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Abstract — The phosphorescence decay of radiation stimulated luminescent materials at a constant temperature reveals
information on the processes involved. The shape of the decay curve depends on the kinetics. Inversely, a study of these
curves yields information on the kinetic parameters. A way of presenting the phosphorescence decay which emphasises the
features of the curve is to plot y=t-1(tj as a function of x=In 1. This yields a peak shaped curve for a simple phosphorescence
decay. This curve resembles the TL glow curve thal one expects for the same kinctic law. In the present work . the shape of
the curve is studied by checking the symmetry factor p, = 8/o where d=x,x,,, w=x,-X; and where X, is the maximum point
and Xy, X; are the two half-inensity points. The dependence of i, on the kinetic order b is determined. Inversely. the

parameter b can be evaluated from the experimental resufts.

INTRODUCTION

The study of phosphorescence, namely. the long
petiod  decay of luminescence at constant
temperature has been accompanying the research
inmo thermoluminescence. The pioneering work of
Randall and Wilkins®*!, which is considered by many
as the cornerstone of the modern investigation of TL.
included an extensive discussion on phosphorescence
decay. In a sense, the study of phosphorescence is
expected to be simpler than that of TL. In the latler,
while scanning through temperature, the probability
is large of going from a range where one trapping
state is being thermally emptied, into another range
where another kind of trap is dominating. When a
measurcment is made at a constant temperature, it is
more likely that fewer trapping states (hopefully
exactly one} are involved in the process. Thus, the
task of extracting trapping parameters from a decay
curve looks, at least in principle, simpler than that of
analysing TL peaks. On the other hand, the decay
curves are usually slowly varying ones and no
outstanding features can be seen, which reduces our
ability to extract the relevant parameters from the
results. Randall annd Wilkins'"! themselves hinted at
the solution of this problem and suggested that
plotting y=t-1{t) as a function of x=In ¢ should yield
a curve which would accentuate the hidden features
of the decay curve in hand. Visocekas'” further
studied this representation and showed that both in
first order cases and in general order ones (including
second order kinetics). a peak should occur which
resembles to some extent a TL peak. The
dependence of the shape of this peak on the order of
kinetics also resembles that of TL, as will be

elaborated below. These peaks shift with
temperature and, as shown by Visocekas®®, one can
evaluate the activation energy E by measuring the
shift A (on the [n t scale) at two temperatures T| and
T,.
The expression given is
E = Ak T, TAT-T)) (1)

The purpose of the present work is to discuss further
this presentation of phosphorescence decay, to show
its similarity to TL peaks with hyperbolic heating
rates and to indicate a way of extracting directly the
kinetics order from this representation. It is to be
noted that this approach bears some resemblance, at
least in principle, (o a very recent work' describing
a new method, Photoluminescence Transient
Spectroscopy (PTS) which is similar to the well
known DLTS method. This involves measuring the
luminescent intensity of a fast exponentially decaying
process. at two different instants of time and looking
for the cccurrence of peaks when the differential
luminescent intensities are plotted as a functionof T.

FIRST ORDER KINETICS

The very well known first order equation can be
written as

I = -dn/dt = nfy (2)

where 1 is the phosphorescence intensity, n is the
instantaneous concentration of trapped carriers
{m™*). t the time(s) and y=s"‘exp(E/kT) where s is the
frequency factor(s), E is the activation energy (eV), k
is Boltzmann's constant (¢V.K™") and T is the absolute
temperature (K). vis the characteristic lifetime of the
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process, namely the time for the decay of the
intensity to e”' of its initial value. It is obvious that vy
depends very strongly on the temperature. Thus, if
we take T,>T, we get y,=>v..

The solution of Equation 2 at a given lemperature
is

1= 1, exp(=thy) = (nofy) exp(-t/y) )

Let us take a new variable x=Int, i.e. t=e". We now
have

=1, exp(-e'/y) (3)
If we now take y=I-t, we have
y =1, e" exp(-e'fy) 4)

This represents a peak shaped curve, similar to a TL
peak. For low values of x. exp(—e*fv) is nearly
constant, and the e* behaviour in the first exponent
dominates. At higher values of x, the decreasing
function exp(—e*/y) takes over and for large values of
X,y goes to zero. In between, a maximum occurs, the
location of which, x,,, can be found by equating the
derivative of Equation 4 to zero. This immediately
yields the maximum condition

{5

Thus, plotting y=I-t against x=In t yields a peak
having a maximum at x,=In y. In fact, sincelntisa
monotonic function, the maximum would occur at
to=v even if t-1{t) is plotted against the time t
dircctly. The rest of the discussion, however, is
related to the specific plot of y against x=Int.

As shown by Visocekas®, if the phosphorescence
decay associated with the trapping states is
performed at two different temperatures T, and T;,
the maxima in the I-t against In t plot will occur at the
points t,=vy,=slexp(E/kT,); t;=v,=s"lexp{E/kT):
respectively. The shift with temperature on the In t
scale would be

A =Iny-ny, = (EKUT-1T)  (6)

from which E is readily found as pointed out in
Equation 1 above. Once E is found, s can be
evaluated immediately using a known value of yat a
certain temperature T.

