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ARTICLE INFO ABSTRACT

Keywords: In the present work, we consider the filling and thermal emptying of traps and centers in a simple one-trap-one-

TL recombination-center model in a small system such as a quartz grain in nature, when both the excitation and

OSL thermal release of electrons are very slow. Due to the nature of the very slow process, Monte Carlo simulations
Excitation ~ . . ~ . _— .
Fadi appear to be a very appropriate method. However, in parallel, we have applied an approximate analytical
adin; . .
Equiliirium method and found practically the same results although the Monte Carlo results showed some small fluctuations

due to the statistical nature of the procedure. This is in line with the experimental results which are also expected
to have statistical fluctuations. The main result found is that after a long enough time, measured in hundreds or
thousands years or more, the filling of the trap reaches a plateau which, depending on the parameters, may be
very significantly smaller than the concentration of the trap in question. This equilibrium value is the same if we
start from very low, e.g. zero concentration or very high, above the equilibrium value. This plateau level depends
strongly on the relevant parameters. However, comparing simulations with activation energies of 1.2 eV and 1.3
eV shows strong dependence of the plateau level on the energy. Similarly, we can expect strong dependence on
the temperature at which the sample is held. The results reached here and shown in Figs. 1-4 are based on the
simplest OTOR model, but similar results of approaching a plateau level which are not due to the saturation of
traps may occur in more complex systems as is demonstrated by simulations based on the Bailey model for quartz
which includes several traps and centers.

1. Introduction decay is by using a Monte-Carlo method rather than solving the relevant

set of differential equations governing the process at constant

In two recent papers the slow fading of thermoluminescence (TL) and
optically stimulated luminescence (OSL) have been studied using
Monte-Carlo simulations. The models used were the one-trap-one-
recombination-center (OTOR) (Chen and Pagonis, 2015) in which
mainly non-exponential fading was predicted and a more complex
model with additional deep trap (Chen and Pagonis, 2020) where fading
was shown to be mainly exponential. The fading involved was consid-
ered to be the thermal fading from basically rather stable, deep traps,
like those found in archaeological or geological samples. However, if the
time scale is of hundreds or thousands years or more, a very slow
thermal decay can be expected. In these papers by Chen and Pagonis
(2015, 2020), it is suggested that since the thermal release of electrons in
a small grain (e.g. of quartz from pottery) from traps is very slow, of the
order of one electron per day or less, the natural way of dealing with the
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temperature.

One should remember, however, that with archaeological and
geological samples, the scenario is different than having a preliminary
fast excitation and a very long fading. Actually, for hundreds or thou-
sands (or more) years it is irradiated very slowly and in parallel, elec-
trons are escaping thermally very slowly from the traps into the
conduction band, from which they can either retrap or perform
recombination with holes in centers. One can expect that after a certain
(long) period of time, the concentration of trapped electrons will reach a
plateau which, depending on the trapping parameters and rate of exci-
tation, may be significantly lower than real saturation of the traps. The
number of electrons trapped during the archaeological or geological
periods may be translated into the TL or OSL intensities during the
readout, thermal or optical, or to the ESR signal.
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In a paper by Autzen et al. (2018), the question of how many
electron-hole pairs are produced in a quartz grain under natural irra-
diation is discussed. By using the previously developed radiation
transport model-Geant4, they report values of —80000 electron-hole
pairs generated per Gray for quartz grains of —~50 pm. A typical dose
rate in nature may be —2Gy/ka, which would mean ~160 pairs pro-
duced per year or —0.4 per day in the grain.

In this paper, we consider the filling of traps under these conditions
of very slow excitation and very slow release of trapped electrons. We
follow the process by using a Monte Carlo simulation as well as an
approximate analytical procedure.

In the present work, we have also further investigated this effect by
using the comprehensive phenomenological general models by Bailey
(2001) and Pagonis et al. (2008). These models have been used effec-
tively to simulate various aspects of luminescence in quartz, and have
explained many phenomena observed in luminescence emissions from
quartz (Pagonis et al,, 2011; Chen and Pagonis, 2011). In the present
paper we are interested in the effect of slow irradiation and rather
elevated irradiation temperature on the trap filling process for a quartz
sample. Relevant previous simulations were carried out by Koul and
Patil (2015) and Koul et al. (2016). These authors carried out extensive
simulation studies and examined the effect of geological and burial
temperatures on the sensitization of luminescence emission in quartz.
The results of these simulations suggested that the temperatures pre-
vailing during burial time have appreciable impact on the natural
luminescence signals in quartz.

