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Superlinear growth of thermoluminescence
due to competition during irradiation

Abstract

The superlinear dependence of thermoluminescence intensity on the dose of
excitation which often occurs under p and vy irradiations is theoretically investigated,
the superlinearity being due to competition during irradiation of carriers falling
into TL traps and into deeper traps. The conditions for various growth behaviours
are analytically investigated, namely, the relations between the trapping parameters
leading to superlinearity, linearity or sublinearity. Also given are the conditions
for having superlinearity starting at low doses versus those leading to a linear-
superlinear-saturation behaviour. Computer calculations have been performed to
show various dependences on dose for chosen sets of parameters.

Introduction

The growth of thermoluminescence (TL) with excitation dose is frequently
found to exhibit superlinearity. In general terms, this means that the glow
intensity grows faster than the exciting dose. More precisely, if we denote the
TL glow intensity by S and the dose by D, this means that dS/dD increases
over a certain dose range, or in other words, that d>S/dD? > 0 in this particular
range. It should be noted here that S can be either the maximum intensity or
the total area under the curve since it has been shown by Kristianpoller et al.
(1974) that to a good approximation, these two quantities are proportional,
even in complex cases.

Superlinear behaviour can be roughly divided into two categories, one in
which superlinearity starts at the lowest measurable level (Halperin and Chen,
1966) and the other, which seems to be more common, in particular when the
excitation is by nuclear irradiation in which the growth starts at a linear rate
and then becomes superlinear (for example, Cameron et al., 1968). In both cases,
the growth curve goes to saturation at high doses. In the former case, super-
linearity can be described by Soc D* with k > 1 (Chen and Halperin, 1966),
however, such a definition is not applicable to the latter; only the definition
d?S/dD? > 0 is general.

Various workers have suggested explanations for the observed forms of super-
linearity. Halperin and Chen (1966) explained the superlinear TL growth in UV
irradiated diamonds as due to the multistage transition of electrons from the
valence to the conduction band prior to being trapped in electron luminescence
centres. This accounted for the observed results of superlinearity starting at the
lowest doses such that S oc D* (D being the UV light dose). The value of k
depended on the excitation wavelength, its maximum value was found to be 3.
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Another approach was taken by Cameron and Zimmerman (1966) and Cameron
et al. (1968) who ascribed the superlinear response of LiF to the creation by the
ionising radiation of additional traps or centres in the crystal.

Rodine and Land (1971) suggested a model in which the TL intensity is
proportional to both the initial concentration of electrons in traps and holes in
centres due to the presence of an additional postulated trap, the retrapping into
which is more efficient during heating, than both retrapping into the initial trap,
and recombination. If this is the case and if both initial concentrations are
linearly dose dependent, one should expect a D? behaviour starting at the
lowest doses and up to a point where saturation begins. This model was further
investigated by Kristianpoller et al. (1974) who found the conditions leading
to superlinearity under these assumptions.

An alternative way of explaining superlinearity is the track interaction model
(Claffy et al., 1968 ; Cameron et al., 1968; Dobson and Midkiff, 1970; Attix, 1975;
Larsson and Katz, 1976). A track is taken to be the path of the primary
excitation (e.g. energetic electron) and the associated ionization. According to the
model, at low doses all tracks are considered to be well separated, therefore the
TL response arises from the recombination of electrons and holes within the same
track, the result is linear growth of TL with dose. For higher doses, the tracks
overlap and a hole released from one track during heating may interact with
centres in nearby tracks, this increases recombination probability and hence gives
rise to superlinearity.

Suntharalingam and Cameron (1969) suggested a different and seemingly more
satisfactory model for superlinearity. They postulate that the filling of the trap
(or equivalently, the centre) giving rise to TL is superlinear due to competition
during irradiation by another trap which is of lower concentration but higher
trapping probability than the TL traps. In order that superlinearity be apparent
in the TL response, the superlinearly filled trap must be of lower population
than the corresponding centre. Qualitatively, at low doses, the excitation fills
both traps linearly. At a certain dose, however, the competing trap comes to
saturation, hence more electrons are available to the trap of interest. This causes
a faster, though linear, filling of this trap; the transition region from one linear
range to the other would, however, be superlinear. It is to be noted that such
competition-superlinearity in TL bears some resemblance to superlinear lumi-
nescence (Nail et al., 1949) and superlinearity in photoconductivity (Duboc, 1955;
Cardon and Bube, 1964; Dussel and Bube, 1966), the difference being mainly
that in luminescence and photoconductivity, the superlinear behaviour is of
intensity vs. excitation intensity (rather than vs. dose).

