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a b s t r a c t

During the excitation period of thermoluminescence (TL) and optically stimulated luminescence (OSL),
competing effects of fading may take place, in particular in situations of long irradiation with a relatively
low dose rate. In this work, we study, by the use of numerical simulations, this possible occurrence, using
a model with two trapping states and one recombination center. The dependence on the time of exci-
tation of the filling of the active trap, to which the TL or OSL signal is proportional, has been followed.
Using plausible sets of trapping parameters, the solution of the relevant set of coupled differential
equations revealed a time dependence of an increase up to a maximum value and then a decrease toward
an equilibrium value where the rates of production and decay are equal. The equilibrium value reached
by the simulations has been found to be consistent with a direct comparison of the excitation and the
thermal decay rates. The results are somewhat similar to previous reports on non-monotonic dose
dependence with two main differences. The previous model included two trapping states and two
centers whereas the present one has only one center. Also, previously, the dependence was on the dose
with no distinction whether its variation is by changing the dose rate of excitation or the length of
irradiation. With the present work, the non-monotonic and final equilibrium behavior have been specific
to the time dependence whereas when the dose was varied by changing the dose rate, the curve
increased monotonically until it reached the saturation value. Similar results have been reached by a
quasi-analytical method, using some plausible simplifying assumptions.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In the applications of thermoluminescence (TL) and optically
stimulated luminescence (OSL) in dosimetry and in dating of
archaeological and geological samples, a crucial question is the
stability of the measured signal with time. In most cases, some
fading is observed which may be normal or anomalous. In normal
fading at ambient temperature, trapped carriers are released ther-
mally in accordance with the trapping parameters, thus reducing
the expected signal which is associated with the number of trapped
carriers at the instance of readout, heating in TL or exposure to
stimulating light in OSL. The dependence of the measured signal on
the time elapsed between excitation by ionizing radiation and the
readout has been discussed in the literature; exponential and non-
exponential functions of decay have been reported. It seems obvious
that the element of fading takes place during the irradiation as well
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Fig. 1. Energy level diagram for the excitation of a two-trap one center system. The
meanings of the shown parameters are given in the text.
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and it may be noticeable in particular in cases where the excitation
dose rate is low and the time of excitation is long. In the present
work, we study the possibility that accumulation of trapped carriers
maynot behave in the “normal” linear-sublinear-saturationmanner
due to fading during the excitation period. It will be shown that
under the mentioned circumstances, the TL or OSL signal may
behave in such unusual way, namely, it will go up with excitation
time up to a certain point, decrease during further excitation time
and reach an equilibrium level, lower than the otherwise expected
saturation value.

An effect of non-monotonic dose dependence of TL and OSL has
been reported by a number of authors and in several materials.
Charlesby and Partridge (1963) have described a decline of the
maximum TL intensity in g-irradiated polyethylene at 104 Gy and
postulated that the cause of the effect is radiation damage. Halperin
and Chen (1966) have described the UV excited TL in semi-
conducting diamonds. The secondary peak at 150 K increased lin-
early with the dose at low doses, reached a maximum at a certain
dose and decreased at high doses. It is quite obvious that in di-
amonds, photons with energy of 3e5.5 eV cannot cause radiation
damage. Cameron et al. (1966) have reported a non-monotonic
dose dependence in LiF:Mg,Ti as a function of 60Co g-ray excita-
tion dose. They have reported on a rather broad range of linear
dependence, followed by a superlinear range, after which a
maximum value and a decline are observed. Jain et al. (1975) have
described a significant decrease of the TL output of peak V in LiF, by
a factor of 2.5 from the maximum, and ascribed it to radiation
damage. Their graphs have shown that at very high doses, the
doseedependence curves tend to level off following a range of
significant decrease in the TL intensity. Similar non-monotonic
results have been reported by Horowitz et al. (1986). The effect of
non-monotonic dose dependence has also been seen in quartz, the
main material used for archaeological and geological dating.
Ichikawa (1969) has found that in g-irradiated natural quartz, the
peak at ~200 �C has reached a maximum at 6 � 104 Gy and
decreased at higher doses by a factor of ~2.5. Damm and Opyrchal
(1975) have reported on TL of g-irradiated KCl crystals, and
described a non-monotonic dose dependence of some of the pure
and Sr- and Pb-doped samples. David et al. (1977) and David and
Sunta (1981) have shown the dose dependence of some TL peaks
in g-irradiated pink quartz, which revealed a decline following a
maximum at 103e104 Gy. A number of authors have reported on the
non-monotonic effect in the important dosimetric material
Al2O3:C. For example, Yukihara et al. (2003) have described a
somewhat superlinear dependence up to ~39 Gy of b-irradiation of
the 450 K peak in some of the samples. The peak has reached a
maximum value and declined at higher doses. A non-monotonic
dependence of TL of g-irradiated silica glass has been found by
Gulamova et al. (1993). This was associated with the behavior of
optical absorption at 550 nm. Vij et al. (2009) have reported a non-
monotonic dose dependence of TL in SrS:Ce excited by UV light.
Similar non-monotonic effects of OSL have been discussed in the
literature. For example, Schulman et al. (1957) described the
changes in photoluminescence due to prior g excitation in organic
solids. In naphtalene, the dependence of the 464 nm emission
stimulated by 365 nm light depended non-linearly on the g-exci-
tation dose, reaching a maximum at ~105 Gy and decreasing at
higher doses. It should be noted that in most of the experimental
works mentioned here, the dose of excitation was varied by
changing the time of excitation, keeping the dose rate constant.