2. The model

The simple model we consider is shown schematically in Fig. 1. It
consists of a trap N (c111_3) with instantaneous occupancy of n (cm_s),
activation energy E (eV), frequency factor s (s’l) and a center M (cm’s)
with instantaneous occupancy of m (cm™>). The recombination proba-
bility coefficient is Ap, (cm®s™1) and the retrapping probability coeffi-
cientis Ap (em®s™1). This is the well known one-trap-one-recombination-
center (OTOR) model and it is assumed that holes are trapped first in the
center during the excitation and then, electrons from the conduction
band may recombine and annihilate them. X (em 3s 1) is the rate of
production of electron-hole pairs which, as mentioned above is rather
small. It is assumed that the hole is trapped in the center rather quickly
during excitation, and the electron either retraps or recombines with a
hole in the center instantaneously. Later on, once an electron may be
thermally raised into the conduction band, it either recombines with a
trapped hole or retraps into an empty trap. Under these assumptions,
occurring at the relatively low temperature of excitation, we do not have
to consider the concentrations of electrons in the conduction band or
holes in the valence band. As a result, we can assume that within the
OTOR model, all along the process, we have an equal number of trapped
electrons and holes, n=m. This version of OTOR in which n=m is
sometimes termed “General one trap (GOT)" model (see e.g. Kierstead
and Levy, 1991).

In this process, we consider thermally released electrons being
captured by traps on one hand and being annihilated by recombination
on the other hand. Intuitively, we can expect that after a long enough
period of time, the number of electrons entering the trap per unit time
will be the same as the net number of electrons captured, and we will get
an equilibrium situation. Let us examine this equilibrium and its
dependence on the relevant parameters first. Let us consider a period of
time At which for the sake of the Monte Carlo simulations will be 1 day
= 86400 s. Let us define the probability that an electron is thermally
raised per second,

y=sexp(—E/KT). (1)

This means that the dimensionless probability for an electron to be
raised to the conduction band is y-At. To begin with, let us consider the
situation at the equilibrium reached after long enough exposure to
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irradiation. The balance of electrons being trapped during this period of
24 h s,

A (N —n) N AN —n)
AN —n) A0 AN —n) + AN

yn. (2)

The first term on the left is the ratio of electrons raised by the irra-
diation in this period of time which end up in the traps. The second term
on the left represents those electrons raised thermally from the traps but
end up back in the traps due to retrapping. Together, they are equal to
the total number of electrons raised thermally from the traps. The
equality between the two sides of the equation results from the fact that
we assume no accumulation of electrons in the conduction band.

It is important to mention that as pointed out above, we are dealing
with a small grain with a volume of —~10~7 cm™3. For the sake of the
Monte Carlo simulation, it is very convenient to consider the number of
traps and their occupancy as dimensionless numbers rather than con-
centrations. If, for example, the concentration of relevant traps is —10*
em™>, from this point on, we’ll take the number of traps in the grain as
N=107 and the occupancy n will be the instantaneous number of trapped
electrons (as well as trapped holes) in the grain (see also the discussion
in the Appendix). Obviously, Eq. (2) will remain the same with this
revised definition of N and n. Moving the second term on the left to the
other side and rearranging results in

Ax(N —n) Ann®

X = _
AN —n) + A AN —n) T Apn

(3

Since the denominators are the same, we get directly a quadratic
equation

YA+ XA,n — XA,N = 0. (4
The positive solution of this equation is the equilibrium value n.q

—XA, + VX?A,” + 4XA,yNA,,

2yA,,

()

Heqg =

The second term in the numerator of Eq. (5) can be written as
XA,+/1 + 4yNA,,/XA, and for a given set of the parameters and a small
enough X, the unity under the square root sign can be dropped. The
expression for n,4 reduces to

XA,,( &NA, [ (XA,) —1)
ﬂgq ~ 2]/Am .

