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a b s t r a c t

Optically stimulated luminescence (OSL) has been in use for dosimetry and dating in the last two
decades. Since the OSL dependence on time is a featureless decaying function, a linear-modulation of the
stimulating-light intensity has been suggested [Bulur, E., 1996. An alternative technique for optically
stimulated luminescence. Radiat. Meas. 26, 701–709.], which resulted in a peak-shaped curve. The
properties of this curve have been studied, assuming first-, second- and general-order kinetics. In
a recent paper we have shown [Chen, R., Pagonis, V., 2008. A unified presentation of thermolumines-
cence (TL), phosphorescence and linear-modulated OSL (LM-OSL). J. Phys. D: Appl. Phys. 41, 035102 (1–
6).] that for general-order curves, the peak maximum cannot be expected to depend linearly on the dose
of excitation. A new presentation of the LM-OSL has been suggested, in which the peak maximum is
linear with the filling of trapping states, which, in turn, may be expected to be linear with the dose under
appropriate conditions. In the present work, we report on results of numerical simulation of the LM-OSL
using the one trap-one recombination center (OTOR) model, dealing with the traffic of carriers between
one trapping state, one kind of recombination center and the conduction and valence bands during
excitation and read-out, and without making any simplifying assumptions. The process during optical
read-out has been followed in the simulation that consisted of the numerical solution of the relevant sets
of coupled differential equations, and also by analytical treatment. Sets of parameters leading to
approximately first- and second-order kinetics, and to intermediate cases, have been used and the results
presented in the original and the new ways are shown. The consequences concerning dating and
dosimetry are discussed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Optically stimulated luminescence (OSL) has been recognized as
an important tool for dosimetry and for archaeological and
geological dating (see e.g. Huntley et al., 1985). Bulur (1996) sug-
gested changing the featureless OSL decay curve into a peak-shaped
function by increasing the intensity of the stimulating-light linearly
with time. For the linear-modulated OSL (LM-OSL) and first-order
kinetics, the governing equation is

LðtÞ ¼ �dn=dt ¼ ðI0a=qÞtnðtÞ; (1)

where L(t) is the emitted light intensity and t is the time, and where
q (s) is the duration of the observation and aI0 (s�1) is the proba-
bility of escape of electrons from the traps at a light intensity of
: þ972 9 95 61213.

All rights reserved.
stimulation I0. The stimulating-light intensity here varies with time
as I0t/q. The solution of this equation yields the intensity measured
under these circumstances as a function of time

LðtÞ ¼ ðat=qÞn0I0exp
h
� ðaI0=2qÞt2

i
; (2)

where n0 is the initial occupancy of traps following excitation. This
equation represents a peak-shaped function. As shown by Bulur
(1996), the maximum intensity here is given by

Lmax ¼ n0ðaI0=qÞ1=2expð � 1=2Þ; (3)

which is very useful in dosimetry applications since the maximum
intensity is proportional to the initial concentration of trapped
carriers n0. This, in turn, is assumed to carry the information which
concerns the absorbed dose. It is quite obvious that integration of
Eq. (2) from 0 to infinity yields n0. Thus, if one takes as the LM-OSL
signal either the maximum intensity or the whole area under the
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Fig. 1. Energy level diagram of the OTOR model. N (cm�3) and M (cm�3) are the
concentrations of electron trapping state and hole recombination centers; n (cm�3)
and m (cm�3) are their instantaneous occupancies, respectively. f (s�1) is the optical
stimulation rate, such that the rate per cm3 per second is f$n. Here, f¼ f0$t where
f0(s�2) is constant. The instantaneous concentration of free electrons in the conduction
band is nc (cm�3) and Am, An are the recombination-probability and retrapping-prob-
ability coefficients, respectively.
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curve, in the first-order case, the signal is proportional to the
concentration following the excitation, n0.

