ~ c ~< 2. 
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As for the possibility of an exponentially tem- 
perature dependent recombination probability 
[32,33],  A = K e x p ( W / k T ) ,  we can use the 
general condition [105] related to he(Tin)which 
is 

(dne/dt)  m _ 2 (d In A / d T ) m .  -- Amnem -- ~m nero 
(63) 

Inserting the function A(T) we get 

(dno/dt)m = K exp (rv/krm)n~r.  + ~m ncm W/kV~. 
(64) 

The right-hand side is always positive, which again 
means that the TL peak occurs at a temperature 
lower than the ne(T) peak. 

4. Thermally stimulated electron emission 
(TSEE) 

The effect of thermally stimulated electron 
emission (TSEE) can be described as follows. A 
sample, usually an insulator or semiconductor, is 
connected to an electrode in a vacuum tube, 
another electrode is also present in the tube at a 
certain distance from the sample. A given potential 
difference is maintained between the two elec- 
trodes. The sample is excited in any of the ways 
described in the TL and TSC cases during which 
time, electrons are being trapped in trapping levels. 
The sample is heated, and when the electrons are 
thermally stimulated from the traps, they can be 
entirely emitted from the sample and accelerated 
to the other electrode. Peaks of  current as a func- 
tion of temperature may thus be recorded, the 
shapes of the peaks and their other properties 
revealing information on the trapping states. Ex- 
perimentally speaking, this effect differs from the 
TSC case by the fact that single particles can be 
detected. Thus, open point counters, Geiger- 
Mfiller counters as well as mulitipliers may be 
used instead of the collecting electrode. It is 
worthwhile mentioning that TSEE is used, in a 
way similar to TL [106] and TSC, for dosimetry 
purposes. In all these pehnomena, the intensity of  
the effect is directly related to the amount of  
radiation which excited the sample prior to the 
warm-up. 

An important feature of TSEE as compared to 
TSC is that, evidently, only electrons can be 
released from the sample whereas holes cannot. 
Thus, one can easily distinguish between electron 
and hole TSC peaks by performing a simultaneous 
TSEE measurement; only the electron peaks would 
appear in the latter. Another advantage of the 



TSEE is that the mobility of the sample does not 
have any role in this phenomenon and, therefore, 
its temperature dependence should not influence 
the results. 

One complication in interpreting the TSEE is 
that while TL and usually TSC as well are mainly 
bulk phenomena, in many cases TSEE is related 
to surface phenomena and is, therefore, not 
necessarily directly related to TL and TSC. It has 
also been shown [107,108] that in order to get 
the emitted current density from the concen- 
tration of electrons in the conduction band, one 
has to take into account the effective work func- 
tion of the sample r One gets 

J = ne(T) [kT/(27rm)] 1/2e-r (65) 

where rn is the effective mass of a conduction 
electron. If we ignore the slight additional T in 
dependence, we get a case which is similar to 
Wintle's case [32, 33] mentioned above. If, for 
example, he(T) has a regular order shape [109], 
the additional factor e -eplkT gives an equatidn 
similar to Equation 17 with --r replacing W. Thus, 
the initial rise method would yield a value of 
E + r for the activation energy, whereas the various 
heating-rate methods give a value of E. As for the 
temperature of appearance, the multiplication of 
no(T) by the increasing function Tlne -r 
should cause the TSEE to appear at higher tem- 
perature than the ne(T) peak. Finally, a small 
correction of --�89 can be made (Equation 20) 
while evaluating the activation energy, if one 
takes into account the T ~n dependence in Equa- 
tion 65. 

TSEE was first found by Kramer [110]. Many 
other investigators have dealt with this phenomenon 
since then, some of the more recent references 
are to be mentioned. Seidl [111] and Schlenk and 
Huster [112] have studied the first order TSEE 
peaks and evaluated the activation energy from 
the experimental curves by the shift of the maxi- 
mum temperature at various heating rates. De Muer 
et al. [113] have used methods based on the shape 
of the TSEE curve of ZnO powder. Laitano and 
Martinelli [114] investigated both TL and TSEE 
in CaSO4 and Li2B407. Bohun [115] has measured 
TSEE and TL in NaC1 and other materials. The 
work of the following groups who dealt with 
various aspects of TSEE are also to be mentioned: 
.Scharmann et al. [116-119] ,  Becker etal. [120-  
122], Holzapfel et al. [107, 123] and Huzimura 
and Matsumura [124]. 

