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ON THE ANALYSIS OF THERMAL DESORPTION CURVES 
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The phenomenon of thermal desorption was investigated by several 

groupsl-4). Hickmott and Ehrlichr) who studied the desorption of gases 

from tungsten gave an equation for the rate at which the number of mole- 

cules per unit area, n, is depleted by desorption 

- dnldt = n’s exp( - E/kT) , (1) 

where t is the time (set), 1 the order of reaction resulting in desorption, s the 

pre-exponential factor (set-‘), E the activation energy (joule/mole), R the gas 

constant (joule/mole K) and T the absolute temperature (K). The order of 

kinetics was usually assumed to be either first (I= 1) or second (1=2). 

Hickmott and Ehrlich also mentioned that eq. (1) is mathematically similar 

to the equations governing the process of thermoluminescence (TL) glow 

curves where Z= -dnldt gives the TL intensity and where n is the 

concentration of trapped carriers in a trap having an activation energy 

E*. Here too, one can consider first order kineticslo) as well as second 

order lr). 

The solution of eq. (I) both for first and second order kinetics, includes the 

integral 
f 

s exp(- E/RT)dt. 

When the “usual” linear heating rate, T= To +/It, is applied, the solution 

of this integral is not immediate, and an asymptotic series is usually used for 

its evaluationi2). In order to overcome this mathematical complication, a 

hyperbolic heating rate, in which dT=/?,T’dt is sometimes used where /I,, 

is a constant. This was suggested by Halperin et a1.i3) and Arnold and 

Sherwood14) for TL glow curves, and for thermal desorption curves by 

Ehrlich2), who gave some experimental curves measured with hyperbolic 

heating rate. 

* In TL theory, Boltzmann’s constant k(eV/K) replaces R, and E is given in eV. The ratios 
E/kTand E/RTare, however, the same. This can be seen by multiplying both the numerator 
and denominator of EjkT by Avogadro’s number. 
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The solution of eq. (1) for the first order case and linear heating rate islo) 

T 

~=sn,exp[-~/~~]exp exp(-EIRT')dT' , 1 (2) TO 
and by equating its derivative to zero, one gets the condition for the maximum 

/‘?E/(RTz) = s exp(- E/RT,), (3) 

where T,,, is the temperature at the maximum. Redheads) and McCarroll7) 

assumed that s= 1013 set- 1 for the thermal desorption curves. and thus used 

eq. (3) as a transcendental equation for evaluating the activation energy. 

Hickmott and Ehrlicht) and Redhead4) showed that T,, the maximum 

temperature peak, slightly depends, in the second order case, on the initial 

coverage no. McCarrol16) showed that the mass-spectrometer signal intensity 

is given by 

I(t) = -gfi((t) T(t)-+ (4) 

where g is a constant. In a later paper, McCarrolla) added to eq. (1) the as- 

sumption that the activation energy may be slightly dependent on the cover- 

age, as E = E, -xn(t)/n(O) where both E. and x are constants, and ~20. 

This is an empirical assumption with no theoretical justification, enabling 

better fitting between experimental and theoretical curves. In a recent paper, 

Hill et al. a) discuss the thermal desorption of Na and K from c1 iron. Here 

too, it is assumed that s = 1Or3 set-’ and the activation energy is calculated 

under this assumption. 

The methods mentioned above for evaluating the activation energies of 

thermal desorption have the disadvantage that either we have to assume a 

certain pre-exponential factor and solve a transcendental equation, or follow 

the rather tedious procedure of curve fitting. On the other hand, relatively 

simple methods for extracting information - e.g. activation energies and 

frequency factors - from TL glow curves were developedls-1s) in recent 

years, which can easily be applied to thermal desorption curves. 

A typical formula for calculating the activation energy from a first order 

curve is r6) 

E = 2.52 kTm2jo - 2kT,, (5) 

where o = T, - T,, Tl and T, being the lower and higher temperatures of 

half intensity, respectively. For the present purposes, k can be replaced by 

R and E will thus be found in Joule/mole. Insertion of the calculated activa- 

tion energy into eq. (3) enables the evaluation of the frequency factor s. 