Bulur (1996) gave a similar treatment to LM-OSL governed by
general-order kinetics. The governing equation here is

LðtÞ ¼ �dn=dt ¼ ðgI0=qÞtnb; (4)

where g is a constant. Bulur (1996) assumed that g ¼ a=nb�1
0 ,

where a is the frequency factor. Bulur and Göksu (1999) changed
this assumption to g¼ a/Nb�1 where N is the concentration of
trapping states, a similar assumption to that given by Rasheedy
(1993) for general-order TL. Using the latter definition, the solution
of Eq. (4) is

LðtÞ ¼ nb
0ðaI0Þ

h
t=
�

Nb�1q
�i
�
n

1þðb�1Þ
h
aI0nb�1

0 =
�

2qNb�1
�

�
i
t2
o�b=ðb�1Þ

:

(5)

Note that the general-order equation is merely an empirical
presentation of cases intermediate in some sense between first and
second order. An important special case is that of second-order
kinetics, first suggested by Garlick and Gibson (1948), which takes
place in cases of either dominating retrapping or of equal recom-
bination and retrapping-probability coefficients (see e.g. P. 31 in
Chen and McKeever, 1997). Here, we have for Eqs. (4) and (5) b¼ 2
and obtain

LðtÞ ¼
n2

0½aI0=ðNqÞ�t�
1þ ½aI0n0=ð2NqÞ�t2

�2: (6)

By equating the derivative of Eq. (5) to zero, one obtains

tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðbþ 1Þ
q

aI0

�
N
n0

�b�1
s

: (7)

By inserting Eq. (7) into (5) one obtains

Lmax ¼ 2
	

aI0ðbþ 1Þ
qNb�1


1=2� 2b
bþ 1

��b=ðb�1Þ
nðbþ1Þ=2

0 : (8)

In a recent work, Chen and Pagonis (2008) have suggested a new
presentation of LM-OSL results. Instead of the conventional way of
plotting the LM-OSL intensity as a function of time, they suggested
to plot y¼ t$L(t) vs. x¼ 2lnt (t2¼ ex). One should be cautious about
the dimensions of t and x. As defined, t has, obviously, units of s, and
its logarithm cannot be defined. In order to have a dimensionless
time, we can define t0¼1 s and consider t0 ¼ t/t0, which is dimen-
sionless, but has the same numerical value as t. This solves also the
problem of writing t2¼ ex, where the left-hand side is dimensional
and the right-hand side dimensionless; with t0 as defined here, the
problem is solved. Keeping this in mind, we’ll continue using t
while meaning the dimensionless t0.

Making this transformation yields for first order

yðxÞ ¼ 2n0dexexpðdexÞ; (9)

where d¼ aI0/(2q). The maximum intensity of this curve is given by

ym ¼ 2n0=e: (10)

As shown by Chen and Pagonis (2008), the expression for
general order in the new variables is

yðxÞ ¼ 2n0d0ex�1þ ðb� 1Þd0ex��b=ðb�1Þ
: (11)

where d0 ¼ aI0n0/(2qN). The maximum intensity for general order is
given by
ym ¼
2n0

bb=ðb�1Þ; (12)

Thus, in the new presentation, when first-order or general-order
kinetics, including the second-order case, governs the process, ym,
the maximum of the y(x) curve must be linear with the initial
concentration of carriers (following excitation by radiation). Note
that this presentation is rather similar to the way of transforming
the phosphorescence decay graph into a peak-shaped curve sug-
gested first by Randall and Wilkins (1945) and elaborated upon by
Visocekas (1978) and Chen and Kristianpoller (1986). Chen and
Pagonis (2008) showed that in the conventional presentation, the
maximum intensity of the emitted signal can be expected to be
superlinear with the initial concentration of trapped carriers, no, for
general-order kinetics. From Eq. (8), we immediately see that
Lmax f n0

(bþ1)/2, which yields linear dependence on n0 for first order,
as pointed out above, and an n0

3/2 dependence for second order.
They have also shown that the area under the y(x) curve isRN
�N yðxÞdx ¼ 2n0, namely, proportional to n0. In cases where no is

proportional to the dose, similar dependencies on the dose can be
expected for the conventional and new presentations.