(6)
Again, for small enough X, the unity can be dropped and one gets

[ @)
rAm
Thus, for a given set of parameters, for small enough X, n., goes like
the square root of the value of X.

We will evaluate the equilibrium values found by Eq. (5) to the re-
sults of the Monte Carlo simulation and the approximate analytical so-
lution for certain sets of parameters below. It is worth mentioning that
within the framework of the OTOR model, this equilibrium value which
is expected to be reached after long enough time is independent of the
initial filling of the traps. No matter whether we start with empty traps
and centers (n = 0) or any other value, we expect to get the same
equilibrium value. This includes situations with initial values higher
than the equilibrium occupancy as demonstrated below. Another
important point is that the equilibrium value obviously depends on the
given parameters N, A;, and A,, but also on the variable parameters, X,
the rate of production of electron-hole pairs and on the temperature at
which the grain is held during the long irradiation through the param-
eter y given in Eq. (1).
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3. Monte Carlo simulation

As pointed out above, the natural way to deal with this very slow
process of excitation is by using a Monte Carlo method. Although an
approximate analytical solution is also given (see below), let us describe
briefly the Monte Carlo procedure. Suppose that at a certain point in
time, there are n trapped electrons. For the next period of time, At, we
consider the probability that an electron pair is produced and once that
has taken place, the probability that the electron gets trapped (rather
than recombines). With the mentioned rate of electron-hole production
of 0.4 (per At), we draw a MATLAB-generated pseudo-random number
between zero and 1 and if this number is smaller than 0.4, we draw
another such pseudo-random number and check if it is smaller than
An(N-10)/[ An(N-n)+Am]. If both conditions are met, we determine that
the electron has been trapped and change n into n+1. For the same
period of time At, we should check if electrons are thermally released
into the conduction band. For each of the n trapped electrons we draw a
pseudo-random number between zero and 1 and if this number is
smaller than y from Eq. (1), we change n into n-1. However, the raised
electron is momentarily in the conduction band and may retrap. We
draw one more such pseudo-random number and if it is smaller than
Ap(N-n)/[ Ap(N-n)+Amm], we determine that the electron has retrapped
and change the previous n-1 back to n. Once all the electrons have been
tested, we register the final number of electrons in traps, go to the next
time interval At and repeat the procedure with the final number of
electrons as the new initial value. Obviously, within the framework of
this model, we assume that the number of trapped holes in centers is the
sanie as the number of trapped electrons all along.

An example of the Monte Carlo results are shown in Fig. 2. The pa-
rameters chosen are N — 107; ng = 105; Ap = 10_8c1113s_1; Ap=1 010
em’s L E=13eV;s =105 T=300 K and X = 0.4 per day. The
points in Fig. 2 (a) show the number n of trapped electrons as a function
of time when we start from empty traps. The same procedure can be
repeated when we start with more trapped electrons than the equilib-
rium reached after a long time. This is shown as the points in curve (b) in
Fig. 2. We chose here an initial value of ny = 10°. As is seen, the two
curves converge into practically the same value. As for the value of the
equilibrium, substituting in Eq. (5) one gets ngg = 5.643 x 10* and
practically the same result with Egs. (6) and (7). Also, as can be seen in
Fig. 2, both (a) and (b) converge toward the same value.

The same procedure has been repeated for the same set of parameters
with one change, namely, the activation energy is somewhat smaller, E
= 1.2 eV. The results are shown in Fig. 3 where the points in curve (a)
represent the Monte Carlo results when we start from empty traps and in
curve (b) when the procedure starts with ny = 10%. Using Eq. (5), we get
with this set of parameters n,, = 8.18 x 103, which is also the plateau
reached in Fig. 3. Note the significant difference in the value of n.q for a
rather small change in the activation energy.

To demonstrate further the strong dependence of the results on the
activation energy and the temperature, Fig. 4 shows the results of the
Monte Carlo simulations with the same set of parameters except for E =
1.4 eV and only from ng = 0 up, for the temperatures 35, 50, 65 and 80
°C. As is seen, here only the 80 °C line reaches the equilibrium after
~2750 years, and the lower-temperature lines are expected to reach
equilibrium only after much longer periods of time.

