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problems.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The unconditional p-center problem (see, for example, [7]) deals
with the optimal location of emergency facilities. The locations of
n demand points are given, and we need to locate p service facili-
ties. The value of a candidate solution to the p-center problem is the
maximumdistance between the demand points, each to its nearest
service facility. Our objective is to find the solution with the min-
imal value. It is assumed that all the facilities perform the same
kind of service, and that the number of demand points that can get
service from a given center is unlimited.
In the conditional p-center problem, we are given the locations

of q existing service facilities.We need to locate p additional service
facilities, so as to minimize the maximum distance between the
demand points, each to its nearest service facility, whether existing
or new.
There are two main variants of the p-center problem. In the

continuous p-center problem, the location of the service facilities
can be anywhere in the two-dimensional Euclidean space. In the
discrete variant there is a finite set of potential service points to
choose from. An analogous representation of the discrete p-center
problem is the p-center problem on networks [7]. In the p-center
problem on networks, both the demand points and the potential
service points are located on a weighted undirected graph, and the
distance between any two points is the cost of the shortest path
between them.
Berman and Simchi-Levi [2] showed how to solve the condi-

tional p-median and p-center problems by solving a single uncon-
ditional (p+1)-center problem. Berman and Drezner [1] improved
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this result by showing how to solve these problems by solving a
single unconditional p-center problem. Both papers refer only to
problems on networks.
Chen and Handler [5] presented a relaxation algorithm for solv-

ing the conditional p-center problem.
Drezner [6] showed how the conditional p-center problem can

be solved by solving O(log n) p-center problems. In this paper
we present a new algorithm for solving the conditional p-center
problem, which relies on Drezner’s observations, as well as a
relaxation-based algorithm given by Chen and Chen [3]. This new
relaxation algorithm is applicable to both the continuous Euclidean
and the discrete conditional p-center problems.

2. Drezner’s algorithm

Let {X1, X2, . . . , Xn} be the set of the demand points. Without
loss of generality, let us assume that the demandpoints are ordered
by their distance to the q existing service facilities, from farthest to
nearest (recall that the distance of a demandpoint to a set of service
facilities is its distance to the nearest service facility). Let us denote
by v the value of the optimal solution to the conditional p-center
problem. Since the demand points are ordered by their distance
to the existing service facilities, there exists a value r such that all
demand points in {X1, X2, . . . , Xr} are not covered by the existing
service facilities, and all demand points in {Xr+1, Xr+2, . . . , Xn} are
covered. The basic idea of Drezner’s algorithm, which we later
explain in more detail, is to perform a binary search in order to
find this value of r .
We denote the value of the optimal solution of the uncon-

ditional p-center problem for {X1, X2, . . . , Xk} by Fk. We define
F0 = 0.
Let the distance of Xk to its nearest existing service facility be

Mk. We defineMn+1 = 0.
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Two important observations:

M1 ≥ M2 ≥ · · · ≥ Mn ≥ Mn+1, (1)

and

F0 ≤ F1 ≤ F2 ≤ · · · ≤ Fn. (2)

Expression (1) follows immediately from the ordering of the de-
mand points. Expression (2) follows from the fact that the solution
of the p-center problem for a set of demandpoints is always greater
than or equal to the solution of the p-center problem for any subset.
Anyoptimal solution to thep-center problemon {X1, X2, . . . , Xk}

induces a feasible (not necessarily optimal) solution to the
conditional p-center problem, where each demand point in
{Xk+1, Xk+2, . . . , Xn} is served by its nearest existing service fa-
cility, and each demand point in {X1, X2, . . . , Xk} is served by
the nearest new service facility in the solution of the uncondi-
tional p-center problem. The value of this candidate solution is
max{Mk+1, Fk}.
Drezner [6] proved the following lemma, for which we present

a slightly different proof.

Lemma 1. The optimal solution to the conditional p-center problem
is

min
0≤k≤n

max{Mk+1, Fk}.

Proof. Assume to the contrary that there exists a solution to the
conditional p-center problemwith value v < min0≤k≤nmax{Mk+1,
Fk}. Let r be the index satisfying M1 ≥ M2 ≥ · · · ≥ Mr ≥
v ≥ Mr+1 ≥ · · · ≥ Mn ≥ Mn+1. Therefore only the points
{Xr+1, Xr+2, . . . , Xn} are covered by the existing service facilities.
The rest are covered by the new service facilities.
Since v < max{Mr+1, Fr}, and since v ≥ Mr+1, it follows

that v < Fr . However, the distance of all points in {X1, X2, . . . Xr},
each to its nearest new service facility, is less than or equal to v;
therefore Fr , the solution of the unconditional p-center problem on
{X1, X2, . . . Xr}, must satisfy Fr ≤ v, a contradiction to v < Fr . �

AsDrezner has observed, since {Fk}nk=0 ismonotonically increas-
ing, and {Mk}n+1k=1 is monotonically decreasing, it immediately fol-
lows that the optimal solution to the conditional p-center problem
is eitherMr or Fr where r is themaximal value satisfyingMr > Fr−1.
Drezner assumes that one has an algorithm for the solution

of the unconditional p-center problem, and proposes to use it to
compute the Fk values (the Mk values are easily computed). His
algorithm performs a binary search in order to find this r value.
In the next section, we propose a different algorithm for finding r .