5. Ionic thermoconductivity (ITC) 
Bucci et al. [125,126] introduced in 1964 the 
experimental technique of ionic thermoconduc- 
tivity (ITC). As described by them the experi- 
mental procedure is briefly as follows. 

(1) A sample is polarized in a static field Ep, 
for a time t, at a temperature Tp ; the temperature 
should be high enough to allow the orientation of 
dipoles in the sample, but not too high so that the 
space charge contribution will be avoided. 

(2) The solid is cooled to a temperature To 
Tp, where any ionic motion is hindered, then the 
external field is removed. 

(3) The solid is warmed up, usually at a constant 
heating rate/3, and the discharge current is recorded 
as a function of temperature. ITC "electrical 
glow" peaks may thus be observed, generally 
similar to TL, TSC and TSEE peaks. 

The simple explanation for the appearance of 
an ITC single peak was also given by Bucci et al. 
[126]. The relaxation time of a dipole, 7., at a 
given temperature is assumed to be 7.(T) = 7.0 exp 
(E/kT) where 7.0 is a constant. Let us consider an 
ideal dielectric containing only one type of non- 
interacting dipoles of moment P and relaxation 
time 7-. In the absence of an electric field the 
dipoles are oriented randomly, but if an electric 
field Ep is applied at the temperature Tp for a 
period of time tp >>7.(Tp). The dipoles will be 
polarized and an exponential current decay will 
be observed. The dielectric is now cooled to a tem- 
perature To so that the relaxation time 7.(To) is 
of the order of several hours or more. The field is 
now removed, and the dipoles remain oriented at 
the configuration obtained at T v. The dielectric 
is now warmed up; if this is done at a linear heating 
rate, with /3 = dT/dt, a depolarization current is 
obtained which behaves as 

i(7) = NaipP2aEp/(kTp Zo) exp (--E/kT) 

[exp--(1/flT.o) j~Sexp(--E/kT')dT']  

(66) 
where ~ is a geometrical factor depending on the 
possible dipolar orientation (for free rotating 
dipoles c~ = 1/3) and Naip is the concentration of 
dipoles. Equation 66 is exactly the same as Equa- 
tion 2 where s is replaced by l / to and the numeri- 
cal factor in front of the exponential functions 
has another meaning. The simple ITC peak is thus 
a first order peak and all the methods developed 
for finding E and s in first order TL peaks can 
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automatically be used here for evaluating E and 
to. These include the initial rise method, the shape 
methods and the various heating rates methods. 

The same experimental procedure has been 
followed by several investigators sometimes with 
minor differences in their details. The resulting 
effects were given various names and, as will be 
explained below, these include mainly two 13ro- 
cesses. One is the current due to the polarization 
of dipoles as described by Bucci e t  al. and the 
other is the effect usually called thermally stimu- 
lated capacitor discharge (TSCD) [ 127-129] .  This 
effect is much closer to thermally stimulated con- 
ductivity (TSC) and one author [130,131] even 
calls it TSC. The two electrodes, one of which is a 
semiconducting f'tim and the other ohmic, on the 
sample are considered to be a capacitor. The 
capacitor is charged at a high temperature to a 
certain battery voltage V, then cooled under 
equilibrium conditions to a sufficiently low tem- 
perature To; electrons fill at random the traps 
present in the sample (usually a semiconductor 
[127]. Now, the capacitor electrodes are short 
circuited and after a partial discharge of the 
capacitor, the semiconductor contains only those 
electrons which are captured by the traps. Sub- 
sequent heating of the semiconductor alters the 
free electron density because of the thermal 
liberation of carriers from the traps and their 
motion to the metal electrode, which acts as a 
recombination channel. As mentioned above, this 
is similar to the expected TSC peaks in the same 
sample. As opposed to the ITC dipole depolariza- 
tion case, the peaks in this case are not necessarily 
simple first order curves. The advantage of the 
present technique, as opposed to the TSC measure- 
ments, is in cases where the dark current, which is 
the background current in TSC measurements, is 
high. In the present technique, this is practically 
eliminated. MOiler et  al. [132-134] have investi- 
gated various aspects of TSCD which they, as well 
as other investigators, name thermally stimulated 
depolarization (TSD), and ITC. In these papers 
they have advocated the use of hyperbolic heating 
rates for these cases. In another paper, M(iller 
[135] discusses the relationship between TSD and 
TSC. Perlman e t  al. [136-141] have investigated 
ITC and TSCD, which they also called thermal 
currents, in various organic materials such as 
carnauba wax and mylar. Hickmott [142, 143] 
studied TSCD, which he called thermally stimu- 
lated ionic conductivity (TSIC), in SiO2, mainly 
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by the use of hyperbolic heating rates. Other 
names used were depolarization thermocurrents 
(DTC) [144], dielectric relaxation current (DRC) 
[145] or stimulated dielectric current (SDRC) 
[146]. In this measurement, a voltage Vd was 
applied to the sample at a high temperature. The 
sample was then cooled to low temperature and 
at this low temperature, the voltage bias was 
changed to another value Vi~ I'd; The tem- 
perature was not raised uniformly and the sample 
current was measured. A technique slightly dif- 
ferent in detail, though very similar in nature, was 
described by Podgor~ak and Moran [147, 148] 
who called it radiation induced thermally activated 
depolarization (RITAD). In this effect, investi- 
gated in LiF, a sample was irradiated at low tem- 
perature in relatively high externally applied 
electric fields (~103Vmm-l ) .  The subsequent 
heating of the crystals with the electrodes shorted 
through an electrometer, produced a series of 
depolarization current minima and maxima. 