A point should be made about the use of dimensionless numbers for
the values of N and ngp. These are pure numbers of the traps and their
occupancy in a given grain. Obviously, the Monte Carlo method can deal
only with numbers. The connection between these numbers and the
dimensional magnitudes one normally uses is described in the Appendix
below.

4. Approximate analytical analysis

Using the same terms appearing in Eq. (3) we can write the differ-
ential equation governing the filling or emptying the traps,
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dn A, (N —n) A

= X — . 8
di AN —n)+ A AN —n) + A’ )

The first term on the right is the rate of free electron creation
multiplied by the fraction of those electrons that end up in the trap. The
second term on the right is the rate of the thermal excitation of electrons
out of the trap multiplied by the fraction of those electrons that end up
recombining in the center.

To simplify the expressions, let us assume that n < < N,

dn AN An?
dt AN +Aun” AN +Apn

2 (9)

Note that although we assume that n < < N we keep the second term
Apn in the denominator because we may have that A, is significantly
larger than A, so that Ay may not be negligible compared to A;N. We
can re-write Eq. (9) as
dn  ANX — A,n’

i n m y (1 O)
dr~ AN +A,n

Equation (10) shows that the electron concentration n increases
when ANX > Amnz-y while n decreases if A;NX < Amnzy. This means that,
whatever the initial value of n is, n will asymptotically tend toward n =

VAnNX/Any as pointed out above in Eq. (7). This is a quasi-steady state
of the trap in question.
Reorganizing Eq. (10) leads to

AN + Aun
Dt T2 =t 11
ANX — Ayt (1

and we can integrate

n A N n A
/ A / M dw =1, (12)
no AnNX — A0y .

m ANX — A,n%y
where ng is the initial concentration. n’ is a variable of integration. After
some algebra, one gets

Am
AN | I+ A,‘N);(n B lln ! 7Amyn2
ANX

n
XA,y 1 — /:LN);(H' 4

Equation (13) is a transcendental equation which allows us to
compute directly the time ¢ at which a given n occurs. This allows plots
of nvs. t to be made. Such results are shown in the solid lines of Fig. 2(a
and b) and Fig. 3(a and b) for the sets of parameters mentioned in the
text. The results of this approximate solution are seen to be very close to
the Monte Carlo simulation results.

=t (13)

b =

L]

5. Bailey’s model

We have further investigated the phenomena described in the pre-
vious sections, by using the comprehensive phenomenological general
models by Bailey (2001) and Pagonis et al. (2008). We are interested in
the effect of slow irradiation and elevated irradiation temperature on the
trap filling process for a quartz sample. Relevant previous simulations
were carried out by Koul and Patil (2015) and Koul et al. (2016). The
results of these simulations suggested that the temperatures prevailing
during burial time have appreciable impact on the natural luminescence
signals in quartz.

The model by Bailey (2001) is based on five electron and four hole
trapping centers. The electron trapping centers consist of the 110 °C
trap, a 230 °C trap, fast and medium OSL traps, and a thermally
disconnected trap. These electron traps are designated as Levels 1-5 in
the model, respectively. The hole traps in the model consist of thermally
unstable non-radiative recombination centers (R; and Ry), thermally
stable radiative recombination center (L) and thermally stable
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non-radiative recombination center. These hole traps are designated as
Levels 6-9 in the model, correspondingly. The transport equations
describing the traffic of charge with time in various centers and traps of
the model are:

dn,

%;n((gvi A — mdi(P,T) — msy exp( — E; JKT) (i=1,..,5), (14)
dnj .

il (N; —n;)A; — njs; exp( — E; [ kT) —nmiB;  (j=6,...,9), (15)
dn, T (dn; AKY

a = * ;(dz) - 2 (B, (e

J=a11

dﬂ,.‘ qir dnj qtr
R (E) -3 (nnn), 7)

L=n.nsgBsn(T). (18)