A number of investigations dealt further with this possibility of competition
during excitation (Aitken et al., 1968; Savikhin, 1972; Zavt and Savikhin, 1974;
Nakajima, 1976). A slightly different version was suggested by Israeli et al.
(1972), who dealt with the creation of point defects in alkali halides in which
competition during excitation took place. In this case, the attenuation of the
exciting UV beam was also taken into account.
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Finally, a recent paper by Fain and Monnin (1977) which explains super-
linearity as being due to spatial correlation between charged sites, should be
mentioned.

The main purpose of the present paper is to further investigate, both analyti-
cally and numerically, the model suggested by Suntharalingam and Cameron
(1968). The conditions under which superlinear behaviour would be expected are
investigated as well as the specific conditions for subcategories of superlinearity,
namely, that preceded by linearity and that beginning from zero dose.

Analytical approach

We assume an energy level diagram as depicted in Fig. 1. N, is the trap giving
rise to TL and N, is the competitor; N, and N, will also be used to denote the
concentrations of these traps, n, and n, represent the concentration of electrons
in these traps and m represents the concentration of holes in luminescence
centres. We assume that at the end of the irradiation, n, < m and there-
fore, the peak intensity S (or I.) is proportional to n,. We are thus interested
in the dependence of n, on the dose.

N

Ail_ A n;, N,
Ah nz, NZ

m-1_

Fig. 1. Energy level scheme with the TL trap N,, competing trap N, and TL centre m.

The condition to be considered regarding superlinearity is d2n,/dD? > 0; this
will be analytically studied. As shown below, we shall derive an expression with
D as a function of n;, therefore, it is easier to investigate d>D/dn,2. Since

d’n,/dD? = —(d?D/dn,?) / (dD/dn,)3, )

the condition d?n,/dD? > 0 can now be written as d*D/dn,2 < 0 (since dD/dn,
> 0). This will be investigated for various cases.

We shall start with the case in which electrons are raised by the irradiation
from the valence band into the conduction band, and fall into either N, or N,.
We thus neglect the possibility of band-to-band or band-to-centre recombination
during excitation. The equations governing the process are (see Paige, 1957),

dn,/dt = A; (N;—n,) n, 2
dn,/dt = A, (N,—n,) n, 3)
dn./dt = X—dn,/dt—dn,/dt 4
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where n. is the concentration of elctrons in the conduction band, A, and A,
are the transition probabilities into N, and N, respectively and X is the rate
of creation of electron-hole pairs. It is assumed here that all the created holes
are accumulated in the recombination centre m.

Eliminating n. from (2) and (3) we get

A_lNl_nl =A_2N2_n2 )
the solution of which yields
n, = (Ny;—n,) [(N; —n;)/(N; —njo)]AA (6)

From the usual assumption (Halperin and Braner, 1960) that the rate of change
of electron concentration in the conduction band is much smaller than the rate
of change of concentration in traps, i.e., |dn,/dt/ << |dn,/dt| and |dn/dt] <<
|dn,/dt| eq. (4) becomes

X = dn,/dt+dn,/dt )

and by integration
t
D=fth= n;+n,—n;q—N,, @)

where n,, and n,, are the initial concentrations of electrons in n, and n,
respectively. In the usual case where X is held constant during the excitation,
D = X.t. Substituting n, from (6) to (7) we get

D = n;—n,,+ N, —n,5,— (N, —n,,) [(N, —n,)/(N; —n,,)]*A/A ®

The superlinearity feature can be shown by differentiating eq. (8) twice which gives

AJA =2
d?Djdn,2 = —(A,/A,) (A,/A,—1) ((1\11‘112_—;200))2 (1:1:1?110) ()

The condition for this to be negative is

A, .
A_1_1 > 0, i.e.