Other equations of this class, both of first and second order, use the high 
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temperature half intensity 6 = T, - T,,, and the low temperature one z= 

= T,,, - T, . All these equations can be summed up as follows 

E = c, (kT;/a) - b, (2&,,), (6) 

where CI stands for r, 6 or o. Again, k should be replaced by R in the thermal 

desorption case. The values of the coefficients b, and c, for the various cases 

are given in table I. A slight correction to these methods can be made by 

taking into account the T-* factors in eq. (4). In TL theory, a T” dependence 

of the frequency factor has been assumed with - 26a~ 2, the correction 

was that akT,,, should be subtracted from the expression in eq. (6). In the 

TABLE I 

Coefficients appearing in eq. (6) for the various methods of calculating activation energies 

cz 

b, 

First order Second order 

t 6 Q 5 6 Q 

1.51 0.98 2.52 1.81 1.71 3.54 

1.58 0.00 1 .oo 2.00 0.00 1 .oo 

present case where a = - + this would mean addition of +RT,,,. The form of the 

TL peak has also been studied l5, 16) and th e results can be used in the present 

case. The form factor pg=6/o was shown there to be about 0.42 for a first 

order peak and about 0.52 (nearly symmetric peak) for the second order one. 

The case of a general order kinetics has been investigatedlT), namely, the 

case where TL intensity is governed by eq. (1) where I is neither 1 nor 2. This 

is an empirical approach which permits the investigation of peaks which are 

neither of first nor of second order kinetics. The measured value of ,u~ was 

shown to be related to the kinetics order Empirical formulas for the evalua- 

tion of activation energies while using the measured values of pg in these cases 

of general order were given 17). This approach can be pursued for the thermal 

desorption curves as well. As mentioned by McCarrol18), when the activa- 

tion energy behaves as E = E, - xn (t )/n (0), the high temperature half of the 

peak tends to broaden. In this way, with the appropriate values of x, a first 

order peak can look like a second or general order one. We now suggest to 

preserve the assumption of a constant activation energy and adopt the notion 

of possibly non integer values of E in the thermal desorption case. Both of 

these approaches are merely empirical. In both, parameters can be adjusted 

to give good agreement with the experiment, but the general order approach 

is much easier to work with when using the methods developed for TL. Thus 

the value of I can be evaluated from the measured pg and the activation energy 

can be calculated by measuring T,,,, pg and r, 6 or w. 
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The variation of the peak intensity and the maximum temperature at 

various heating rates (linear and non-linear) and with various initial con- 

centrations (no) were studied by Chen and Winerls) for first, second and 

intermediate orders of kinetics. These variations can be used for the evalua- 

tion of activation energies, In (I,,,) or In (p,,,/Ti), where 1, is the maximum 

intensity and p,,, the instantaneous heating rate at maximum intensity, 

plotted as a function of 1 IT,,,, should result in a straight line with a slope of 

-E/R; the activation energy is thus evaluated. For a non-first-order kinetics 

case, the peak shifts while changing the initial concentration ~~11). Plotting 

In [1:-i Tz] versus l/T,,, should yield a straight line, the slope of which is 

E/R. These methods can be applied without alteration to the thermal de- 

sorption curves. 

Finally, the hyperbolic heating rate (l/T = l/T, +p,,t) which was used 

rather extensively for thermal desorption2,4,5) will now be considered. 

Kelly and Laubitzls) gave two equations for calculating the activation 

energy of TL first order curves measured with hyperbolic heating rate 

E = 1.461 kT,T,lz = 0.985 kT,,,T,IG. (7) 

For second order kinetics they found 

E = 1.763 kT,,,TJT = 1.763 kT,,,T,IG (8) 

These equations can conveniently be used for the thermal desorption case. In 

many cases, it is of advantage to use methods based on the full half width o 

(for comparison between the various methods see discussion in ref. 16). From 

the two equations (7) one can rather easily drive for first order kinetics20) 

E = 2.446 kT,T,/w , (9) 

and for second order, one gets from eq. (8) 

E - 3.525 kT,T,lw . (10) 

For the present case of thermal desorption curves, R should again replace 

k in eqs. (7)-(10). 
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