In the present work, we simulate the LM-OSL curves, using the
relevant differential rate equations, during the read-out stage of the
optical stimulation, and assuming the simplest possible one trap-
one recombination-center model. We do this for sets of parameters
leading to first-order, second-order and to intermediate situations.
We also use the quasi-steady assumption to develop an analytical
solution. The results are shown in the original and the above
mentioned new presentation, and conclusions are drawn con-
cerning the dependence on the initial concentration n0.
2. The model

The model shown in Fig. 1 is the simplest possible one trap-one
recombination center (OTOR) for explaining the optically stimu-
lated luminescence, including, of course, the LM-OSL. The meaning
of the different magnitudes is given in the caption. The equations
governing the process during the optical stimulation are

LðtÞ ¼ �dm
dt
¼ Ammnc; (13)

dn
dt
¼ AnðN � nÞnc � fn; (14)
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dnc ¼ dm� dn
; (15)
dt dt dt

where f (s�1) is proportional to the stimulating-light intensity. The
linear modulation is achieved by increasing f linearly with time
during read-out, namely, f¼ f0$t, where f0 (s�2) is constant. Due to
the very simple model, at the end of irradiation and relaxation, one
can expect an equal number of electrons and holes to be trapped in
trapping states and recombination centers, respectively. In the
present work we, therefore, skip the first steps of excitation and
relaxation, assume values of n0, and solve the equations for the
read-out stage for different values of n0. The dependence of the
maximum LM-OSL curve on n0 will be monitored for different sets
of parameters, both in the original and new presentations. The
possible dependencies of n0 on the excitation dose within the OTOR
model are discussed elsewhere (Lawless et al., in press).

A short discussion on the choice of sets of parameters is given
here. As pointed out above, we would like to follow cases that are
close to first order, second order and intermediate cases. In all
these cases, we can make the quasi-steady assumption, namely
that nc is significantly smaller than n and m, and jdnc

dt j << j
dn
dt j; j

dm
dt j.

To begin with, obviously the properties of the solution depend on
the relation between An and Am, however for the quasi-equilib-
rium to hold, both probability coefficients are to be large enough
so that the values of nc are significantly smaller than those of m.
Halperin and Braner (1960), gave an approximate equation for TL
when quasi-equilibrium holds. The direct analogy for the present
case of OSL is

L ¼ �dm
dt
¼ fn

Amm
Ammþ AnðN � nÞ: (16)

As pointed out above, in the OTOR, and when quasi-equilibrium
holds, n¼m. When Amm [ An(N� n), the first-order equation
results immediately, namely

L ¼ �dn
dt
¼ f $n: (17)

Note that Am [ An is not a sufficient condition for Eq. (17) to be
a good approximation since N� n may be significantly larger than
m. The functional condition Amm [ An(N� n) must hold for the
first-order kinetics to take place. Moreover, since m and n decrease
along the LM-OSL measurement, one may start with Amm being
much larger than An(N� n), but the relation between them may
change along the measurement. Thus, an LM-OSL peak may start as
being of first order, and later continue as having non-first-order
kinetics. Note also that since, as pointed out above,f¼ f0t, Eq. (17) is
the same as Eq. (1) where f0¼ aI0/q.