A, > A, (10)

This condition is explicitly that which has been previously stated in words, i.e. that
the retrapping probability of the competitor should be larger than that of the
trap directly involved in the TL process. We would like to mention here that
the filling of n, follows the same equation (8) with the subscripts 1 and 2
interchanged and the same is true for eq. (9). This shows immediately that for
A, > A,, n, grows sublinearly, or, more specifically in this case, n, saturates.
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It is to be noted that eq. (8) is expected to give superlinear dependence for
A, > A, in the whole range of 0 < n, < N, whereas in practice, a linear region
of growth may be observed and certainly, at high doses saturation will begin.
The point is that eq. (9) shows that d2D/dn,? is negative, but it does not show
explicitly the values of d2D/dn, 2. Moreover, since we are interested in d’n,/dD? =
—(d2D/dn,?)/(dD/dn,)?, we have to take into account the value of the first
derivative as well.

The qualitative description of the model given in the introduction shows how
linearity, superlinearity, linearity and ultimately saturation in turn can be expected
in the growth of n, with dose. Numerically, regions of linearity and superlinearity
also result from computer calculations on eq. (8). The fact that no saturation
is predicted by this equation is related to the assumption that recombination
during the excitation is negligible. This may well be the case at the low dose
range including the superlinearity region but it probably ceases to be so at higher
doses, while saturation is approached. This addition to the model will be described
now.

Aitken et al. (1968) considered this model in which eq. (4) is replaced by

dn/dt = X—dn,/dt—dn,/dt—Anp (11)

where p is the concentration of holes in the valence band and Ay the band to
band transition probability. In addition, neutrality has to be fulfilled, namely,

p=n+n,+n (12)

which implies the possibility of accumulating holes in the valence band. Such an
accumulation can be checked in cases where thermally stimulated conductivity
(TSC) can be measured, i.e., when one is dealing with crystals rather than with
powder samples. In general, however, it seems rather unlikely that such an
accumulation occurs. This picture can be slightly modified if we denote by p the
concentration of holes in the centres (previously denoted by m) and assume
that A, is the recombination probability, valence band to centre. Equation (12)
will read now

p+pv = n;+n,+n; 12)

where p, is the concentration of holes in the valence band. Both p, and n. can be
neglected as compared to the other terms in (12°) (Halperin and Braner, 1960).
The equations of Aitken et al. remain the same with a slight change in the
meaning. We still neglect the direct band to band recombination which is usually
known to be small (Pilkuhn, 1976).

The solution as given by Aitken et al. is

) A G- 8)
D =N, = [1 N YR mNeg, Nt m{i-g) . ay
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Fig. 2. A typical superlinear dose dependence as calculated by eq. 8. The parameter values
are indicated in the text.
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For the sake of simplicity, it has now been assumed that n,, = n,, = 0, other-
wise n, has to be replaced by n; —n,,, N, by N, —n,, and N, by N, —n,,.
The first derivative of (13) is

@_-lAk A( n)A’/A'_' A=A ﬁ( )( N, )
an, ° N, A, UTN, A ta Nt \Noa )

For high values of n,, n, & N;; although the first term in (13) goes to zero
(provided that A, > A)), the third term tends to infinity, and so does the sum.
Therefore, dn,/dD— 0 which demonstrates the required saturation behaviour.
The second derivative will now be

d2D _ _I:I_z_ Ax—A, (é_z_ 1) (1_&)A2/A.—2+ A, (N +1) N, s
dn;> ~ N2 A, A, N, A, (N;—n;)*°
Having illustrated that saturation occurs at high doses, we now consider the low
dose range for which

d*D

dn,? [ANLAL /(AN +NLA,/N, + Ac—N,A2 /(AN . (16)

AN

n, ~0
For A = 0, this reduces to

d*D/dn,* ~ N2A; (A1 —A)/N(AT N, ?) (17

n, ~0
which will be negative if A, > A,; this is the condition (10) again.