Since the curve obtained is similar to that of T1T.,
there is a point in studying its symmetry properties
using tools developed for the study of TL. We shall
therefore try to evaluate, in addition to the vatue of
X, mentioned above, the magnitudes x, and x., the
two points at which y(x) reaches half of its maximum
intensity. Inserting the value of x,, into Equation 4.,
we get

eXpEn) = Y= ln=y—Int, =ny

¥m = loexp(xa) €™ = (n/y) ve'' = nje  (7)

x, and x, will be the low and high solutions of y=y, /2,
namely, of

n/(2e) = (n,fy) e* exp(—e'/y) (8)

Defining Z=e*/y we get the equation
Ze?= 1/(2e) 8")

The solutions 7, and Z, can obviously be found,
irrespective of y. Denoting by Z, and Z,, {Z,>Z,).
the two solutions, we immediately get x,=In(y Z,);
x;=In{v Z,); X,,=Iny. Following the study of TL"*"
we now define the quantities

w=xrX =y Zo) - In(y Z,)=In(Z,/Z;)
T=Xp-X;=Iny — In{y Z,)=—InZ,{>>0) (N

d=xxg=In(y Z;} - Iny=InZ,

In the same way as in the TL convention, we define
the symmetry factor usually denoted p,, u,=d/w.
Substituting from Equations 9 we get

pe=In Zy/in (Zy/Z,) (10

A small computer program has been prepared which
found the two roots of Equation 8’ and evaluated the
value of p, for the first order case to be pu,=0.4026. It
is to be noted that this is the value of w, for the first
order case, irrespective of the value of the frequency
factor s and the activation energy E.

GENERAL ORDER KINETICS

The kinetic equation known as ‘general order’ is
[ = —dn/dt = 8" exp(-E/kT)n" (1

where b 1s the kanetic order and s" a constant pre-
exponential factor with the dimensions m** " 5!,
This includes. of course, the special case h=2.
namely, the second order kinetics where the
dimension of s’ is m*s”'. Let us define a frequency
factor s=s'n' having units of s'!; the solution of
Equation 11 is now

[=sn, exp(-E/KTY[1+(b —1)s exp(-E/KTH]™™V({12)

Defining as above y=s"'exp(E/kT) and changing the
variables so that x=Int—st1=e* and y=1I-(, we get

y=(no/Y)e[1+(b ~1e ] (13)

The maximum condition is found, again, by setting
dy/dx=0 which yields exp(x )=y — x,,=In(L,)=Iny.
A change in the temperature would, therefore, cause
the same kind of shift of the maximum, and the
method by Visocekas™ 1o evaluate E and s can be
applied with no change.

Inserting the maximum condition into Equation 13
we gel y,=n,/b™™!" which, for the special case of
b=2 vyields y,=ny/4. Following the procedure
described above for the first order case, we would like
to find the lower and higher values of x which solve
the equation y=y,,/2 where y is given in Equation 13.
Using again the variable Z=e%/y, we get the equation

2Z = {{1+(b-1)Z]b" ) (14)
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Equation 14 is independent of E and s’ and therefore,
the values Z, and Z, will depend only on b. A
computer program has been prepared which solves
Equation 14 for any given b (excluding b=1 which
has been dealt with above). Once Z, and Z. are
found, the values of 1, b, w and u, can be cvaluated
using Equations 9 and 10. Figure [ depicts the curve
of u, plotted against b thus calcuiaied for 1=<b=<3,
The main use of Figure 1 should be the foliowing.
Given a decay curve, plotI-t against la t, evaluate the
symmetry factor g, and then use Figure 1 to find the
effective order of tfle process.

The spectal case of second order kinetics deserves
some attention, Equation 14 reduces to

8Z = (1+ZY (15)

the solutions of which are Z,=3-2,2 and
7,=3+2.2. From this we readily get t=-in Z,
=1.7627, &=InZ,=1.7627 and p,=0.5, namely, the
resulting curve is exactly symmetric.

DISCUSSION

A method which transforms decay curves into peak
shaped ones has been described, which emphasises
the features of the decay curves. Simple methods for
evaluating the activation energy, frequency factor
and kinetics order have been discussed. A mention
should be made of the fact that Figure 1 which shows
the dependence of the shape factor u, on the kinetics
order b, is rather similar to the figure given
previously'™ for the dependence of u, on b for the TL
pcaks obtained under a linear heating function. The
main difference between the two 1s that in the present
case, the curve of u, as a function of b is one-valued
whereas in the linear heating TL. case, there is a slight
dependence of u, on E and s for any given value of b.
In this sense, the present case resembles TL peaks
with a hyperbolic heating function™”* and Figure 1
can be wtilised for the analysis of TL curves under this
heating schedule as well.

Finally, although Equation 11 is termed ‘general
arder’, it includes only three parameters, whereas in
the most general case (se¢ discussion in Chen and
Kirsch®), a single TL peak depends on eight free
parameters. The method described herewith should
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Figure 1. The symmetry [actor u, a8 a function of the order
b. calculated from Equations 8" and 14,

be checked with real-life decay curves as well as with
computer generated curves found by the numerical
solution of the three simultanecus differential
equations governing the TL resulting from the
thermal release of carriers from a single trapping
state and their subsequent recombination into a
single kind of centre. In this respect, we mention that
it has recently been shown” that the 3-parameter
approximation is not a good representation for a
more complicated case of simmultaneous release of
etectrons and holes. The latter involves, however,
four simultaneous equations with more parameters.
including (which is most relevant to the complication
of this situation) two activation energies which are
active in the same temperature range. The three
paramgeter approximatijon is expected to be valid in
the ‘usual’ case where either electrons or holes are
thermally released in a given temperature range.
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