The second-order kinetics can result from Eq. (14) in one of two
ways. If Am¼ An (and since with this simple model m¼ n), we get

LðtÞ ¼ �dn
dt
¼ f0

N
tn2: (18)

The condition that the two probability coefficients be equal is
not very likely to take place since the trapping state and recombi-
nation center are two independent entities, associated with two
different impurities or defects in the sample. Another way to get the
second-order kinetics is assuming that retrapping dominates,
An(N� n) [ Amm, and that the trap is far from saturation, N [ n.
Like in the first-order case, these are assumed relations between
variables rather than parameters. However, since m and n decrease
during the measurement, if the conditions hold at the beginning,
they remain so all along the measurement, and therefore, if a peak
starts being of second order it remains being of second order all
along. The governing equation here is
LðtÞ ¼ �dn
dt
¼ f0Am

NAn
tn2 (19)

It appears more likely to get second-order kinetics with the
dominating retrapping condition than with the equal probability
coefficients. In any case, both Eqs. (18) and (19) are the same (with
substitution of the relevant constants, gI0=q ¼ f0Am=NAn) as Eq. (4)
with b¼ 2, and therefore Eq. (6) is its solution. Note that there are
many intermediate cases in which Amm is of the same order as
An(N� n). These cannot be precisely presented by the ‘‘general-
order’’ equation.
3. Theory

In Section 4, we present numerical solutions of Eqs. (13–15)
for sample sets of the five parameters: Am, An, f0, n0 and N. In this
section, we use the quasi-steady assumption to develop an analytical
solution. Then, we develop scaling laws that reduce the number of
parameters that must be studied. The value of this reduction will be
shown in the plots presented in Section 4. Starting with Eq. (16) of
the OTOR model, and substituting n¼m and f¼ f0t we find

L ¼ �dn
dt
¼ f0t

Amn2

Amnþ AnðN � nÞ; (20)

which is subjected to the initial condition of n¼ n0 at t¼ 0. This can
be immediately integrated

Am � An

An
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

�
¼ 1

2
f0t2: (21)

Equation (21) can be rearranged to solve for t as a function of n,

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
f0

	
Am � An

Am
ln
�n0

n

�
þ AnN

Am

�
1
n
� 1

n0

�
s
: (22)

Combining Eqs. (20) and (22), the luminescence L can be found
as a function of n alone,

L¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f0

	
Am�An

Am
ln
�n0

n

�
þAnN

Am

�
1
n
� 1

n0

�
s
Amn2

AmnþAnðN�nÞ: (23)

We are also interested in the transformed luminescence, tL,
which is found from Eqs. (22) and (23),

y¼ tL¼ 2
	

Am�An

Am
ln
�n0

n

�
þAnN

Am

�
1
n
� 1

n0

�

Amn2

AmnþAnðN�nÞ: (24)

Now, we have t, L and tL, all as explicit functions of n in Eqs. (22–24).
In order to create plots of L as a function of t and of Lt as a function
of 2lnt, we choose a series of n in the range 0� n� n0. For each such
value of n, we can use Eqs. (22) and (23) to compute the values of
time t and luminescence L which occur when the density reaches n.
This provides a point for use on a plot of L vs. t. Similarly, by
choosing various values of n, we can create the transformed plot of
tL vs. 2lnt.

We can simplify Eqs. (22–24) by defining the following non-
dimensional quantities

bt ¼ t
ffiffiffiffi
f0

p
; (25)

bn ¼ n=N; (26)
bL ¼ L

N
ffiffiffiffi
f0

p ; (27)
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Fig. 2. LM-OSL simulated with Am¼ 10�5 cm3 s�1; An¼ 10�10 cm3 s�1; M¼ 1015 cm�3;
N¼ 1014 cm�3, f0¼ 10�4 s�2. The value of n0 varies by factors of 2 in curves (a–e), being
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bA ¼ An=Am: (28)

Using these variables, Eqs. (22–24) can be rewritten as

bt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

"�
1� bA�ln

 cn0bn
!
þ bA 1bn � 1cn0

!#vuut ; (29)

bL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

"�
1� bA�ln

 cn0bn
!
þ bA 1bn � 1cn0

!#vuut bn2

bn þ bA�1� bn�;
(30)

btbL ¼ 2

"�
1� bA�ln

 cn0bn
!
þ bA 1bn � 1cn0

!# bn2

bn þ bA�1� bn�: (31)

