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Abstract
It has been shown in the past that a thermoluminescence (TL) peak has a relatively simple
shape if the heating function is hyperbolic. Also, two different ways have been given for the
transformation of the featureless decaying phosphorescence and optically stimulated
luminescence (OSL) functions into peak-shaped curves. In the former case, one plots L · t

versus ln(t), where L is the phosphorescence intensity and t the time. In the latter,
linear-modulated OSL (LM-OSL) is reached by changing the stimulated light intensity linearly
with time, and pseudo-LM-OSL by manipulating the regular CW-OSL curve. In this work, a
modified presentation of LM-OSL is suggested and a unified presentation of these phenomena
is offered, which may help in analysing the results and elucidating the details of the relevant
kinetics process. The implications on the use of LM-OSL for dosimetry are also discussed.

1. Introduction

Thermoluminescence (TL) and optically stimulated lumines-
cence (OSL) are two related phenomena, broadly used in
radiation dosimetry and in the dating of archaeological and
geological samples. TL was first explained with a sound theo-
retical model by Randall and Wilkins (1945). These authors
introduced the ‘first-order kinetics’ while assuming that a freed
carrier has negligible probability of retrapping. The governing
first-order equation can be written as

L = −dn

dt
= s · n · exp(−E/kT ), (1)

which determines the simplest TL single peak if the heating
function is given. Here, E (eV) is the activation energy,
k (eV K−1) the Boltzmann constant, s (s−1) the frequency
factor, T (K) the temperature, t (s) the time and n (cm−3)

the concentration of electrons trapped in the relevant trapping
states with no its value when the heating begins. The single
TL peak in this simple situation behaves like the solution of
equation (1),

L(t) = snoe−E/kT exp

[
−s

∫ t

0
e−E/kT ′

dt ′
]

. (2)

Note that this expression is the intensity as a function of time.
The ‘conventional’ expression where L is given as a function
of temperature, T , for a linear heating function is reached by
writing dt ′ = dT ′/β, where β (K s−1) is the constant heating
rate, and taking the lower and upper limits of the integral as
To and T , respectively. Garlick and Gibson (1948) extended
the theory to cases where retrapping is substantial, and got the
second-order governing differential equation

L = −dn

dt
= s ′ · n2 · exp(−E/kT ), (3)
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where s ′ (cm3 s−1) is the pre-exponential factor. The solution
of equation (3) is

L(t) = n2
os

′ exp(−E/kT )[
1 + nos ′ ∫ t

0 exp(−E/kT ′)dt ′
]2 . (4)

Here too, the expression for linear heating function is written
by replacing dt ′ by dT ′/β and changing the integral limits to
the appropriate temperatures.

May and Partridge (1964) suggested the use of ‘general-
order’ kinetics, which can be written as

L = −dn

dt
= s ′ · nb · exp(−E/kT ). (5)

Here, b is the effective order, usually 1 � b � 2, and s ′

is a constant with dimensions of cm3(b−1) s−1, which is the
generalization of the pre-exponential factor s ′ mentioned above
in relation to the second-order case where b = 2. Rasheedy
(1993) proposed the use of s ′ = s/Nb−1 where N is the
concentration of the relevant trapping states. Although entirely
heuristic, the general-order approach has become very popular
in the study of TL and related phenomena. The solution of
equation (5) is

L(t) = s ′′no exp(−E/kT )

×
[

1 + (b − 1)s ′′
∫ t

0
exp(−E/kT ′)dt ′

]−b/(b−1)

, (6)

where s ′′ = s ′nb−1
o . As in the cases mentioned above,

the temperature dependent intensity L(T ) is reached when the
specific heating function T (t) is inserted in equation (6), the
simple case being the linear heating function mentioned.

2. Presentations of the different luminescence
phenomena

When the ‘conventional’ linear heating function is utilized,
the exponential integral appearing in equations (2), (4) and (6)
changes into

∫ T

T0
exp(−E/kT ′)dT ′. This is not an elementary

integral, and a number of numerical methods for its evaluation
have been given in the literature. An alternative has been
suggested (see e.g. Arnold and Sherwood (1959), Stammers
(1979), Chen and McKeever (1997)), namely the use of a
hyperbolic heating function, which transforms the integral into
an elementary one. In this case, the relation between time and
temperature is 1/T = 1/To−t/β ′ where β ′ (K·s) is a constant.
Therefore, one has dt = (β ′/T 2)dT , which can be inserted in
equations (2), (4) and (6). The resulting integral is∫ t

0
exp(−E/kT ′)dt ′ = β ′

∫ T

T0

(1/T ′2) exp(−E/kT ′)dT ′

= (kβ ′/E)[exp(−E/kT ) − exp(−E/kT0)]. (7)

Since the function exp(−E/kT ) increases very fast with
temperature, the second term in the square brackets is
negligible for T larger than To even by a few degrees. The
use of this expression will be elaborated below.