According to Bailey (2001), the levels 1 to q = 5 are electron traps
while levels q+1 to q + r (with r = 4) are hole centers. Apparently due to
a print mistake, the last term on the right-hand side of Eq. (17) was
missing in Bailey’s paper. The correct version has been given later by a
number of researchers (see e.g. Friedrich et al., 2016). Equations (14)
and (15) represent the variation in the charge population with time, for
electronic and hole trapping centers respectively. Similarly equations
(16) and (17) represent the change in the charge population with time in
the conduction and valence bands, respectively, and Eq. (18) describes
the luminescence signal produced by recombination at the luminescence
center L. The various parameters described in the above equations are:
N;, the total concentrations of the i-th electron traps (em™3); ny the
instantaneous concentrations of trapped electrons (em™>); s, the fre-
quency factors (s~1); E;, the electron trap depths below the conduction
band (eV); N; the j-th total concentration of hole traps (em ) 1, the
instantaneous concentrations of trapped holes [cnfs); E;, the hole
depths above the valence band (eV); k, Boltzmann’s constant (eV-K™D);
T, the absolute temperature (K); A;, the conduction band to electron trap
transition probabilities (cmss’l); Aj, the valence band to hole trap
transition probabilities (cis’l); Bj, the conduction band to hole trap
transition probabilities (cm®s1); A; the optical de-trapping rates (s 1); t,
the time (s); 5, the luminescence efficiency factor which describes
thermal quenching effects; g, the constant heating rate (Ks 1) and X, the
ionization or pair production rate (ecm™3s71). The optimum values
assigned to these parameters for different centers and traps of the model
are listed in Table 1 of Bailey (2001), as model variant Qtz-Al. The
simulation procedures used in this paper for the natural quartz sample
are identical to the ones used in Bailey (2001), and are listed as steps 1-4
in the present Table 1. The slow natural irradiation during the geological
and burial time spans was performed by using a very low dose rate of 2
mGy/year or 6.34 x 10 1'Gy-s~!, close to the dose rate one would
expect in nature. These simulation procedures of the natural sample are
of course a simplification, and the actual natural processes are much
more complex. However, the simulations provide a useful insight into
the effect of the slow dose rate and of burial temperature of the quartz

Table 1

The simulation steps using the comprehensive quartz model by Bailey (2001).
Steps 1-4 are a simulation of a “natural’’ quartz sample similar to Bailey (2001)
procedure but at a lower burial temperature, a lower dose rate and over a longer
time than he used. The results of these simulations are shown in Fig. 5.

Geological dose irradiation of 1000 Gy at 1 Gy/s.

Geological time — heat to 350 °C.

Mluminate for 100 s at 200 °C.

Burial dose D at burial temperature T = 10 °C at a very low natural dose rate of 6.34
% 10 ' Gy/s, for a burial period of 60,000 years. Record the trap filling of levels 2.
and levels 3 in the model during the burial period of 60,000 years.

5 Repeat the simulations steps 1-4 above for other burial temperatures T = 20-60 °C.

AW N
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P An v E s,
m N n

m=n A

Fig. 1. Transitions taking place during excitation and fading in the basic one
trap one recombination center system.

sample on the trap filling process. Specifically we examine the trap
filling ny(#) and n3(t) for levels 2 and 3 in the Bailey (2001) model, which
correspond to TL peaks at 230 °C and 300 °C respectively. It is noted that
level 3 in the model also represents the source of the fast OSL component
in quartz, which is used routinely for luminescence dating applications.
The environmental temperatures generally prevailing on the globe in the
range 10-60 °C were used to represent the burial temperatures experi-
enced by quartz grains in the simulation. The simulations were carried
out using the open access R programs KMS by Peng and Pagonis (2016).
These programs provide the code for several published kinetic models of
luminescence phenomena in quartz, and contain compact functions to
simulate events in the geological history of quartz: crystallization,
irradiation, optical illumination, and heating processes. These processes
can be simulated easily by creating sequences of compact R functions for
several models. The simulations in this paper were carried out using
both the Bailey (2001) and the more comprehensive Pagonis et al.
(2008) models. The two models produced very similar results in this
study, and led to the same conclusions. Graph 5(a) shows the results for
level 2 of the Bailey model. This electron trap corresponds to the TL peak
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LN ]

i \\ . :