Whereas the right-hand sides of Eqs. (22–24) depend on six
quantities, Am, An, f0, N, n0 and n, in Eqs. (29–31), the right-hand
sides depend on only three quantities, bn, cn0 and bA. The use of these
new equations is discussed below.
1012 cm�3 in (a).
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Fig. 3. The same results of Fig. 2, plotted in the new presentation. Here, x¼ 2lnt and
y¼ t$L(t).
4. Numerical results

In order to check the dependence on the initial concentration,
n0, of the original as well as the revised LM-OSL curves, we chose
sets of parameters, and solved numerically Eqs. (13–15) for
different values of the initial traps and centers occupancy, n0¼m0,
using the Matlab ode23s solver. Alternatively, we used Eqs. (29–
31) and proceeded as explained below. The figures shown below
are of the simulation, but the results of both methods were exactly
the same. The exact agreement of the two approaches is related to
the choice of parameters such that the quasi-steady assumption
for free carriers prevails. We then changed the value of the initial
occupancies, and observed the variations in the peak shape. This
has been done for cases of first order, second order of the two
types mentioned above and for intermediate cases. Throughout
the simulation process, we monitored the values of Amm and
An(N� n), and compared them in order to see whether the
conditions mentioned above are fulfilled. We have also monitored
the values of nc and n in order to verify that the quasi-steady
condition holds.

Fig. 2 shows the results of the simulation for the set of param-
eters given in the caption. Here, Am is 5 orders of magnitude larger
than An, and first-order kinetics can be expected. Indeed, mAm is
found to be 3–4 orders of magnitude larger than An(N� n) in the
simulations. The result is a peak in the LM-OSL curve, which does
not shift with the change of the initial value of n0. As seen in the
graph, the maximum intensity doubles from one curve to the next,
as expected when n0 varies by factors of 2. Fig. 3 shows the same
results in the new way suggested by Chen and Pagonis (2008). The
peaks here are very similar in shape to first-order TL peaks. As
expected, the maxima are linearly dependent on n0.

Fig. 4 shows the results of simulations with the parameters
given in the caption. Here, An is larger than Am, and along with N
being significantly larger than m, An(N� n)[ Amm, and the
second-order kinetics results. Like in TL, the peak shifts to lower
values of t for higher values of n0. As for the maximum intensity, it is
readily seen to increase superlinearly with n0. For example, while
going from curve (a) to (e), n0 increases by a factor of 16, and Lmax by
w64, which, indeed is 163/2. Fig. 5 shows the same results in the
new presentation. The peaks are symmetric, similarly to second-
order TL peaks. As expected from the work by Chen and Pagonis
(2008), the maximum intensity here is proportional to the value of
n0. Similar simulations have been performed with Am¼ An (not
shown here). As expected, here, irrespective of the relation
between Amm and An(N� n), the second-order behavior is seen.

Fig. 6 shows the LM-OSL results of an intermediate case, the
relevant parameters are given in the caption. Here, for the lowest
value of n0, An(N� n) is about an order of magnitude larger than
Amm, whereas for the highest value, the former is smaller than the
latter. The peak shifts here with the value of n0, pointing to a non-
first-order behavior. The ratio of Lmax between the largest to
smallest n0 is here w48, which is rather superlinear, behaving like
wn0

1.4. Fig. 7 depicts the same results in the new presentation. Here,
the dependence on n0 is somewhat more than linear. The ratio
between the maximum intensities is 18.38 for the change of n0 by
a factor of 16.

In the present work, we are dealing with single LM-OSL peaks,
but in dosimetry and dating, it is common that a number of peaks
occur. If there is some overlapping of components but peaks are
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separated sufficiently, integration over certain interval may be used
so as to maximize counts but at the same time to isolate as much as
possible the different peaks. We have studied the behavior of such
an area on n0 in our simulations for the set of parameters used in
Figs. 6 and 7, where the dependence on n0 is strongly superlinear.
We have taken the area under the curve from tm�Dt to tmþDt
where tm is the time of maximum of the LM-OSL signal and Dt
a selected time interval. For each value of Dt, the value of x in the
approximate dependence n0

x has been determined. The results are
shown in Table 1 and discussed below.