Another important case is that of phosphorescence,
namely, where the temperature of the sample is held constant

following excitation. The integral in the above equations is of
a constant, and therefore, of course,∫ t

0
exp(−E/kT ′)dt ′ = exp(−E/kT ) · t . (8)

When inserted in equations (2), (4) and (6), different kinds
of phosphorescence decay are found. Since in all these cases
the functional form of phosphorescence is a rather featureless
decay, it is quite difficult to tell them apart. In their seminal
work, Randall and Wilkins (1945) suggested plotting L · t as
a function of ln t . The result is a peak-shaped curve, quite
similar to the first-order TL peak. Visocekas (1978) and Chen
and Kristianpoller (1986) have extended this presentation to
general-order peaks.

OSL has been developed as an important tool for
dosimetry and archaeological and geological dating (see
e.g. Huntley et al 1985). In fact, for a given sample,
the equations governing OSL and phosphorescence are very
similar. Whereas in phosphorescence, trapped electrons are
released thermally into the conduction band prior to their
recombination in a centre, in OSL the release is by photons of
the stimulating light. Thus, equations very similar to (2), (4)
and (6) can be used when a term proportional to the intensity of
the stimulating light replaces the product of s (or s ′′, depending
on the specific case) and exp(−E/kT ) which, in the case
of phosphorescence is a constant. Bulur (1996) suggested
changing the featureless OSL decay curve into a peak-shaped
function by increasing the intensity of the stimulating light
linearly with time. Using the linear-modulated OSL (LM-
OSL), the governing equation is

L(t) = −dn/dt = α(Io/θ)tn(t), (9)

where θ (s) is the duration of the observation and αIo (s−1) is
the probability of escape of electrons from the traps at a light
intensity of stimulation Io. The stimulating light intensity here
varies with time as Iot/θ . The solution of this equation yields
the intensity measured under these circumstances as a function
of time

L(t) = noIoα(t/θ) exp[−(αIo/2θ)t2]. (10)

This is a peak-shaped function. As shown by Bulur, the
maximum intensity here is given by

Lmax = no(αIo/θ)1/2 exp(−1/2), (11)

which is very useful in the applications in dosimetry since the
maximum intensity is proportional to the initial concentration
of carriers in traps, no. This, in turn, is assumed to carry the
information, which concerns the absorbed dose. On the other
hand, the peak-shaped function (10) does not resemble the first-
order kinetics TL peak mentioned above. A simple method
discussed below will remedy this problem, and methods
previously developed for the determination of the kinetics
order in TL will be easily utilized here as well. As is quite
obvious, integration of equation (10) from 0 to infinity yields
no. Thus, if one takes as the LM-OSL signal either the
maximum intensity or the whole area under the curve, in the
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first-order case, the signal is proportional to the concentration
following the excitation, no.

Bulur (1996) gave a similar treatment to LM-OSL
governed by general-order kinetics:

L(t) = −dn/dt = (γ Io/θ)tnb, (12)

where γ is a constant with different dimensions (similar to
s ′ in equation (5)) and b is the kinetics order. Here, Bulur
(1996) assumed that γ = α/nb−1

o , where α is the frequency
factor. Bulur and Göksu (1999) changed this assumption to
γ = α/Nb−1, similar to the assumption by Rasheedy (1993)
for general-order TL. Using the definition γ = α/Nb−1, the
solution of this differential equation is

L(t) = nb
o(αIo)

[
t/(Nb−1θ)

]
× {

1 + (b − 1)
[
αIon

b−1
o /(2θNb−1)

]
t2

}−b/(b−1)
.