In previous work by Lawless et al. (2005), Pagonis et al. (2006),
Chen et al. (2006), a non-monotonic dose dependence of TL and
OSL has been explained by using amodel consisting of two trapping
states and two kinds of recombination center. In the non-
monotonic dose dependence, increasing the dose of excitation
increased the TL or OSL output up to a certain dose above which,
the emitted signal declined with further dose. The effect as seen by
the simulations occurred in the two ways the excitation dose was
changed, namely, by changing the dose rate and keeping the time of
excitation constant or by changing the time of excitation and
keeping the dose rate constant. There are at least two differences
between the previous and the present situations. In contrast to the
two-trap two-center case discussed before, the model considered
here includes two traps and only one center. As for the results, in
the present case the dependence on the time of excitation with
constant excitation dose rate gave a non-monotonic curve. On the
other hand, with a constant time of excitation, the dose was
changed by changing the dose rate and the dependence was found
to be an increasing functionwhich approaches saturationwhen the
relevant trap was filled to capacity. Note that, in a sense, this is an
expression of the possible dose-rate effect seen in some materials
and also considered theoretically (see e.g. Chapter 8 in Chen and
Pagonis, 2011).

Another work on the non-monotonic dose dependence of
electron spin resonance (ESR) should be mentioned. It should be
noted that the situation with ESR is similar to that of TL and OSL
since the measured signal is proportional to the number of elec-
trons trapped in the relevant trapping states. Based on a previous
work by Euler and Kahan (1987), Woda and Wagner (2007) have
offered a two-trap one center model to explain the non-monotonic
dose dependence of ESR in Ge- and Ti-centers in quartz. The model
assumes that in addition to the trapping of electrons from the
conduction band into the active trap, the electrons may be depleted
by recombination with free holes. As a result, the dose dependence
of the concentration of electrons in the active trap is such that it
increases at low doses, reaches a maximum at a certain dose and
then declines gradually to zero following higher doses exposure.
The differences between this model and the one presented here
and between the results of the twomodels will be considered in the
discussion below.

2. The model

Fig. 1 shows the model of two traps and one center. In this
model, trap N1 is considered to be closer to the conduction band
and is assumed to be responsible for the TL or OSL signal during
read-out. Trap N2 is a deeper competitor that may be filling up
during excitation in competition with N1. n1 (cm�3) and n2 (cm�3)
are the instantaneous occupancies of the traps concentrations N1

(cm�3) and N2 (cm�3) respectively. E (eV) and s (s�1) are the acti-
vation energy and frequency factor of theN1 trap; it is assumed that
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N2 is deep enough so that it does not release electrons thermally in
ambient temperature.M (cm�3) is the concentration of centers and
m (cm�3) its instantaneous occupancy. nc (cm�3) and nv (cm�3) are
the instantaneous concentrations of free electrons and holes in the
conduction and valence bands, respectively. A1 (cm3 s�1) and A2

(cm3 s�1) are the retrapping probability coefficients into N1 and N2,
respectively. B (cm3 s�1) is the probability coefficient for trapping
free holes in the centers and Am (cm3 s�1) is the recombination
probability of free electrons with trapped holes in centers. X
(cm�3 s�1) is the rate of production of electronehole pairs by the
ionizing radiation, proportional to the dose rate of the excitation. D
(cm�3) is the total number of electronehole pairs per cm3 produced
by the irradiation, proportional to the total dose applied, given by
D ¼ X,tD where tD (s) is the time of excitation.