Let us consider the LM-OSL peak intensity in a more general
way. For fixed initial concentration cn0 and fixed rate-constant ratiobA, we can find, via Eq. (30), the value of concentration bn which
maximizes the LM-OSL luminescence bL. This was done using the
numerical function maximizer fminbound from the package in
SciPy (scientific Python). The value of the maximum luminescencebL can be plotted as shown in Fig. 8 as a function of n0/N for different
values of bA. This log–log plot has a slope of 1.5 for large values of
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Fig. 5. The same results of Fig. 4, plotted in the new presentation; x¼ 2lnt and
y¼ t$L(t).
An/Am, and is more than unity even for smaller values, which shows
that the response of the LM-OSL maximum is superlinear except
when kinetics are first-order; the response is linear only whencn0 [bA, i.e. n0Am [ NAn.

The transformed LM-OSL can be studied similarly. We start by
finding the values of bn which maximize Eq. (31) for fixed values
of cn0 and bA. This was done again with the same numerical
maximizer. The values of btbL found from the maximizer are plotted
against cn0 on a log–log scale in Fig. 9. Note that the peak of the
transformed intensity, btbL, depends on only two parameters, cn0
and bA. Since Fig. 8 shows the peak plotted against cn0 for various
values of bA, this plot includes the entire parameter space. From
Fig. 9, it is clear that the transformed LM-OSL peak intensity is
mostly linear with n0. Note that, unlike usual LM-OSL, the peak
intensity of the transformed LM-OSL is independent of the
experimental value of f0, though its position depends on f0

�0.5, as
can be seen in Eq. (22).
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Table 1
Dependence of the power x of the dependence of the area under the LM-OSL peak on
the time interval of integration. The parameters used for the simulations are the
same as in Figs. 6 and 7. Integration was performed between tm�Dt and tmþDt.

Dt (s) 0 25 50 75 100

x 1.395 1.390 1.375 1.350 1.316
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5. Discussion

In this work, we have studied the LM-OSL curves in their original
and revised versions, by solving numerically the governing set of
coupled differential equations, and by analytical means, using the
one trap-one recombination-center model. By choosing sets of
parameters leading to first-order kinetics, namely, dominating
recombination, we have seen the characteristic behavior, i.e. that
the LM-OSL peak maximum does not shift with the initial occu-
pancy of traps. In addition, the shape of the new presentation
resembled a first-order TL peak as expected and the maximum
intensity depended linearly on n0. The second-order case was seen
either by having dominating retrapping or, alternatively, with the
recombination and retrapping-probability coefficients being equal;
in the former case, the trap has to be far from saturation. In both
cases, the initial-concentration dependence of the original
presentation was like n0

1.5, and that of the revised one was linear, as
expected. As for the intermediate cases, depending on the
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Fig. 8. The peak of luminescence as plotted against normalized initial concentration
n0/N for various values of bA ¼ An=Am .
parameters chosen, intermediate dependencies on n0 could be
found. In the specific example shown in Figs. 6 and 7, in the original
LM-OSL presentation, the initial-concentration dependence of the
maximum could be given by wn0

1.4. If we consider the dependence
mentioned in Eq. (8), Lmax f n0

(bþ1)/2, this yields an effective general
order of b¼ 1.8. It should be noted, however, that this approach is
entirely empirical, and had we evaluated the effective order from
another feature of the curve such as its symmetry, we could have
received a different value for b.