(13)

An important special case is that of second order kinetics,
where b = 2 and the intensity is given by

L(t) = n2
o[αIo/(Nθ)]t{

1 + [αIono/(2Nθ)] t2
}2 . (14)

Bulur and Göksu (1999) have shown that for the general-order
situation, by equating the derivative of equation (13) to zero,
the condition for the maximum of the LM-OSL signal is

tmax =
√

2

(b + 1)

θ

αIo

(
N

no

)b−1

. (15)

For the special important case of second order kinetics, this
reduces to

tmax =
√

2θ

3αIo

N

no
. (16)

Inserting from equation (15) into (13) yields

Lmax = 2no

(b + 1)

1

tmax

[
2b

b + 1

]−b/(b−1)

. (17)

In the special case of b = 2, this reduces to

Lmax = 3

8

no

tmax
. (18)

It is quite obvious that since tmax depends on no, Lmax is not
proportional to no, but is rather superlinear with the initial
carrier concentration. In ranges where no is proportional to
the dose, Lmax will be expected to be superlinear with the
dose. If so, using Lmax as the signal measuring the applied
dose may be rather problematic. It should be noted here that if
we consider as the measured signal the area under the LM-OSL
curve, taken from t = 0 to infinity, the situation is different.
Since L(t) is defined as −dn/dt , this integral must be no. The
fact that the total area and the maximum intensity do not behave
in the same way with no, and therefore with the dose, indicates
that the shape of the peak distorts with increasing no. Several
investigators have used the LM-OSL for dosimetry and dating
purposes (see e.g., Schlapp et al (2003), Adamiec (2005)).

3. The unified presentation

In this work, we show that the TL measured under hyperbolic
scheme, phosphorescence and LM-OSL can be cast into the
same form for any given kinetics order. Therefore, any method
of analysis developed for one of these presentations can very
easily be carried over to the other. For example, if the
symmetry factor of TL measured with a hyperbolic heating
function can be used for the evaluation of the effective kinetics
order, it can just as well determine the kinetics order in the new
unified presentation of LM-OSL.

Let us start with the unified presentation in the first-order
case. Taking equation (2) for TL and using the hyperbolic
heating function as given by equation (7) and without the term
including To which, as explained above is negligible, one gets

L(T ) = sno exp(−E/kT ) exp[−(sβ ′k/E) exp(−E/kT )].

(19)

If we denote −E/kT by x, we get

L(x) = snoex exp[−(sβ ′k/E)ex], (20)

which is practically the same as the expressions mentioned
before in the literature (see e.g. Kelly and Laubitz (1967)).
Note that, as defined, x is negative, a point that will be
discussed below while comparison is made with the two
other phenomena. It should be mentioned that a slightly
different presentation could be made, namely, with x =
E/kT . However, in the former, an increasing temperature
T is associated with an increasing x, and therefore we prefer
it over the latter, where it is the other way around.

In the case of phosphorescence, where the temperature is
fixed, equation (2) along with (8) gives

L(t) = sno exp(−E/kT ) exp[−s · exp(−E/kT ) · t]. (21)

As pointed out above, the way to transform this to a peak-
shaped curve is plotting L(t) · t as a function of ln t . We can
write

y = L(t) · t = φnote
−φt , (22)

where φ = s exp(−E/kT ). If we denote ln t by x, we have
t = ex , and get

y(x) = φnoex exp(−φex), (23)

which, apart from the meaning of the constants, is exactly of
the same form as equation (20).

As for the LM-OSL, let us multiply both sides of
equation (10) by t , and we get

y = t · L(t) = noIoα(t2/θ) exp

[
−

(
αIo

2θ

)
t2

]
. (24)

If we now take t2 = ex (x = 2 ln t), we get

y(x) = 2noδex exp(−δex), (25)

where δ = αIo/(2θ). The shape of the first-order peak in
equation (25) is exactly of the same form as in (20) and (23).

It should be noted that whereas in the TL case,
equation (20), x is always negative, in equations (23) and (25),
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x may be either positive or negative, depending on the relevant
values of t ; for t < 1 it is negative and for t > 1 it is positive.
This, however, is not important since changing the units of time
may change x from positive to negative or vice versa. Making
such a change simply means that instead of ln t , we have ln(ct)

where c is the conversion factor from, say, minutes to seconds
(c = 60). Since ln(ct) = ln c + ln t , this simply means a shift
of the whole relevant curve by ln c along the x-axis.