(%]
c
(=}
8 60,000 e
uwl aas s YOO
o - =
Lo T
=t | f.,a“"ﬁa‘ a }
5
5 40,000 bl
Q
e - i
p— !
Z - -
20,000 /
0 250 500 750 1,000 1,250 1,500

Time (years)

Fig. 2. Simulations of the population of electrons in traps as a function of time.
The parameters chosen are N =107; A,, = 10 ®em® *;4, =10 ®em® L E=
1.3eV;s = 10" s ; T = 300 K. The points represent the results of the Monte
Carlo simulation whereas the solid lines are the results of the approximate
analytical solution reached by numerical solution of Eq. (13). In curve (a), the
initial number of trapped electrons is 0 and in curve (b) it is 10°.
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Fig. 3. Similar to Fig. 2, with the same parameters but smaller activation en-
ergy E = 1.2 eV. Here, the initial number of trapped electrons in curve (b) is 2
x 10%,

at —220 °C and its trap filling during the burial is clearly affected by the
burial temperature of the sample. The kinetic parameters for this trap
are E=1.55eV, s =5 x 10* 57! which corresponds to a TL peak with a
maximum at 220 °C when using a heating rate of 1 K/s. At a burial
temperature of 30 °C this trap will have reached equilibrium in nature
over a span of 60,000 years. Graph 5(b) shows the corresponding
behavior for level 3 of the Bailey model. This deeper electron trap cor-
responds to the TL peak at —~300 °C, and is also the source of the fast OSL
component in quartz. The filling of this trap is affected very little by the
burial temperature of the sample. The kinetic parameters for this trap
are E=1.70 eV, s = 5 x 1013 57! and a maximum intensity at 300 °C
with a heating rate of 1 K/s. Even at a burial temperature of 50 °C, this
trap will not have reached equilibrium in nature over a span of 70,000
years. The conclusion is that the 220 °C TL peak of quartz should be used
with caution for dating and thermochronometry, while the 300 °C is
much less problematic. These results from the comprehensive multiple
level quartz models are consistent with the Monte Carlo simulations in
the previous sections, and also with the general practice in thermo-
chronometry and dating applications. We also note the relevant ther-
mochronometry work by Schmidr et al. (2015) who studied the red TL
luminescence signals from deep core quartz samples, and found that the
TL peaks at ~230 °C and ~300 °C behave in different ways when irra-
diated in the laboratory, and also when their natural signals are
modeled.

6. Discussion

In this work, we report on the competition between very slow exci-
tation of electrons into traps in a small grain and the very slow thermal
decay taking place during rather long periods of time which may be the
case in archaeological and geological samples in nature. The simulation
was performed using the Monte Carlo method which seems to be
appropriate here since the electrons are being raised either thermally or
by the irradiation at a very slow rate, and can be considered one at a
time. However, repeating the calculation analytically with reasonable
approximations resulted in very close results as seen in Figs. 2 and 3. It
should be noted that the asymptotic equilibrium values of trapped
electrons (and holes) were the same for a given set of parameters
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Number of Trapped Electrons

1 Il Il
0 500 1000 1500 2000 2500 3000
Time (years)

Fig. 4. With the same set of parameters except for the use of E = 1.4 eV, the
growth of the number of trapped electrons simulated by the same procedure,
starting from n, = 0 at different temperatures.

irrespective of whether the initial concentration is smaller (zero in the
examples given) or higher than the final equilibrium values. Another
point to note is the slight scattering of the Monte Carlo points above and
below the analytically reached line. This has to do with the statistical
nature of the Monte Carlo simulation but one has to remember that the

0.8

Electron trap in quariz
E=1.55eV s=5x10" s
0.6 1 220°C TL peak (B=1 K/s)

(2)

Filled traps n,(t) (x10” cm™)
o
'S

—e— T=10°C
—s— T=20°C
P —=— T=30°C
0.0 , : :
0 20000 40000 60000
Burial time, years
1.4
Fast OSL trap in quartz
= 1.2 {E=1.7eV s=5x10" s
5 300°C TL peak (B=1 Kis)
o, 1.0
x (b)
— 081
g_ 0.6 —+— T=10°C
£ 04 —v— T=20°C
B —=— T=30°C
F 02- —o— T=50°C
—— T=60°C
0.0 : ; .
0 20000 40000 60000

