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a b s t r a c t

We discuss the expected dependence of the maximum signal of a number of luminescence phenomena,
used in dosimetry and archaeological and geological dating, on the initial occupancy of the relevant
traps, n0, within the OTOR (also called General One Trap (GOT)) model. This, in turn, has important
bearing on the dose dependence of these phenomena. We discuss the dependence of the linearly-
modulated optically-stimulated-luminescence (LM-OSL) as well as the non-linear optical stimulation
(NL-OSL) on the initial concentration n0 of trapped carriers. We also consider the behavior of CW-OSL
and phosphorescence in a transformed form, as well as TL measured under hyperbolic and linear
heating rates. Using an appropriate presentation, the maximum of the signal is seen to depend nearly
linearly on n0, which in many cases means nearly linear dependence on the dose, a property important
for dosimetry and dating.

� 2010 Published by Elsevier Ltd.
1. Introduction

Different luminescence phenomena are used for the evaluation
of the absorbed dose in crystalline materials. These include ther-
moluminescence (TL) and its isothermal version, phosphorescence,
as transformed in a manner suggested by Randall and Wilkins
(1945) and further developed by Chen and Kristianpoller (1986).
These authors suggested transforming the featureless decay func-
tion by plotting y ¼ L$t as a function of x ¼ lnt. They showed that
one gets a peak-shaped curve, similar to that of TL under a hyper-
bolic heating function. Also are included optically stimulated
luminescence (OSL), either under continuous constant stimulation
(CW-OSL) or under linearly-modulated stimulation (LM-OSL) (see
e.g., Bulur, 1996). Recent work by Bos and Wallinga (2009) sug-
gested the use of non-linearly modulated OSL (NL-OSL), including
exponentially increasing OSL (EM-OSL), hyperbolically increasing
OSL (HM-OSL) and reciprocally increasing OSL (RM-OSL).

Chen and Pagonis (2008) have shown that TL obtained with
a hyperbolic heating function, phosphorescence transformed in
a previously suggested manner and LM-OSL presented in a new
: þ972 9 956 1213.
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way, repeated briefly below, can be cast into a unified form which
has an important advantage when the first-order, second-order and
general-order kinetics govern the read-out process. Chen and
Pagonis have also shown that with the Bulur presentation of
LM-OSL, whereas in the first-order kinetics, the dependence of the
maximum signal is proportional to the initial trap concentration,
n0, the maximum of the signal behaved as nb=ðb�1Þ

0 with general-
order kinetics, which for the important second-order case means
an n3=2

0 dependence. They suggested a manipulation of the LM-OSL
data in which y¼ t$L(t) is plotted, where L(t) is the LM-OSL signal as
a function of x ¼ 2 lnt. It has been shown that under these
circumstances, in the new presentation of the LM-OSL, the
dependence of the maximum of the LM-OSL is strictly linear with
the initial carrier concentration of the trapped carriers for all the
cases included in the general-order kinetics. In previous work
(Chen et al., 2009), we have shown that the LM-OSL expected from
the one-trap-one recombination-center (OTOR) model yields
a nearly linear dependence on the initial concentration of trapped
carriers which, in many cases, means a nearly linear dependence on
the excitation dose. In the present work we show how the same
ideas developed for LM-OSL can be used for CW-OSL and phos-
phorescence in a transformed form, as well as for TL measured
using hyperbolic and linear heating rates. In particular, the expec-
ted dependence of these signals on the initial occupancy n0 within
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the OTOR model is studied, which may, under the appropriate
circumstances, represent the dose dependence of these lumines-
cence phenomena. It should be noted, however, that Lawless et al.
(2009) have shown that within the OTOR model, assuming that the
quasi-steady condition holds, and that the dose D is much larger
than the ratio AnN/(2Am) where N is the concentration of the rele-
vant trap and An/Am the ratio between the retrapping and recom-
bination probabilities, the occupancy concentration n0 may depend
on the dose D in a sublinear manner, sometimes as D1/2.
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Fig. 1. The peak of the normalized transformed LM-OSL, tL/N, plotted against the
normalized initial concentration, n0/N for various values of bA ¼ An=Am . The slight
changes in the y-axis for the other luminescence expressions are explained in the text.
2. Basic considerations for LM-OSL