All the above-mentioned authors, excluding 
Podgor~ak and Moran, reported first order ITC 
and TSCD peaks. Other than the possibility of 
having two or more overlapping peaks, the analysis 
of the observed curves is as simple as that of first 
order TL peaks. Moran e t  al. [147, 148] found a 
nearly symmetrical peak in CaF2 and suggested a 
second order process 

J ( t )  = - -  d o / d t  = 7(7)o 2 (67) 

where o is the polarization of the electret, J(t) the 
discharge current and 7(T) = 3'0 exp ( - - E / k T )  where 
70 is the pre-exponential factor. A solution similar 
to Equation 4 immediately follows and so does the 
analysis of second order TL peaks. Peaks that are 
of neither first nor second order kinetics have also 
been found experimentally by some investigators 
[149-152] most of whom adopted the "general 
order kinetics" method for analysis. They assumed 
an equation analogous to Equation 5 and thus 
could use the analysis related to Equation 5. 
Kristianpoller and Kirsh [153] have applied this 
analysis to ITC peaks in SrF2:Tb and found values 
of 1.5 and 1.6 for the kinetic order b for peaks at 
365 and 278 K, respectively. 

Tiller e t  al. [154] mention the possibility of a 
pre-exponential factor in ITC which is inversely 
proportional to temperature. While evaluating the 
activation energy in this case, one should use the 
correction given in Equation 20 and in Table I 
with a = -- 1. A few recent papers [155-159] on 



ITC as well as a recent book [160] dealing with 
thermally stimulated discharge of polymer elec- 
trets are also to be mentioned here. 

6. Thermal annealing 
When a solid sample is irradiated by X-rays or 
nuclear irradiation, defects may be produced. 
These are to be differentiated from the traps due 
to existing impurities or defects in the sample 
which can be filled by the irradiation. The energy 
stored (due to the production of new defects)can 
be released during the heating of the sample. This 
can sometimes be detected as TL as seen in Section 
2; in other cases, this thermal annealing of the 
defects can be measured using a calorimetric 
method. In this method [161-163] the rate of 
release of stored energy is directly measured as a 
function of temperature. This rate of release is 
analogous to the intensity of emitted TL. The 
general equation governing the process was given 
by Damask and Dienes [164] as 

-- dn /d t  = F(n)Ko  e x p ( - - E / k T )  (68) 

where n is the concentration of defects, F(n)  a 

continuous function of n, and Ko the pre- 
exponential factor. Cruz-Vidal et  al. [162] claimed 
that it is not only simplest but also most realistic 
to assume either a first or a second order kinetics, 
namely, F ( n )  ~ n and F(n)  ~ n 2 respectively. Once 
such a behaviour is established, by using the form 
factor of the peak/.re, for example, one can utilize 
all the above-mentioned TL methods for analysing 
these peaks. For example, Cruz-Vidal et  al. [163] 
calculated the activation energy by assuming a 

certain frequency factor for KC1 samples after 
4.6 K reactor irradiation. A better approach would 
be using one of the methods mentioned in Section 
2.2 to evaluate E, thereafter calculating the 
frequency factor. So, for example, for their peak 
at 34.5 K this would result in a lower value for E 
and a correspondingly lower value for the frequency 
factor fo. 