A very similar treatment can be made in the three
mentioned phenomena for the general-order kinetics, which
includes, of course, the second order with b = 2. Inserting the
value of the integral with the hyperbolic heating function (7)
in equation (6), we get

L(T ) = s ′′no exp(−E/kT )[1 + (b − 1)(s ′′kβ ′/E)

× exp(−E/kT )]−b/(b−1), (26)

and by using the same substitution x = −E/kT , we get

L(x) = s ′′noex[1 + (b − 1)(s ′′kβ ′/E)ex]−b/(b−1). (27)

Obviously, in the second-order case, b = 2 and one gets

L(x) = s ′′noex[1 + (s ′′kβ ′/E)ex]−2. (28)

For the TL-like presentation of phosphorescence, the parallel
expression is (see, Chen and Kristianpoller (1986))

y = φnoex[1 + (b − 1)φex]−b/(b−1), (29)

where, again, φ = s exp(−E/kT ). Obviously, the second-
order function is

y = noφex[1 + φex]−2. (30)

As for the new way of presenting the LM-OSL, we multiply
both sides of equation (13) by t , and take, as before, y = t ·L(t),
t2 = ex and define δ′ = αIon

b−1
o /(2θNb−1). We get

y = 2noδ
′ex[1 + (b − 1)δ′ex]−b/(b−1). (31)

Here too, the second-order expression is simply

y = 2noδ
′ex[1 + δ′ex]−2, (32)

where δ′ = αIono/(2θN).
It is evident that equations (20), (23) and (25) have the

same functional form for the three phenomena and first-order
kinetics. The same is true for equations (27), (29) and (31) for
general order, and equation (28), (30) and (32) for the second-
order case.

4. Applications of the unified presentation

Chen and Kristianpoller (1986) have shown that for the
TL-like presentation of phosphorescence, there is a one-to-one
correspondence between the kinetic order and the symmetry
factor µg (See e.g. figure 3.11 in Chen and McKeever (1997)).
It should be mentioned that this figure resembles the one given
by Chen (1969b) for TL with a linear heating function, except
that in the present case, µg is, indeed, a unique function of

b, whereas in the linear heating function case, there is an
apparent ‘error bar’ which, in fact, represents a relatively
weak dependence of µg on the activation energy and the pre-
exponential factor. Thus, somewhat different values of µg can
be associated with a certain value of b, depending on the values
of E and s (or s ′′). The one-to-one correspondence between
b and µg given in the case of TL-like phosphorescence, can
automatically be applied in the other mentioned phenomena
since the underlying equation is the same. This includes TL
with hyperbolic heating function, OSL decay transformed to
the L · t versus x = ln t , as well as the new way of presenting
LM-OSL mentioned above. Once this presentation is used in
any of these phenomena, the effective order of kinetics can be
evaluated from the mentioned curve of µg versus b by using
the experimentally determined value of µg.

Let us consider the signal dependence of the new
presentation of LM-OSL on the initial concentration no. For
the first-order case, if we set the derivative of equation (25) with
respect to x to zero, we get the condition for the maximum as

exm = 1

δ
, (33)

where xm is the maximum point. Re-inserting this into (25),
we get

ym = 2noe−1. (34)

Here, the maximum intensity of the signal is proportional to no,
in a similar manner to that shown by Chen and Kristianpoller
(1986), in the case of TL-like phosphorescence, where the
maximum intensity in the first-order case is ym = no/e.
The factor of 2 in equation (34) arises from the same factor
appearing in equation (25). As for the area under the curve,
integration of equation (25) for x going from −∞ to ∞ (t goes
from 0 to ∞) yields ∫ ∞

−∞
ydx = 2no. (35)

The significance of this is that while using this method for
dosimetry, the maximum intensity of the curve as well as the
area under the curve are proportional to no, which, as pointed
out, is usually the measure of the dose. It should be noted here
that whereas the integral under the L(t) curve is, by definition,
equal to no,this is not the case for the y(x) curve. However,
for the applications, it is important that the area is proportional
to no.

A similar treatment can be given to the general-order
case. Setting the derivative of equation (31) to zero, we get
again, as in equation (33) the condition for the maximum,
exp(xm) = 1/δ. Re-inserting this in equation (31), we get

ym = 2no

bb/(b−1)
. (36)

Here too, the maximum intensity is proportional to no,
as opposed to the original presentation by Bulur (see
equation (17)). For the second-order case, equation (36)
reduces to ym = no/2. Chen and Kristianpoller (1986)
have shown that the maximum intensity for the TL-like
phosphorescence is expressed by a similar equation, excluding
the factor of 2.