In this section we very briefly repeat the main results of the
previous work. Within the OTOR model there is one electron
trapping state, n, and one kind of recombination center, m. For OSL,
three simultaneous differential equations in n and m can be written
which, along with the quasi-steady assumption (see e.g., Chen et al.,
2009), yield

L ¼ �dm
dt
¼ f

Ammn
Ammþ AnðN � nÞ; (1)

where Am(cm3 s�1) and An(cm3 s�1) are the recombination and
retrapping probability coefficients, respectively, N is the total
number of traps of a given kind and f(s�1) is the detrapping proba-
bility. If we denote the stimulating light intensity by F(cm�2 s�1) and
the optical cross section by a(cm2), then f ¼ Fa. In the OTOR model,
assuming that no electrons are accumulated in the conduction band,
the concentrations of electrons and holes are equal, m¼n. In the case
of CW-OSL, f is considered to be constant; in LM-OSL, it increases
linearly with time, f ¼ f0t, where f0(s�2) is a constant. We obtain

L ¼ �dn
dt
¼ f0t

Amn2

Amnþ AnðN � nÞ; (2)

which is subjected to the initial condition n ¼ n0 at t ¼ 0. This
equation is integrated to yield

Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

�
¼ 1

2
f0t2: (3)

Equation (3) can be rearranged to solve for t as a function of n,

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
f0

�
Am � An

Am
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��s
: (4)

Combining Eqs. (2) and (4), the luminescence L can be found as
a function of n alone,

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f0

�
Am � An

Am
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��s
Amn2

Amnþ AnðN � nÞ
:

(5)

We are also interested in the transformed luminescence, tL,
which is found from Eqs. (4) and (5),

y ¼ tL ¼ 2
�

Am � An

Am
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
Amn2

Amnþ AnðN � nÞ
:

(6)

Now, t, L and tL, are all explicit functions of n in Eqs. (4–6). The
method suggested by Chen et al. (2009) is to plot Lt as a function of
2lnt and to choose a series of n values in the range 0 � n � n0. For
each such value of n, Eqs. (4) and (5) can be used to compute the
values of time t and luminescence L which occur when the density
reaches n. This provides a point for use on a plot of L vs. t. Similarly,
by choosing various values of n, we can create the transformed plot
of tL vs. 2lnt. Chen et al. (2009) show how to transfer Eqs. (4-6) into
a non-dimensionalized form where, instead of six quantities, there
are only three normalized quantities. They also show the depen-
dence of the peak of normalized transformed luminescence, tL/N on
the normalized initial concentration, n0/N for various values of the
dimensionless quantitybA ¼ An=Am. This graph is repeated in Fig. 1
here, and shows that the maximum intensity of this representation
of the LM-OSL is very close to linearity for a very wide range of
values of the ratio An/Am.
3. The TL-like representation of phosphorescence and CW-
OSL

For the case of CW stimulating light intensity, f is constant and
Eq. (1), along with n ¼ m, will be

L ¼ �dn
dt
¼ f

Amn2

Amnþ AnðN � nÞ
: (7)

Following the same procedures used to derive of Eqs. (3–6), we
obtain the following set of analogous equations,

Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

�
¼ ft: (8)

t ¼ 1
f

�
Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
: (9)

y ¼ Lt ¼
�

Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
Amn2

Amnþ AnðN � nÞ
:

(10)

Equation (10) is the same as Eq. (6), except for the factor 2 in the
latter. Equations (6) and (10) will be shown below to be special
cases of a more general time dependent stimulating light intensity
function. It is important to note that since Eq. (10) is practically the
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same as Eq. (6), the conclusions concerning the n0 dependence of
the maximum hold for the present case as well. In addition to the
strictly linear dependence of the signal for first and second-order
situations (as well as in the cases of general-order kinetics), in all
the OTOR cases, the n0 dependence of the signal is nearly linear for
all values of An/Am as shown in Fig. 1. The practical advantage over
the LM-OSL case is that the experiment is usually simpler since
there is no need for linear modulation. One only has to manipulate
the OSL decay data and the conclusion of near linearity is the same
for LM-OSL and the TL-like presentation. One should note, however,
that in order to reach a constant level, a certain period of time is
required. The stimulating light intensity is, in fact, a step function
which may not be easy to realize. Therefore, in analyzing ultra-fast
OSL components, trying to use CW-OSL may be problematic.

