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Abstract — The increase of sensitivity of quartz byb or g irradiation, followed by high temperature activation has been studied.
The model previously suggested, including a reservoir through which holes get into the recombination centre, thus increasing
the sensitivity to a given test dose, is now given a concrete mathematical form. Sets of simultaneous differential equations for
the different stages of irradiation and heating are numerically solved sequentially so as to simulate the physical processes taking
place. The dependence of the sensitivity on the excitation dose is followed, in particular at the high doses where the sensitivity
approaches saturation. The assumption of exponential approach to saturation is tested, showing that, indeed, even in this compli-
cated situation the exponential approximation is valid.

INTRODUCTION

The sensitisation of various thermoluminescence (TL)
materials byb or g irradiation followed by an anneal
at high temperature is a well-known phenomenon(1–3).
Briefly described, the sensitivity of a given sample is
its TL emission in response to a given test dose. The
sensitivity of the sample can be changed in such a way
that in a subsequent heating, the response of the same
TL peak in the same sample is different, normally
larger. The main reason, discussed here, for such a
change of the sensitivity is the application of a relatively
large dose to the sample, followed by an anneal at a
relatively high temperature. It should be mentioned that
the following discussion pertains mainly to the 110°C
peak in natural quartz and the results considered are util-
ised for the pre-dose dating technique. A typical
example of the sequence of actions taken and measure-
ments made with a sample of quartz are as follows (see
e.g. Ref. 3):

(1) The initial sensitivity S0 to a small test dose
(|0.01 Gy) is measured by heating the sample to
|150°C following the administration of the test-
dose.

(2) The ‘high’ dose N (of the order of|1 Gy), which
simulates the natural dose in archaeological
samples, is applied followed by an annealing at
|500°C; the sample is then cooled back to RT.

(3) Another test dose of the same size is applied and
the sample is heated at the same heating rate as in
step 1 to 150°C. The occurrence of the pre-dose
sensitisation effect is expressed by the response to
the second test dose, SN being larger than the
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response S0 to the first due to the large irradiation
followed by annealing.

The first theory explaining the pre-dose effect was
given by Zimmerman(1,2). The basic energy level
scheme given by her includes one electron trapping state
T and two hole states R (reservoir) and L (luminescence
centre). During the excitation byb or g rays, electrons
are raised from the valence to the conduction band,
which can be trapped in the trapping states T (see Figure
1). The holes go preferably to the reservoir R, however,
there is a non-negligible probability of the holes going
to L so that thermally freed electrons can recombine
with them during the heating, which results in the emis-
sion of TL of the unsensitised material. The annealing
stage, typically to 500°C following the application of a
high dose empties all the electrons from T, yielding a
rather high TL peak at|110°C (which may or may not
be recorded). Its more important effect is to release ther-
mally the holes from the reservoir R, which will sub-
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Figure 1. Energy level diagram including the electron trapping
state, T, the competitor, S, the hole reservoir, R, and the lumi-
nescence centre, L. nc and nv are the free electron and hole
concentrations respectively and x the rate of production of free
electrons and holes. The transitions shown are those taking

place during the excitation stage.
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sequently be trapped in the luminescence centre L.
According to Zimmerman, this increase in the concen-
tration of holes in the luminescence centre is the reason
for the higher response to a subsequent test dose. In a
later work, Chen(4) argued that in the framework of the
model with T, R and L levels, the observation that the
finally measured TL is proportional to the filling of L
and, at the same time, there is a linear dependence on
the size of the test dose, i.e. on the concentration of
trapped electrons in T, are contradictory. Following pre-
vious concepts by Kristianpolleret al(5) explaining
superlinearity, which indeed occurs in the 110°C peak
in the unannealed quartz(6), Chen(4) resolved the above
mentioned contradiction by assuming an extra electron
level which competes for electrons during the heating
stage. The full energy level diagram is shown in Fig-
ure 1.

In the present work, we follow the model described,
with two electron and two hole trapping states by writ-
ing the relevant simultaneous differential equations and
solving them numerically for certain choices of sets of
trapping parameters. The sets of equations are to be
presented and solved for the different stages of ‘short’
irradiation (test dose) and heating (readout); ‘long’, high
dose irradiation followed by annealing, and another
‘short’ irradiation and heating. This sequence can be
repeated several times. Obviously the sample para-
meters are kept constant along such a sequence, and
thus, if a certain choice of one or more parameters is
required for explaining a certain feature, the same
values of the parameters are to be kept along the
sequence, and only the final results would show if the
feature in question really behaves as expected when all
the stages of the experiment have been followed. Of
course, the situation is rather complicated due to the
large number of parameters involved.