Burial time, years

Fig. 5. Simulated results of the occupancy of level 2 (curve a) and level 3
(curve 3) in the Bailey model for quartz. The simulations were performed by the
R programs; the parameters are given in the text.
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physical processes of excitation and fading are also of statistical nature.
In this sense, the Monte Carlo results reflect better the physical situation.
Note also that these fluctuations are better visible in Fig. 3 than in Fig. 2,
apparently because the equilibrium value (—8000) in Fig. 3 is signifi-
cantly smaller than in Fig. 2 (—56000). This issue of the statistical nature
of the results will be further discussed elsewhere.

We should note that the filling of the traps over very long time has
been discussed. The outcome in terms of thermoluminescence (TL) or
optically stimulated luminescence may be proportional to the final
population. However, more complicated situations may occur, in
particular if more traps or centers are involved. Note that if one performs
ESR measurements of the trapped electrons (see e.g. Schmidr et al.,
2015; Timar-Gabor et al., 2020), similar behavior may be expected.
Finally, it should be mentioned that the simulations reached a plateau
after a long time which is not the saturation level of the traps. Two
papers that bear some resemblance to the present work should be
mentioned. Chen et al. (1990) discussed the competition between
excitation and bleaching of TL, but the model is different since these
authors assume that the bleaching is done optically by the same wave-
length of excitation. Also, the time scale discussed there is of minutes.
Chen et al. (1991) reported on experimental results of the sensitivity
changes of the 100 °C peak in synthetic quartz due to cycles of irradi-
ation followed by high temperature activation. The measured curves
resemble the present results, increasing if starting from low sensitivity
and decreasing if starting from high sensitivity, and both curves
asymptotically approach approximately the same value.

It is interesting to note that, as seen by comparing Figs. 2 and 3, the
plateau level reached is strongly dependent on the activation energy
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whichis 1.3 eV in Figs. 3 and 1.2 eV in Fig. 2. Similar strong dependence
can be expected with different temperatures. Another important point to
remember is that we dealt with the OTOR model which is practically the
simplest possible model. Although the mathematics would be more
complicated if more traps and/or centers are involved, one can expect
that the main result namely that a plateau is reached following a very
long period is not the saturation value and that it may depend strongly
on the relevant parameter, e.g., the activation energy or the tempera-
ture. An example for this has been shown in Fig. 5(a) which has been
reached by using the more elaborate Bailey model. It is worth
mentioning that Brown et al. (2017) dealt with the balance between
irradiation and thermal depletion of traps in a system associated with
feldspars. Their theory was based on localized transitions due to
tunneling from an excited state to randomly distributed luminescence
centers.

In conclusion, if one encounters a TL curve, OSL signal or ESR signal
that reaches a plateau level, one should consider the possibility that it is
a result of long-time competition between excitation and bleaching
rather than real saturation.

As for the simulations of the quartz Bailey model, as pointed out
above, one may conclude that for thermochronometry, the peak occur-
ring at 300 °C is much more reliable than that appearing at 220 °C.

Declaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Let us consider Eq. (8) which is the usual conservation equation for trap population where N and n are concentrations with units of cm > and X is an

ionization rate per unit volume, cm’gs*l,

dn AN —n) B Apn?
di AN —n)+Agm AN n) A’

(A1)

The Monte Carlo simulation uses integers. Let N be the number of traps in the grain and v be the number of filled traps. N and v are unitless integers.
The grain experiences X ionizations per unit time. Thus, N, v and X are related to N, n and X according to

N=N/V; X=X/V; n=v/V,

(A2)

where V is the volume of the grain. Substituting the definitions of Eq. (A2) into Eq. (A1) and multiplying both sides of the equation by V, we find

dv AN-v) A, 12
i AN -0 AL AN ) AL

(A3)

Equation (A3) is the conservation equation analogous to Eq. (A1) (Eq. (8) in the text), but for mean trap population v. In other words, subject to the
transformation in Eq. (A2), the same conservation equation works for both concentrations N and n and for numbers N and v.
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