Exactly the same conclusions can be reached for the decay of
phosphorescence within the OTOR model. In Eq. (7) we have to
replace the constant stimulating light intensity f by g ¼ s$exp(�E/
kT), where s and E are the relevant frequency factor and activation
energy and T is the temperature. Since in the phosphorescence
measurement the temperature is kept unchanged, this factor is
a constant. Thus, Eqs. (7–10) remain exactly the same for the case of
phosphorescence, with g replacing f throughout.
4. NL-OSL

As mentioned above, a non-linear stimulation intensity was
mentioned as another possibility for OSL. Let us concentrate on
a power law dependence, f ¼ f0tk where k is any power, integer or
a fraction, and f0 has the appropriate units so that f has the
dimensions of s�1. Equation (2) is now slightly changed,

LðtÞ ¼ �dn
dt
¼ f0tk Amn2

Amnþ AnðN � nÞ
: (11)

where f0 has the appropriate units so that f0tk has units of s�1. This
integrates directly to yield�

Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
¼ 1

kþ 1
f0tkþ1; (12)

From Eq. (11) we obtain

t$LðtÞ ¼ f0tkþ1 Amn2

Amnþ AnðN � nÞ; (13)

and by comparing Eqs. (12) and (13) one gets

Lt ¼ ðkþ1Þ
�

Am�An

Am
ln
�n0

n

�
þAnN

Am

�
1
n
� 1

n0

��
Amn2

AmnþAnðN�nÞ
:

(14)

This is the same as Eq. (6), except for the factor k þ 1 that
replaces the factor of 2. Obviously, Eq. (6) is a special case of Eq. (14),
applicable to the LM-OSL case, where k ¼ 1, and Eq. (10) is the
special case applicable to phosphorescence and CW-OSL, both for
the general OTOR case, with k ¼ 0.

Another stimulation mode, mentioned by Bos and Wallinga
(2009) with regard to the first-order NL-OSL is the exponential
mode which can be written as

f ðtÞ ¼ f0eat ; (15)

for which, Eq. (2) can be changed to

LðtÞ ¼ f0eat Amn2

Amnþ AnðN � nÞ
: (16)
By integration,� � � � ��

Am � An

An
ln

n0

n
þ AnN

Am

1
n
� 1

n0
¼ 1

a
f0eat ; (17)

from which,

LðtÞ ¼ 1
a

�
Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
Amn2

Amnþ AnðN � nÞ;

(18)

where the right-hand side is the same as that in Eq. (14) except that
1/a replaces (k þ 1). Note that here, on the left-hand side we have
L(t) and not tL(t).

Going one step further, we can consider any monotonically non-
decreasing stimulation mode f(t). This can include the above
mentioned cases, along with the hyperbolically increasing stimu-
lation intensity (HM-OSL) and the reciprocal stimulation function
mentioned by Bos and Wallinga (2009) as well as other possibili-
ties. In full analogy to the previous cases, we obtain the general
relationship

Zt

0

f ðt0Þdt0

f ðtÞ LðtÞ ¼
�

Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
� Amn2

Amnþ AnðN � nÞ
: (19)

It can readily be seen that the case of constant stimulation
intensity and phosphorescence, as well as all the mentioned
monotonically increasing stimulation functions, are included in
Eq. (19). In these cases, the function of t preceding L(t) in Eq.
(19) can be easily evaluated as shown above. With other
stimulation functions, the evaluation of

R t
0 f ðt0Þdt0=f ðtÞ may not

be as easy. Note that the expression
R t

0 f ðt0Þdt0=f ðtÞ has dimen-
sions of time. While comparing Eq. (19) on one hand and Eqs.
(6), (10) and (14) on the other hand, the expressionR t

0 f ðt0Þdt0=f ðtÞ can be considered as a ‘‘generalized time’’ for the
present purpose.
5. Thermoluminescence with a hyperbolic heating rate

Similar to the previous case, the following expression can be
written for TL

L ¼ �dn
dt
¼ s expð�E=kTÞ Amn2

Amnþ AnðN � nÞ; (20)

where the temperature T is a function of time. The initial condition
for t ¼ 0 is again n(0) ¼ n0. By integration,