3. Solving the conditional p-center problem using reverse
relaxation

Relaxation (in the context of this paper) [4,7] is a method for
optimally solving a large location problem by solving a succession
of small sub-problems. It is an iterative algorithm which updates,
at each step, bounds on the optimal solution, until the optimal
solution is reached.
The classic relaxation algorithm [4,7] starts with an upper

bound of infinity, and keeps updating it until the optimal value is
reached (this is similar to Minieka’s algorithm [8], which does not
involve relaxation). Chen and Chen [3] proposed a new algorithm,
reverse relaxation, which starts with a lower bound of 0, and con-
stantly updates it (upwards), until the optimal value is reached.
As a fortunate ‘‘side-effect’’, the reverse relaxation algorithm

computes the optimal solution of the p-center problem on subsets
of the demand points (for a proof, see [3, Section 2.6]). We will
use this property to solve the p-center problem, first on {X1}, then
on {X1, X2} and so on until {X1, X2, . . . , Xr , Xr+1} (we halt when
Mr+1 ≤ Fr ).
Algorithm 1 describes the skeleton of a reverse relaxation algo-

rithm for solving the conditional p-center problem. It differs from
the reverse relaxation algorithm in [3] in the way the demand-
point subsets grow. In [3] we may add more than a single demand
point each time, and the demand points may be chosen randomly.
In the current algorithmwemust add a single demand point, and it
should always be the next demand point in order of distance to the
existing service facilities. Also, the rules for halting are different in
the two algorithms.

Algorithm 1 Skeleton of a reverse relaxation algorithm for the
conditional p-center problem.
Lower_Bound← 0
k← 1
Sub←{X1}
while (solution not found)
Feasible←FindFeasibleSolution(Sub, Lower_Bound)
if (feasible solution found for sub-problem)
Optimalk = Feasible
Fk =GetValue(Optimalk)
if (Mk+1 ≤ Fk or k = n)
if (Fk < Mk or k = n)
halt and return Optimalk
else
halt and return Optimalk−1

k← k+ 1
Sub = Sub ∪ {Xk}
else
Lower_Bound←GetNextBound(Sub, Lower_Bound)

In each step of the reverse relaxation algorithm we run a
subroutine that we denote as FindFeasibleSolution, which solves
a p-center-like problem on a subset of the demand points. Our
input is the subset Sub and a value r , which is called the coverage
distance. The subroutine answers the question: ‘‘Is there a solution
to the sub-problem with value less than r?’’ (and if so, finds such a
solution).
Drezner’s algorithm solves O(log n) p-center sub-problems.

While the number of p-center sub-problems that we solve is at
most n, a few properties of the reverse relaxation algorithm indi-
cate that the performance of the algorithmwill often be very good.

• Reverse relaxation tends to solve small sub-problems, in terms
of the number of demand points. Recall that we solve the p-
center problem, first on {X1}, then on {X1, X2} and so on until
{X1, X2, . . . , Xr , Xr+1} (we halt when Mr+1 ≤ Fr ). We do not
solve sub-problems with more than r + 1 demand points.
Although Drezner’s algorithm also solves sub-problems, it may
need to solve sub-problems with more than r + 1 demand
points.
• Reverse relaxation tends to solve problemswith relatively small
coverage distances. The coverage distance has a profound effect
on performance; the lower the coverage distance, the better the
performance [3, Section 3.3.3].
• We can use the solution of the current sub-problem as a lower
bound on the solution of the next sub-problem, which contains
one additional demand point.

It is also important to note that the performance of the reverse re-
laxation algorithm for solving the conditional p-center problem is
no worse than the performance of a single run of the reverse re-
laxation algorithm for solving the unconditional p-center problem
(for the case where we add only a single demand point whenever
the demand-point subsets grow, in order of distance to the existing
service facilities). In [3], experimental results show that the reverse
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relaxation algorithm for solving the unconditional problem is very
efficient.
Drezner assumed that one has an efficient algorithm for solving

the p-center problem. We, on the other hand, make two other
assumptions.

• We assume that there is a finite number of values for
the optimal solution of an unconditional p-center problem.
We use this assumption to implement the subroutine Get-
NextBound(Lower_Bound ) which returns the smallest value,
among the possible values for the optimal solution, which is
greater than Lower_Bound.
• We assume that we have a subroutine FindFeasibleSolu-

tion(Sub, r), which answers the question: ‘‘Is there a solution to
the sub-problem with value less than r?’’ (and if so, finds such
a solution).

Both of our assumptions hold true for the continuous Euclidean
p-center problem, as well as for the discrete p-center problem.
FindFeasibleSolution(Sub, r) can be implemented using set-
covering algorithms (see, for example, [4]).
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