ltoh et  al. [165,166] assumed that F(n)  ~ n x 

where x is not necessarily 1 or 2. This brings us 
back to an equation equivalent to Equation 5 and 
to the treatment of general order kinetics. Saidoh 
and Itoh [66] discussed the annealing curve 
measured in an alternative way. When the defects 
are present in a transparent sample, the optical 
density can be measured which gives information 
on the concentration of the defects. During the 
heating of the sample, the absorption changes 

and thus n = n(T) can be evaluated. The deri- 
vation of this curve with respect to temperature 
gives an annealing curve analoggus to the glow 
curve. This has been mentioned by Balarin and 
Zetsche [167] who dealt with first and second 
orders only. 

Assuming that F ( n )  is a well-behaved function, 
Damask and Dienes [164] and other investigators 
[168,169] showed that Equation 31 gives a good 
approximation for the activation energy. The 
novelty here is that this is the case for all well- 
behaved functions including F(n)ec  n x ,  but it is 
defintely not limited to this case. This fact can 
be used for the other thermally stimulated 
phenomena as well. 

7. Partial thermoremanent magnetization 
(PTRM) 

The ITC mentioned above is a result of freezing 
the electrical polarization whilst cooling a sample 
under an electric field. In a similar way, magnetiza- 
tion can be frozen in a magnetic specimen whilst it 
is cooled in a magnetic field. This thermoremanent 
magnetization (TRM) can be measured as a func- 
tion of temperature whilst the sample is heated. 
Whereas in the electrical case, the ITC measured 
is directly proportional to the derivative of the 
polarization, one has to find the derivative curve, 
which is called partial thermoremanence magneti- 
zation (PTRM), from the TRM curve, in order to 
obtain the analogue of the ITC curve. Such 
measurements for synthetic and natural ilmenite- 
haematites gave been performed by Westcott-Lewis 
and Parry [170-173] .  The theory of TRM and 
PTRM has previously been established by Ndel 
[174] and Stacey [175]. According to Stacey, the 
magnetic behaviour is governed by the differential 
equation. 

-- dM/d t  = CM exp (-- E / k T )  (69) 

where M is the magnetization and C the frequency 
factor. As pointed out by Chen and Westcott- 
Lewis [176], this is analogous to the Randall- 
Wilkins TL eqaution (Equation 1) and, therefore, 
the methods of analysis known for the latter are 
applicable to the former. According to Stacey 
[175], C is proportional to T. Here, too, one can 
use the appropriate corrections developed for TL 
curves. For example, if one uses the r, 6 or co 
methods (Equation 24) with the parameters given 
in Table I, a value of a = 1 should be employed. 
Thus, for example, the activation energy can be 
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found from the total width of the PTRM curve 

by 

E = 2.52kTZm/m -- 3kTrn. (70) 

8. Thermal desorption and evolved gas 
analysis (EGA) 

The phenomenon of  thermal desorption, some- 
times called flash desorption (a somewhat different 
version of which is referred to as evolved gas 
analysis (EGA) [177]) was described by Redhead 
[178] as follows. A sample, usually a metal is 
rigorously cleaned in vacuum, a known gas is then 
introduced and allowed t o  adsorb on the sample. 
The gas is then desorbed by heating the sample 
while the pressure in the system is recorded; the 
resulting pressure-time curve is called the "des- 
orption spectrum". If the temperature-t ime 
relation for sample heating is suitably controlled, 
the desorption spectra can be analysed, usually 
employing linear or hyperbolic heating rates. The 
closely related evolved gas analysis (EGA) is the 
technique of determining the nature and amount 
of  any volatile products formed during thermal 
analysis. The analysis of  the curves can yield infor- 
mation on the number of various desorption 
phases, the population of the individual phases, 
the activation energies of desorption, the pre- 
exponential factors and the order of the desorption 
kinetics. 