�
Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
¼ s

Zt

0

expð � E=kTðt0ÞÞdt0:

(21)

The hyperbolic heating function, frequently mentioned in the
literature (see e.g., Stammers (1979) and Chen and McKeever
(1997)), can be written as

1
TðtÞ ¼

1
T0
� t

b0
; (22)

where b0 has units of K s. Using Eq. (22), the integration in Eq. (21)
can be performed exactly to yield
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�
Am � Anln

�n0
�
þ AnN

�
1� 1

��
¼ skb0h

e�E=kT � e�E=kT0

i
_

An n Am n n0 E

(23)

Since the exponent is a rapidly increasing function of temper-
ature, the second exponent can be neglected for any T larger than T0

even by only a few degrees. Equation (23) is now integrated to�
Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
¼ skb0

E
e�E=kT_ (24)

By substituting Eq. (24) in Eq. (20), we get

L ¼ E

kb0

�
Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
Amn2

Amnþ AnðN � nÞ:

(25)

Again, except for the constant coefficient, the expression on the
right-hand side is exactly the same as in Eqs. (6), (10), (14) and (18).

6. Thermoluminescence with a linear heating function

For the linear heating function,

T ¼ T0 þ bt; (26)

where b is the constant heating rate, we get from Eq. (21)

�
Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
¼ ðs=bÞ

ZT

0

expð�E=kTÞdT :

(27)

The integral on the right-hand side can be written asZT

0

expð�E=kTÞdT ¼ expð�E=kTÞ$f ðT; EÞ; (28)

and if we choose the asymptotic series method for evaluating the
integral,

f ðT; EÞ ¼ T
X
i¼1

�
kT
E

�i

ð � 1Þi�1i!: (29)

Note that other approximate expressions may replace the right-
hand side of Eq. (29). From Eqs. (27) and (28),

sexpð�E=kTÞ$f ðT ; EÞ ¼ b

�
Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

��
:

(30)

Substituting Eq. (30) into Eq. (20) yields

L$f ðT;EÞ ¼ b

�
Am�An

An
ln
�n0

n

�
þAnN

Am

�
1
n
� 1

n0

��
Amn2

AmnþAnðN�nÞ:

(31)

For given values of n0, E, b and An/Am, Eq. (30) yields values for
sexpð�E=kTÞf ðT ;EÞ for any chosen value of n, and for a given E, it can
be numerically inverted to get T(n). Substituting T into f(T,E) results
in an expression of L as a function of n and all the given parameters,
which can be maximized to yield the maximum of the TL intensity
for any given n0. The right-hand side of Eq. (31) is exactly the same
expression as in the previous cases (e.g., Eq. (6) in the LM-OSL case
described above, with b replacing 2) whereas to evaluate the left-
hand side a reasonable approximation of f(T,E) is required, which
depends on an evaluation of the activation energy E.
7. Conclusion

We have shown that several luminescence phenomena, namely,
LM-OSL, TL-like presentation of phosphorescence and CW-OSL, NL-
OSL with different stimulation modes and TL under hyperbolic and
linear heating rates can be given in a unified form within the OTOR
model. Based on our previous work (Chen et al., 2009), it is
concluded that in all these phenomena, when presented in an
appropriate manner, the maximum signal depends nearly linearly
on the initial occupancy of the traps, n0, as shown in Fig. 1. This, as
compared with the ‘‘general-order’’ kinetics where at least for
a revised representation of the LM-OSL, it has been shown that the
dependence is strictly linear. This, in turn, may be translated into
a near linear dose dependence in cases where the initial occupancy
(following the appropriate irradiation) is linear with the excitation
dose.

It should be noted that in Fig. 1, t$L(t)/N is plotted against n0/N, as
previously suggested for the LM-OSL case. The same should be done
for the TL-like representation of phosphorescence and CW-OSL as
well as the wtk dependence of the stimulation intensity. For TL
measured with a hyperbolic heating rate, and for NL-OSL measured
with an exponential mode of stimulation, L should be plotted as
a function of n0/N. More complicated cases are those of the general
stimulation mode where the left-hand side of the expression
derived is ðð

R t
0 f ðt0Þdt0Þ=ðf ðtÞÞÞLðtÞ and where TL is measured with

a linear heating rate it is L$f(T,E).
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