Regarding the n0 dependence of the area under the LM-OSL curve
mentioned above and summed up in Table 1, the maximum intensity
depends superlinearly on n0 with sets of parameters leading to
second-order and intermediate cases whereas the total area from
zero to infinity is always linear with n0. One might expect that the
integral over a fixed limited time interval will depend superlinearly
on n0, though a ‘‘weaker’’ superlinearity can be anticipated. Indeed,
the value of x in the approximate power dependence is seen in Table
1 to be smaller when the interval of integration becomes larger. The
value of x is still significantly larger than unity even when the inte-
gration goes from tm� 100 to tmþ 100.

As for the new presentation of LM-OSL, with the same set of
parameters, the dependence of the maximum intensity on the
initial occupancy behaved like wn0

1.05 in the example given, a very
weak superlinearity as compared to the expected linearity for any
value of b in the general-order presentation. The results of Fig. 9
show that the near-linear dependence of the transformed LM-OSL
on n0 takes place generally within the OTOR situation. However,
one should not be surprised that there are slight deviations from
linearity since one cannot expect the results of the simulation to fit
exactly into the general-order framework.

It should be pointed out that the dependence of n0 on the dose,
which is very relevant to the dose dependence of the LM-OSL signal
in its two presentations, has not been dealt with here. In cases
where the trap occupancy is linear with the dose, the dependency
of the LM-OSL maximum on the dose is, obviously, the same as that
of n0 discussed here. Other dependencies of n0 can sometimes be
expected, and will be discussed elsewhere. If, for example, n0(D) is
a square-root function (Lawless et al., in press), this should be
combined with the dependence of the LM-OSL signal on n0. Thus, in
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Fig. 9. The peak of the normalized transformed luminescence, tL/N, plotted against the
normalized initial concentration, n0/N for various values of bA ¼ An=Am .
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cases where the latter depends linearly on the dose, the signal will
go like D1/2, whereas if n0(D) f D3/2, the LM-OSL maximum may go
like D3/4. Obviously, the question of whether the LM-OSL maximum
is linear with the excitation dose is of great importance for
dosimetry and dating. Therefore, before using the procedure for
dose evaluation, the dose dependence of the specific material
under study should be established.
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Bulur, E., Göksu, H.J., 1999. IR-stimulated luminescence from feldspars with linearly
increasing excitation light intensity. Radiat. Meas. 30, 505–512.
Chen, R., Kristianpoller, N., 1986. Investigation of phosphorescence decay using TL-
like presentation. Radiat. Prot. Dosimetry 17, 443–446.

Chen, R., McKeever, S.W.S., 1997. Theory of Thermoluminescence and Related
Phenomena. World Scientific, Singapore.

Chen, R., Pagonis, V., 2008. A unified presentation of thermoluminescence (TL),
phosphorescence and linear-modulated OSL (LM-OSL). J. Phys. D: Appl. Phys. 41
035102 (1–6).

Garlick, G.F.J., Gibson, A.F., 1948. The electron trap mechanism of luminescence in
sulphide and silicate phosphors. Proc. Phys. Soc. 60, 574–590.

Halperin, A., Braner, A.A., 1960. Evaluation of thermal activation energies from glow
curves. Physiol. Rev. 117, 408–415.

Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., 1985. Optical dating of sedi-
ments. Nature 313, 105–107.

Lawless, J.L., Chen, R., Pagonis, V. Sublinear dose dependence of thermolumines-
cence and optically stimulated luminescence prior to the approach to saturation
level. In: Presented in LED 2008, 12th Int. Conf. Lumin. ESR Dating, Beijing, Sept.
2008. Radiat. Meas., in press.

Randall, J.T., Wilkins, M.H.F., 1945. Phosphorescence and electron traps. Proc. R. Soc.
London A184, 365–407.

Rasheedy, M.S., 1993. On the general-order kinetics of thermoluminescence glow
peak. J. Phys.: Condens. Matter 5, 633–636.

Visocekas, R., 1978. La luminescence de la calcite après irradiation cathodique:
TL et luminescence par effet tunnel. Thèse, Université Pierre et Marie Curie,
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