From eq. (16), a necessary and sufficient condition for superlinearity at low
doses when Ay > 0 is

N2A22/(A1N1) > Ak+ N2A2/N1 + AszAz/(AlNl)- (18)

Looking at each term on the right hand side separately we see that necessary
conditions for superlinearity are

A2 > Ak
N,A,%/(N,A}) > Ag 19)
A, > A,

The first two are automatically fulfilled for very small values of Ay and the third
is condition (10) again which is a necessary and sufficient condition when Ay
is zero. It is obvious that when the condition (18) is reversed, which can easily
occur for a high value of A, the dependence of n, on the dose will be sublinear
starting at the lowest doses.

It is to be noted that the analysis would be identical if one assumes a filling
under competition conditions of a recombination centre, provided that the con-
centration of holes in the luminescence centre is smaller than the concentration
of electrons in the trap associated with the TL process, i.e. in the case where
TL intensity depends on the centre population. The two ‘“‘mirror image” cases
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Fig. 3. Dose dependence as calculated from eq. 13 for different values of Ay. The gradual change

Jrom superlinearity to sublinearity is shown.
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are also possible, namely, the cases dealing with hole traps and electron centres
and their filling by irradiation.

We shall conclude this mathematical section by commenting on the usual way
of plotting the TL intensity as a function of the dose when the behaviour is
superlinear. In the cases where the superlinearity starts at the low doses, the
behaviour can be approximated as S oc D* for a certain dose range and a log-log
scale should yield a straight line the slope of which is k. If, on the other hand,
the dependence is different, for example, if it is linear first and becomes super-
linear at higher doses, the log-log plot does not yield any useful information.
If, in general, we write S = f(D), we have

dlog f(D) /dlog D = D f* (D) / f (D). (20)

For f(D) =~ Dk this gives the desired (effective) slope of k, but even for a simple
combined function such as

S=aD+bD? 21
we get the slope
d log f(D)/d log D = (a+2bD)/(a+bD) (22)

which is dose-dependent unless a << bD and, therefore, is not very useful in
depicting the behaviour. Even in a simpler case of an additive constant

S = a+pD? 23)
we have
d log f(D) / d log D = 2BD? / (u+pD?) 24

and again the slope on the log-log scale is dose-dependent unless a << BD?.

Numerical Method and Results

Equations (8) and (13) could be solved for a given set of parameters by
choosing values of n, and directly calculating the corresponding value of D.
Since one is interested in n, as a function of D for an appropriate dose range,
it is more convenient to solve the transcendental equation in n; for a given
value of D, change D in suitable steps and repeat the calculation for each value
of D. The solution has been carried out using the Newton-Raphson method;
some of the results are shown in the following figures. Since the superlinear
feature is related to the competition between N, and N,, we start with a solution
of eq. (8) and introduce the “interfering” effects of A, > 0 only later through
the solution of eq. (13). Figure 2 depicts the results of eq. (8) for A,/A, = 100,
N, —n,, = 10'®* cm 3 and N, —n,, = 10'7 cm™3. It is clearly seen that the curve
starts linearly, becomes superlinear and then enters a second linear range before
showing a slight tendency to saturate.
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Fig. 4. The results of fig. 3 plotted on a log-log scale.



226 R. Chen, S.G.E. Bowman

Figure 3 shows the change of behaviour for a given set of parameters when the
magnitude of the recombination during irradiation, A, is changing from curve
to curve. Since we are mainly interested in superlinearity, we only take the low
dose region, namely far enough from saturation, in Fig. 3 (as well as in Figs. 4
and 5); the high-dose saturation will be shown in Fig. 6. The parameters chosen in
Fig. 3are N, = 10" cm™3, N, = 10" em™, A, = 1 cm? sec'! and A, = 100 cm?®
sec-!. In curve a, Ay = 0.1; the superlinear behaviour is seen at low doses, the
curve being practically linear thereafter. With increasing values of Axin b, c...,
the initial superlinearity becomes less distinct until at Ay = 100 (curve d), the
low-dose behaviour is linear with some tendency to saturation at higher doses.
At an even bigger recombination, A, = 1000 cm? sec! (curve €) the sublinearity
starts at the lowest dose. In Fig. 4, the same results are shown on a log-log scale.
The sublinear feature of curve e and the linearity of a are evident. The fact that a,
b and c are only slightly superlinear at low doses proves that, although it is
not clearly seen in Fig. 3, there is an almost linear narrow range at the beginning
of the superlinear region. Curve d is seen to be nearly of slope 1.