The set of coupled differential equations governing the process
during excitation is

dn1
dt

¼ A1ðN1 � n1Þnc � sn1 expð�E=kTÞ; (1)

dn2
dt

¼ A2ðN2 � n2Þnc; (2)

dm
dt

¼ BðM �mÞnv � Ammnc; (3)

dnv
dt

¼ X � BðM �mÞnv; (4)

dnc
dt

¼ dm
dt

þ dnv
dt

� dn1
dt

� dn2
dt

: (5)

T (K) is the absolute temperature, t (s) is the time and k (eV K�1)
is Boltzmann's constant.

3. Numerical results

The set of Eqs. (1)e(5) has been solved numerically for chosen
sets of parameters, using the Matlab ode15s solver, designed to
solve “stiff” sets of simultaneous ordinary differential equations.
The trapping parameters used for the simulation of Fig. 2 are
Fig. 2. For the set of parameters given in the text, the simulated dose dependence of
the filling of active trap is shown in the short-time range, up to ~2 � 109 s.
N1¼1013 cm�3, N2 ¼ 1014 cm�3,M¼ 1015 cm�3, Am ¼ 10�14 cm3 s�1;
A1¼10�16 cm3 s�1; A2¼10�15cm3 s�1; B¼ 10�13 cm3 s�1; E¼ 1.4 eV;
s ¼ 1012 s�1; T ¼ 300 K; X ¼ 103 cm�3 s�1. The activation energy
chosen here is rather big so that the rate of release of trapped
electrons is very small. Also, the excitation rate X is rather small,
103 cm�3 s�1. With these parameters, the accumulation of electrons
in the active trap n1 is seen to be linearwith the excitation time up to
~2 � 109 s ~60 years. Note that the final occupancy of this trap is
under 2 � 1010 cm�3, less than 0.2% of the capacity of the trap.

The simulation was continued to significantly longer times of
excitation, up to more than 1013 s ~3� 105 years, as shown in Fig. 3.
In order to cover this long range of excitation time, the time axis is
shown on a logarithmic scale. Due to the thermal loss of electrons at
long time and the slow rate of electronehole production, the net
filling of electrons in N1 deviates from linearity, reaches a
maximum at ~5 � 1011 s and then declines. At longer excitation
time of ~2 � 1012 s, an equilibrium between excitation and thermal
leakage is reached. Note that in this case, the equilibrium level is
significantly lower than the saturation value of the trap at ~3.2% of
the full capacity. The relation between this equilibrium value and
the relevant trapping parameters is given below. Note that with
these parameters, at the equilibrium range, n2 has reached its
saturation value of 1 � 1014 cm�3 and m is 1.0032 � 1014 cm�3

which is equal to n1 þ n2. Note also that evaluated nc and nv are
negligibly small as compared to the trapping concentrations.

Another example is shown in Fig. 4. The trapping parameters are
the same as before except that the activation energy is significantly
smaller, E¼ 0.9 eV and the rate of production of electronehole pairs
is significantly higher, X ¼ 109 cm�3 s�1. The peak in the curve here
appears at a much shorter period of time, under 104 s and the
equilibrium value sets in after ~106 s. The equilibrium value here is
only 1.3178 � 109 cm�3, ~0.013% of the capacity of the trap. Here
too, at the equilibrium range n2 is at full capacity of 1014 cm�3 andm
has also the same value of 1014 cm�3.

In Fig. 5, the rates of filling of trap n1 and its thermal emptying as
seen in Eq. (7) below are shown as a function of time. The trapping
parameters are the same as in Fig. 3 except that the “dose rate” is
two orders of magnitude smaller, X ¼ 10 cm�3 s�1. As could be
expected, the two curves intersect at the point of the maximum of
sn1 expð�E=kTÞ which, of course, is the point of maximum of n1
since the temperature is kept constant. Also, the two curves
Fig. 3. With the same set of parameters as in Fig. 2, the simulated time dependence is
shown up to ~5 � 1013 s. Note the logarithmic time scale.



Fig. 4. Simulations of the time dependence with the same set of parameters, except
that E ¼ 0.9 eV and the rate of production of electronehole pairs is 109 cm�3 s�1.

Fig. 5. With the same parameters as in Fig. 3, but with significantly smaller rate of
excitation, X ¼ 10 cm�3 s�1, the dependence on time of the filling of n1,

A1ðN1�n1Þ$X
A1ðN1�n1ÞþA2ðN2�n2ÞþAmm

is shown by the dashed line and the thermal emptying,
sn1 expð�E=kTÞ is depicted by the solid line.