Redhead as well as other investigators [179-  
189] have written an equation analogous to our 
Equation 5 which gives the rate of desorption as 
follows 

-- dO/dt = AO" e x p ( - - E / R T )  (71) 

where 0 is the surface coverage, A the pre-exponen- 
tial factor, E the activation energy, and n the order 
of the kinetics. It is customary to give the activation 
energy in the thermal desorption case, as well as in 
the thermogravimetry (TG) and differential 
thermal analysis (DTA) (see below) in kcal mo1-1 
rather than in eV. This is the reason why R, in 
kcalmol-~K q ,  replaces k in Equation 71, and in 
the following discussion, the ratios E / k T  and E / R T  
are the same. The units in modern use are kJ mo1-1 
for E, and kJ mo1-1K -1 for R. Some researchers 
dealt only with the cases of first and second order 
kinetics, namely, n = 1 and 2, whereas others 
assumed "general order" kinetics with values of n 
ranging up to 3 [190]. This can explain the 
occurrence of a peak with symmetry (measured by 
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/2g) different from that characteristic to the first 
and second orders. Equation 71 is an alternative to 
the assumption [191 ] that the activation energy is 
coverage dependent as E-~ Eo--xO(t)/O(O)where 
both Eo and x are constants and x ~> 0. As men- 
tioned by Chen [189], one can apply the methods 
developed for general order kinetics TL for the 
thermal desorption curves, assuming that Equation 
71 represents the situation. This seems to be the 
case according to the works mentioned above 
[178-188] .  For example, the method of various 
heating rates has been reported to be applicable 
for thermal desorption when linear heating rates 
were used [185,186].  As we know from TL 
theory, this can be done for any increasing heating 
function provided that the value of the heating 
rate at the maximum, 3m, replaces 3 in the plot of 
ln(TZm/[3) versus 1~Tin. McCarroll [191] has shown 
that the mass spectrometer signal intensity, which 
is the same as thermal desorption, is given by 

I(t)  = - -gO(t)T( t )  -1/2. (72) 

This is equivalent to the pre-exponential factor 
which depends on temperature like T a with 
a =--~.  The evaluated activation energies should, 
therefore, be amended by subtracting a value of 
�89 (analogous to �89 from the otherwise 
calculated energies. Finally, special attention 
should be paid to two recent review papers [186, 
187] dealing with various aspects of thermal 
desorption. 

9. Derivative thermogravimetry (DTG) 
Another important member of the group of 
phenomena entitled "thermal analysis" is thermo- 
gravimetry [192-197] .  In this technique, the 
weight of  a substance, in an environment heated 
at a controlled rate, is recorded as a function of 
time or temperature. The record of the weight as 
a function of t or T is the thermogravimetric (TG) 
curve. Derivative thermogravimetry (DTG) is the 
technique yielding the first derivative of  the 
thermogravimetric curve with respect to either 
time or temperature. Thus TG is analogous t o  
the curve of n, the concentration of carriers in 
trapping states in TL, whereas its derivative the 
DTG, is analogous to the TL intensity. Since it 
is conventional [195] to plot weight losses down- 
wards, a typical DTG curve looks like an upside- 
down TL curve. In processes such as oxidation, 
weight gains are involved and the curves resemble 
the TL peaks. 



As agreed by many investigators [198-201] 
the equation governing the TG and DTG curves is 

-- dW/dt  = A e x p ( - - E / R T ) W  n (73) 

where W is the fractional residue weight of the 
sample. This, again, is exactly analogous to our 
Equation 5. Certain non-integer values of the 
kinetic order n, such as 1, ~ [202], 0.4, 0.6, 0.7 
and 1.6 [203] have been mentioned for certain 
materials. As stated before [204], the methods 
developed for the analysis of TL curves, can be 
used to extract the activation energy, the kinetic 
order and the pre-exponential factor from the 
DTG curve. According to Zsak6 [205], the pre- 
exponential factor may be temperature dependent, 
behaving like T m. The corrections mentioned 
above, for the calculated activation energy when a 
temperature dependent pre-exponential factor is 
involved, should be applied. An important review 
paper on the general treatment of the thermo- 
gravimetry of polymers by Flynn and Wall [206] 
should be mentioned here. These authors discuss 
the use of the initial rise method and the various 
heating rates method for linear as well as non-linear 
heating rates. They also consider the dependence 
of the pre-exponential factor on temperature and 
suggest alternative numerical evaluations of the 
integral appearing in Equation 35 to that given in 
Section 2.3. 

It is to be noted that cases more complicated 
than those described by Equation 73 have also 
been considered for more complicated thermo- 
gravimetric results, gatava [207] and Zsak6 [205] 
wrote instead of Equation 73 the general equation 

-- dW/dt  = A f ( W )  e x p ( - - E / R T )  (74) 

where f(W) can be W i n ( 1 -  W) n or even more 
complex functions of 14/. Ozawa [208] suggested 
two activation energies which are active at the same 
temperature range, namely, an equation of the 
form 

dc/dt  = A1 exp ( - -E1 /RT)  (1 - -c)  

+ A2 exp (EJRT) (1 -- c) (75) 

and investigated the changes in the resulting curve 
under various heating rates. 