In Fig. 5 are shown results where the superlinearity is seen to prevail from the
very lowest doses. For this we chose N, = 10 cm3, N, = 10'°cm™3, A, =
1cem? sec!, A, = 300cm® sec’. On the log-log scale we see (curve a) that
for Ay = 0.1, n, is proportional to D'# whereas for A= 100 cm? sec?,
n, oc D4, At higher doses, the growth is closer to linear in curve a and tends
to saturation in curve b. A higher initial slope on the log-log scale can easily be
found by taking bigger A,/A, ratios and keeping Ay very small. Thus we could
get k = 2 for A,/A,; = 500 and Ay = 0.

In curve a of fig. 6, the whole range of possibilities is shown, linearity-super-
linearity, a second linear range and tendency toward total saturation. This was
computed for N, = N, = 1017 cm™3, A, = A= lcem® sec’!, A, = 30cm?®sec™!
and n,, = n,, = 0. Curve b shows the same results on a log-log scale. The first
linear region is seen much more clearly but, as discussed above, the slope on the
log-log scale does not yield the effective power of dependence on dose. The second
linear region is not seen either and it looks as if the response goes from superlinearity
directly to saturation.

A dose dependence in which there is a long linear growth before the superlinear
region can be obtained by choosing N, much bigger in the above examples
(N, > N,, for example). An appropriate choice of the parameters can also bring
about a linear-superlinear-saturation behaviour, i.e., that the second linear region
is very narrow.

Discussion

Following Aitken et al. (1968) we have investigated various dependences of
TL intensity when the TL traps are filled under competition conditions. Defining
generally a region of superlinearity as one in which d2S/dD? > 0 where S is
the TL intensity, we have shown analytically that if recombination into the centres
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during excitation is negligible (A ~ 0), then superlinearity exists throughout the
growth curve when A, > A,. The superlinearity is such, however, that at the
lower and higher doses, the dependence is practically linear, with a superlinear
range in between.

Although we have assumed a very small recombination probability during
irradiation whereas, obviously, during read-out this probability is of great impor-
tance, it must be remambered that during heating, the competitor is highly
populated, therefore retrapping into it is negligible. It is implicit in the model
that N, is not emptied prior to N,, otherwise its population, n,, would not be
described by equation 8 or 13. High retrapping by N, (relative to recombination)
is allowed and is the explanation for the occurrence of a second order peak
(Halperin and Braner, 1960). .

Allowing Ay > 0 reduces the amount of superlinearity and for very high A,,
reduces it to be linear and even sublinear. At high doses, the introduction of Ay,
causes a rather early saturation effect (i.e. when n, is still smaller than N)).
The expected behaviour is therefore linear-superlinear-linear-saturation. Any of
these ranges can, however, shrink or disappear by the appropriate choice of
parameters. Thus, superlinear-linear-saturation behaviour which has been reported
before (Aitken et al., 1974) as well as linear-superlinear-saturation dependence
can be accounted for. For relatively low values of A,, the dose dependence is
shown analytically (and found numerically) to be sublinear starting at the very
low doses. Such behaviour has been observed experimentally.

As mentioned above, the superlinear behaviour starts at the lowest doses if
N, —n,, is small enough. This is the case if the concentration of the competitor
trap (N,) is small or if for a relatively large N,, many of the traps are filled (by
n,,) so that N,-n,, is small. Actually, it is only N,-n,, which appears in eq. (8)
and that is why only this combined parameter was used in the computation.
This means that the first linear portion should not be seen if the competitor is
rather close to saturation. The situation is similar concerning eq. (13), where
we assumed n,, = n,, = 0.
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