Fig. 6. With the same set of parameters as in Fig. 3, the simulations have been con-
ducted with a constant time of tD ¼ 10 s and varying dose rate X. The dose is given on a
logarithmic scale. Note that D (cm�3) is actually the total number of electronehole
pairs per cm3 produced by the irradiation, proportional to the total dose applied, as
explained in the text.

Fig. 7. Comparison between the results of n1 as a function of time to those reached by
the approximation given by Eq. (A25). The parameters are the same as in Fig. 4 with A1

and A2 reduced by a factor of 10, namely, A1 ¼10�17 cm3 s�1; A2 ¼ 10�16cm3 s�1, so that
we avoid saturation of the traps, namely, n1 << N1 and n2 << N2. The dotted line de-
picts the results of solving the differential equations and the dashed line shows the
results by Eq. (A25).
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coincide at the long-time end where, as a result, n1 levels off.
It should be mentioned that the effect described here is rather

similar to the effect of non-monotonic dose dependence described
in the literature. Changing the time of excitation with a constant
dose rate indeed changes the total dose applied to the sample. In
the previous simulations (Lawless et al., 2005; Chen et al., 2006;
Pagonis et al., 2006), however, with a two-trap two-center model,
the non-monotonic dependence was observed both when the time
of excitation was varied and when the dose-rate was changed with
a constant time of excitation. Fig. 6 depicts the results of simula-
tions of the latter case. With the same parameters as in Fig. 3, the
time of excitation was kept unchanged at 10 s and the dose rate X
was varied in a broad range so that the total “dose” changed by
many orders of magnitude. As seen in the results, the filling of the
active trap changed from nearly zero at D z 1012 cm�3 to full
saturation value of n1zN1 at D z 1017 cm�3. The non-monotonic
effect seen with the change of time of excitation is not seen at all
when the dose varies by changing the dose rate of excitation,
indicating that the effect observed here has to do with the
competition between excitation and thermal bleaching. This point
will be elaborated upon below.

Finally, Fig. 7 shows a comparison between the results of n1 from
the numerical solution of Eqs. (1)e(5) and the analytical approxi-
mation given by Eq. (A25) in the Appendix below. The parameters
are the same as in Fig. 4, except that in order to have the occu-
pancies in the two traps be far from saturation as required by the
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approximation elaborated upon in the Appendix, the two retrap-
ping/trapping probabilities A1 and A2 are reduced by a factor of 10.
The dashed line gives the approximate analytical solution and the
dotted line the numerical solution of the equations. The agreement
between the two is seen to be very good. Note that the time scale
here is linear.
4. Discussion

In this work, we have considered the dependence of the filling of
a trap at different times of excitation in a model with two traps and
one center. For chosen plausible sets of trapping parameters, the
relevant sets of simultaneous equations have been solved numer-
ically. As shown in Figs. 3 and 4, the concentration n1 reached a
maximum and then declined and after a longer period of time
reached a constant equilibrium value. Let us consider this equilib-
rium value in the two given examples. The rate of release of elec-
trons from the trap is given by s,n,exp(�E/kT). The rate of
production of electrons in the conduction band is X. These electrons
are distributed between falling into N1, N2 and recombination with
trapped holes in the centers. Therefore, the ratio of electrons
trapped in N1 is

R ¼ A1ðN1 � n1Þ
A1ðN1 � n1Þ þ A2ðN2 � n2Þ þ Amm

: (6)

Therefore, the equilibrium condition here is

s$n1$expð�E=kTÞ ¼ X$R: (7)

Let us consider the consistency between the calculated values of
the chosen parameters and the calculated occupancies of traps and
centers. The evaluated occupancies are n1 ¼ 3.1944 � 1011 cm�3,
n2 ¼ 1014 cm�3 andm ¼ 1.0032 � 1014 cm�3 nc and nv are negligibly
small. Since n2zN2, the second term in the denominator is negli-
gibly small. Also, since N1 >> n1, A1(N1-n1) zA1N1 ¼ 10�16

� 1013 ¼ 10�3 s�1. Also, Ammz10�14 � 1014 s�1 ¼1 s�1>>A1N1. With
these parameters and results, the equilibrium condition can be
written as

n1zðX=sÞ$ðA1N1=AmmÞ$expðE=kTÞ: (8)

Inserting the given values on the right-hand side yields
n1 z 3.31 � 1011 cm�3, within ~3.5% of the numerically calculated
value. Note that here, equilibrium is reached after ~3 � 1012 s ~105

years.
With the parameters yielding Fig. 4, in particular with the low

value of E ¼ 0.9 eV, equilibrium is reached after a much shorter
time, ~3 � 106 s ~35 days. The value of n1 from the numerical so-
lution of the equations is 1.3178 � 1010 cm�3. The other two oc-
cupancies are n2 ¼ m ¼ 1014 cm�3. Inserting the relevant
parameters in Eq. (8) yields here n1¼1.318� 1010 cm�3, in excellent
agreement with the numerically computed value.