10. Differential thermal analysis (DTA) and 
differential scanning calorimetry (DSC) 

Differential thermal analysis (DTA) [192-197] is 
the thermal technique in which the temperature of 
a sample compared with the temperature of a 

thermally inert material is recorded as a function 
of the sample as it is heated (or cooled) usually 
at a uniform rate. Temperature changes in the 
sample are due to endothermic or exothermic 
transitions or reactions such as those caused by 
phase changes, fusion, crystalline structure inver- 
sions, boiling, sublimation, dissociation reactions, 
destruction of crystalline structure and other 
chemical reactions. The temperature changes 
occurring during these chemical or physical changes 
are detected by a differential method. 

A very closely related technique is differential 
scanning calorimetry (DSC), which consists of 
the recording of the energy necessary to establish 
zero temperature difference between a substance 
and a reference material against either time or 
temperature as the two specimens are subjected 
to identical temperature regimes in an environ- 
ment heated or cooled at a controlled rate [195]. 

Kissinger [209,210] wrote the following 
equation governing the process 

dx/dt  = A(1 - - a )  n e x p ( - - E / R T )  (76) 

where a is the fraction reacted. If we write y for 
1 - -  a we obtain 

- -dy /d t  = A y  n e x p ( - - E / R T )  (77) 

which is exactly the same as Equation 5 and has, 
therefore, the same implications regarding the 
possible uses of the various mentioned methods. 
For example, Kissinger [210] has developed the 
method of various heating rates for this case and 
proved that d[ ln ( [3 /T2m)] /d (1 /Tm)=,E /R  not 
only for the first order case but for the general 
order kinetics as well. The possibility of using a 
non-linear heating function [44] has not been 
mentioned. 

The validity of the Kissinger method has been 
challenged by Reed et al. [211] who showed that 
the maximum rate of reaction does not necessarily 
occur at the peak of the DTA curve and that 
Kissinger's method may lead to large errors in the 
values obtained for the activation energy and pre- 
exponential factor. Other investigators still tend to 
believe that Kissinger's method is applicable in 
certain cases, for example in the differential scan- 
ning calorimetry (DSC) of the crystalization pro- 
cess in As2Se3 [212]. 

Various methods of analysis of DTA curves 
were discussed by Sharp [213]. These include 
the important work of Borchart and Daniels 
[214] which is applicable to reactions in solution. 
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Under specific conditions, Equation 77 was arrived 
at and a method of trial and error based on the 
initial rise method was suggested for evaluating 
the activation energy, the pre-exponential factor 
and the reaction order. A refinement of this 
method was given by Weber and Greer [215] and 
an alternative method was suggested by Tateno 
[216]. 

The main experimental problem in DTA 
measurement (which actually occurs, to some ex- 
tent, in the other thermally stimulated processes 
as well) is to maintain a uniform temperature 
throughout the sample. The existence of a tempera- 
ture gradient in the sample can invalidate the 
methods mentioned of evaluating the reaction 
parameters in solids. It has also been pointed out 
that Equation 7 is merely a mathematically con- 
venient expression rather than one that expresses 
accurately a physical reality [217]. This point 
seems to be similar to the convenience of using 
Equation 5 as opposed to the difficulties arising 
in dealing with the accurate set of Equations 7 to 
9 in TL theory. 

The theory of Borchardt and Daniets has been 
modified to include diffusion-controlled reactions 
[217,218].  The diffusion equations can be 
written in the general form 

da/dt = kf(a) (78) 

where f(a) depends on the particular process. 
For the oxidation of many metals, one has the 
"parabolic law" in which f (a)= 1/(2a). For the 
equation of Gistling and Braunshtein [219] one 
hasf (a)  = 3/2 [(1 -- a) 1/3 -- 1]. 

1 1. Conclusion 
Methods developed independently for each of the 
processes discussed here are shown to be applic- 
able, under the appropriate conditions, to the 
analysis of the other thermally stimulated pro- 
cesses. Some of the methods were developed in 
parallel, since the investigators in one field were 
not aware of the advances in the other related fields. 
In other cases, certain methods reached a high 
degree of sophistication, which can now, by 
analogy, be almost automatically applied to the 
other phenomena as well. The stress in this work 
on the theory of TL is due, to some extent, to 
personal tendencies. 
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