As for the integral under the y(x) curve, integrating over
equation (31) from −∞ to ∞ yields, again,

∫ ∞
−∞ ydx = 2no,

4
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which is identical to equation (35) for first order, and includes
the important case of second-order kinetics.

The consequences concerning using the effect for
dosimetry and dating and for the other phenomena within the
unified presentation are obvious.

5. Numerical demonstration of the two
presentations of LM-OSL

In this section, we show the different dependences of the
maximum intensity of LM-OSL on the initial concentration no

in the two mentioned presentations in the non-first-order cases.
For the demonstration, we limit the discussion to the second-
order case, which is an extreme case in the range of orders of
kinetics between 1 and 2. Let us re-write equation (14) for the
LM-OSL as

L(t) = n2
oCt[

1 + (noC/2)t2
]2 , (37)

where C = αIo/(Nθ). For the numerical demonstration,
it is sufficient to choose a value for C and we have chosen
C = 10−11 cm3 s−2. We have also taken a range of time from
1 to 100 s, and varied no from 1 × 108 cm−3 to 5 × 108 cm−3,
as shown in curves (a)–(e) in figure 1. The maximum point
tmax is seen to decrease with increasing no, which could be
predicted from equation (17). As for the maximum intensity,
equation (18) along with (16) shows that in the second-order
case, the dependence on no should be as a power of 3/2. This
is seen in figure 1. For example, the maximum of curve (e)
is ∼11.2 times that of (a) for a change of no by a factor of
5, and indeed, 53/2 ≈ 11.2. In view of equations (15) and
(17), one can expect superlinearity, though with less than a 3/2
power for the dependence of Lmax on no for orders b between
1 and 2. Thus, one can expect a superlinear dependence of the
conventional LM-OSL presentation on the excitation in ranges
where no is linearly dependent on the dose.

As for the new presentation of LM-OSL, multiplying
equation (37) by t yields

y = t · L(t) = n2
oCt2[

1 + (noC/2)t2
]2 . (38)

and using, as before, t2 = ex (x = 2 ln t), we get

y(x) = n2
oCex

[1 + (noC/2)ex]2 . (39)

For the given range 1 � t � 100, we have 0 � x � 9.2. Using
the same value for C and the same five values of no between
1 × 108 and 5 × 108 cm−3, we get figure 2. It is clearly seen
that the shape of the curves is much more similar to TL curves,
be it with linear (see e.g. Chen, (1969a)) or hyperbolic (see
e.g. Kelly and Laubitz, (1967)) heating functions, than in the
original LM-OSL presentation. Here too the maximum point
xm gets smaller with increasing no, in the same way, which
is very familiar for second-order TL, be it with a linear or a
hyperbolic heating function. As for the maximum intensity, it
is clearly seen that it is strictly linear with no, and therefore,
in many cases, with the applied dose. As mentioned above,
this linear dependence in the new LM-OSL presentation has
important practical consequences for dosimetry.

Figure 1. Simulated conventional LM-OSL curves. The parameters
used are given in the text. The ratios of the values of no in curves
(a)–(e) are 1 : 2 : 3 : 4 : 5.

Figure 2. Simulated LM-OSL in the new presentation (see text).
The parameters used are the same as in figure 1, and so are the
values of no.

6. Conclusions

In this work, it has been shown that a unified presentation
can be given to different luminescence curves. These
include TL measured under hyperbolic heating function, TL-
like phosphorescence, TL-like OSL decay as well as LM-
OSL and pseudo-LM-OSL. In all these phenomena, the
results can be presented in the same way; examples are
equation (20) for first-order kinetics and equation (27) for
general-order kinetics with equation (28) being the special
case for b = 2. The main importance of this presentation
is that it transforms a featureless decay curve into a
peak-shaped curve, the maximum of which is proportional
to no, the initial concentration of carriers which, under
the appropriate conditions, carries the information of the
previously administered dose. Of course, it is much easier

5
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to determine accurately such a maximum value than the area
under a featureless decay curve. Also, the area under the
defined y(x) curve is shown to be proportional to no. In
addition, the use of the mentioned figure from Chen and
Kristianpoller (1986) can yield in all these phenomena the
effective kinetic-order b due to the one-to-one correspondence
between the symmetry factor µg and the order of kinetics.
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