The differences between the present situation and the previ-
ously reportedmodel of non-monotonic dose dependence of TL and
OSL (Chen et al., 2006) are two. The model here is more concise,
including two trapping states and only one recombination center.
As for the results, in the previous model, the non-monotonic
dependence was found in both ways of changing the dose,
namely, by changing the dose rate or by varying the time of exci-
tation. Here, a non-monotonic dependence is seen as a function of
the time of excitationwith a constant dose rate, and it does not take
place with a constant time of excitation and increasing dose rate
(see Eq. (A30) below and the accompanying discussion). This result
seems plausible since the decline toward an equilibrium value is
associated here with the thermal fading due to the slow release of
electrons from traps during a long, slow excitation. One may expect
a similar effect in cases where the fading of the signal is anomalous,
i.e. non thermal, but this has not been pursued in the present work.
As for a comparison between the present model and that by Woda
and Wagner (2007) mentioned in the Introduction, in addition to
the fact that these authors concentrate on consequences in ESR one
should note the following. In addition to the filling of active traps by
the dose, Woda and Wagner assume depletion of the traps by
recombination with free holes whereas here, we assume that
electrons are depleted by thermal eviction into the conduction
band. These authors also assume a loss of free electrons and holes
by direct band-to-band recombination, a transitionwhich is usually
considered to have a very low probability (see e.g. Pilkuhn, 1976).
Consequently, their numerical results show a decline down to zero
in the active trap occupancy whereas in our case the decline is
toward a constant equilibrium value. Also, in our work, the
emphasis is on the dependence on the time of excitation whereas
Woda and Wagner consider the dose response.

It should bementioned that in the present work, we did not deal
directly with the TL or OSL signal but rather, with the filling of the
n1 trap. However, at least in the cases shown, at the end of radia-
tion, the other trap, n2was full to capacity with electrons, so that no
retrapping into N2 is expected during readout and a subsequent TL
or OSL measurement would yield results proportional to n1. Also, as
mentioned in the Introduction, these results may possibly be
relevant to the dose dependence of ESR.
Appendix A. Quasi-analytical derivation

In order to get a quasi-analytical solution of Eqs. (1)e(5), we
make the following simplifying assumptions:

1. Free electrons and free holes are quasi steady.
2. The populations of both traps are well below capacity.
3. TrapN1 is small compared toN2. In fact, we assumeN1 <<N2 and

also A1N1 << A2N2.

Let us consider first the solution of Eqs. (1)e(5) for the major
species m and n2, assuming that n1 is small. More specifically, we
assume that A1 and N1 are small enough so that the net flux into N1

is always smaller than that into N2

jA1ðN1 � n1Þnc � an1j< <A2ðN2 � n2Þnc; (A1)

where a ¼ s$expð�E=kTÞ. In this case Eqs. (1)e(5) simplify to the
one-trap one-center situation, namely

dn2
dt

¼ A2ðN2 � n2Þnc; (A2)

dm
dt

¼ BðM �mÞnv � Ammnc; (A3)

dnv
dt

¼ X � BðM �mÞnv; (A4)

dnc
dt

¼ X � A2ðN2 � n2Þnc � Ammnc: (A5)

To simplify this further, let us assume that free electrons and
free holes are quasi-steady (see (A6) and (A7)) and that the popu-
lation of trap 2 is well-below saturation. Thus, for free electrons we
assume
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����dncdt

����< <A2ðN2 � n2Þnc: (A6)

With the parameters chosen for the simulations, 1/(A2N2)¼ 10 s,
and the quasi-steady assumption for free electrons will be valid for
excitation periods much longer than 10 s.

For free holes, let us assume

����dnvdt

����< <BðM �mÞnv: (A7)

Since with the parameters chosen, 1/(BM) ¼ 0.01 s, this will be
valid for excitation periods much longer than 10 ms, which applies
to all the results in the paper.

For the population of the second trap, assume that the total dose
is low enough so that n2 << N2. With these assumptions, Eqs.
(A2eA5) simplify to

dn2
dt

¼ A2N2nc; (A8)

dm
dt

¼ BðM �mÞnv � Ammnc; (A9)

nv ¼ X
BðM �mÞ ; (A10)

nc ¼ X
A2N2 þ Amm

: (A11)

The differential equations can be immediately integrated to
yield:

m ¼ n2 ¼ A2

Am
N2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t

p
� 1

�
; (A12)

where the abbreviation t is defined as

t ¼ A2N2

2AmX
: (A13)

For short times, t << t, Eq. (A12) shows that m and n2 rise
sublinearly with time. The physical meaning is that for t << t, the
hole population of the center, m, is still too small for the center to
compete with N2 for the capture of free electrons, Amm << A2N2. For
t >> t, the hole population of the center is large enough so that the
center attracts free electrons at a greater rate than the second trap.

Let us consider now the approximate solution for the occupancy
of the smaller trap n1. Substituting from Eq. (A11) into Eq. (1), we
have

dn1
dt

¼ A1ðN1 � n1Þ
A2N2 þ Amm

X � an1: (A14)

To further simplify this, let us assume that the population of the
first peak is well below capacity, namely, n1 << N1. Thus,

dn1
dt

¼ A1N1

A2N2 þ Amm
X � an1: (A15)

Substituting the value for m from Eq. (A12) into (A15), we have

an1 þ
dn1
dt

¼ A1N1

A2N2

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t

p : (A16)

Let us multiply both sides of Eq. (A15) by exp(at),
an1e
at þ dn1

dt
eat ¼ A1N1

A2N2

Xeatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t

p : (A17)

This equation can be rewritten as

d
dt

�
n1e

at� ¼ A1N1

A2N2

Xeatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t

p : (A18)

Integrating both sides with respect to time yields

n1e
at ¼ A1N1

A2N2

Zt

0

Xeat
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t0=t

p dt0: (A19)

Let us define a new variable,

u≡
ffiffiffiffiffiffi
at

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t

p
: (A20)

Rearranging Eq. (A20), we find

t ¼ u2

a
� t: (A21)

Differentiating Eq. (A21) gives

dt ¼ 2udu
a

: (A22)

Substituting Eqs. (A21) and (A22) into (A19) yields

n1 ¼ 2
A1N1

A2N2
X

ffiffiffi
t

a

r
e�aðtþtÞ

ZffiffiffiffiffiffiffiffiffiffiffiaðtþtÞ
p

ffiffiffiffi
at

p
eu

2
du: (A23)

Rearranging, one gets

n1 ¼ 2
A1N1

A2N2

ffiffiffi
t

a

r
X

2
664e�aðtþtÞ

ZffiffiffiffiffiffiffiffiffiffiffiaðtþtÞ
p

0

eu
2
du� e�aðtþtÞ

Zffiffiffiffiat
p

0

eu
2
du

3
775;

(A24)

which, in turn can be written as

n1 ¼ 2
A1N1

A2N2
X

ffiffiffi
t

a

r h
F
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðt þ tÞ
p �

� eatF
� ffiffiffiffiffiffi

at
p �i

; (A25)

where F is the Dawson Integral (see, e.g., Abramowitz and Stegun,
1970),

FðxÞ ¼ e�x2
Zx

0

ex
02
dx0: (A26)

With regard to the equilibriumvalue of n1 reached at long times,
as expressed in Eq. (8) and the above mentioned numerical results
of this equilibrium value, the asymptotic behavior of the Dawson
Integral is

FðxÞz 1
2x

for x> >1: (A27)

Thus, for large values of at, Eq. (A25) can be approximated by

n1z
1
a

A1N1

A2N2

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t=t

p for at > >1: (A28)

Using Eq. (A12), we can rewrite this as
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n1z
A1N1X

aðA2N2 þ AmmÞ for at > >1; (A29)

which is actually the same as Eq. (8). Note that this is the value that
one would obtain from Eq. (A15) by assuming that n1 is quasi-
steady.

By substituting from Eq. (A13) into Eq. (A28) we get

n1z
1
a

A1N1

A2N2

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Am

A2N2
Xt

q : for at > >1 (A30)

Thus, for at>>1, for fixed dose rate X, increasing t causes n1 to
decrease, which is associated with the non-monotonic effect, in
agreement with Figs. (3e5). For a fixed t, increasing X causes n1 to
increase, in agreement with the numerical results in Fig. 6.
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