One other important point is to be considered. The
basic pre-dose method assumed that in the relevant dose
range, the dependence of the sensitivity on the dose is
linear. This may not be the case in particular when a
number of additional calibration doses are given to the
sample following the ‘natural’ dose which is to be
determined. Chen(4) suggested a way to extend the
applicability of the method to determine the dose (and
thereby the age) by assuming that the sensitivity
depends on the dose exponentially, namely,

S = S̀ (1 − e−D/B) (1)

where S̀ is the saturation value of S, D is the dose and
B a constant with dose dimensions. In a recent work by
Leung et al(7), a regression method was developed for
the evaluation of paleodose using the pre-dose tech-
nique, making use of the assumption that the approach
to saturation is exponential. Using the numerical sol-
utions in the present work, we can follow these possi-
bilities within the framework of a comprehensive
model.

KINETIC EQUATIONS AND THEIR SOLUTIONS

The first step in following numerically the above-
mentioned model is to write the equations governing the
processes of excitation presented in Figure 1. The set of
simultaneous differential equations (rate equations) is

dnt/dt = Atnc(Nt − nt) (2)

dns/dt = Asnc(Ns − ns) (3)

dnc/dt = x − Atnc(Nt − nt) − Asnc(Ns − ns)

− Ammnc (4)

dnv/dt = x − Alnv(M − m) − Arnv(Nr − nr) (5)

dm/dt = Alnv(M − m) − Ammnc (6)

dnr/dt = Arnv(Nr − nr) (7)

Here, nt(cm23) and Nt(cm23) are the concentrations of
trapped electrons and trapping states, respectively, in the
‘main’ T traps; ns(cm23) and Ns(cm23) are the concen-
trations of trapped electrons and trapping states of the
competitor, respectively; nr(cm23) and Nr(cm23) are the
concentrations of holes in the reservoir and the trapping
states in the reservoir, respectively; m(cm23) and
M(cm23) are the concentrations of the holes and states
in the luminescence centres, respectively; nc(cm23) and
nv(cm23) are the concentrations of free electrons and
holes, respectively; At(cm3.s21) and As(cm3.s21) are the
trapping probabilities in T and S respectively;
Ar(cm3.s21) and Al(cm3.s21) are the probabilities of hole
trapping in R and L, respectively; and Am(cm3.s21) is
the recombination probability of free electrons with
trapped holes in the luminescence centres. x(cm23.s21)
is the intensity (dose rate) of the excitation irradiation
which produces pairs of free electrons and holes.

The set of equations has been solved by using the
built-in ode23 Matlab package solver. Once this set of
equations is solved for an irradiation time of t seconds,
the applied dose is calculated as D= x t. Of course, the
program described so far which follows the process of
excitation, can be used for both the test dose and high
dose simulations.

A second part of the program developed is that which
simulates the heating process. In addition to the magni-
tudes described above with respect to Figure 1, Et and
st the activation energy (eV) and frequency factor (s21)
of the electron trapping state are to be considered, as
well as Er and sr, the activation energy and frequency
factor of the reservoir. It should be noted that in the low
temperature heating, up to|150°C, the main interest is
the intensity at the maximum of the peak. Therefore the
program is allowed to identify the maximum tempera-
ture and the intensity there, but the run continued up
to |150°C so as to simulate properly the experimental
conditions and the possible effect on the subsequent
stages of the experiment. As explained by Aitken(8), the
quenching effect seen following ‘high’ excitation fol-
lowed by only low temperature annealing (e.g. 150°C)
has to do with the recombination with holes in the
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recombination centre, which causes the final concen-
tration m following the application of the next test dose
to be smaller than expected.

The rate equations governing the process taking place
during heating are as follows,

dnt/dt = Atnc(Nt − nt) − st exp(−Et/kT)nt (8)

dns/dt = Asnc(Ns − ns) (9)

dnc/dt = stnt exp(−Et/kT) − Atnc(Nt − nt)

− Amncm − Asnc(Ns − ns) (10)

dnv/dt = nrsr exp(−Er/kT)

− Arnv(Nr − nr) − Alnv(M − m) (11)

dm/dt = Al(M − m)nv − Amncm (12)

dnr/dt = Arnv(Nr − nr) − nrsr exp(−Er/kT) (13)

The intensity of the emitted TL is assumed, as men-
tioned above, to be the result of recombination of free
electrons with trapped holes in the centres of concen-
tration M, thus, it is given by

I(T) = Ammnc (14)

In the conventional way, a linear heating function is util-
ised, namely, T(t)= T0 1 bt where b is the (constant)
heating rate and T0 the initial temperature. The para-
meters appearing in Equations 8–14 are the same as in
Equations 2–7 since we are dealing with the same physi-
cal system. A heating rate of 5 K.s21 has been used.

THE MODEL AND NUMERICAL RESULTS

The general considerations made in the past concern-
ing the pre-dose effect, usually took separately into con-
sideration effects occurring during the excitation and
during the heating of the sample. In this sense, the
present treatment is more comprehensive, performing all
the stages of the procedure, namely, low and high dose
excitations as well as low and high temperature
annealings, on the same sample which, in our case, is
represented by the same set of trapping parameters. The
experimental results to be explained by the model are
as follows:

(1) Linear dependence of the signal on the size of the
test dose.

(2) Apparently exponential approach to saturation (see
Equations 1 above and 15 below) of the sensitivity
with repeated additive doses. At low doses, this can
be approximated as a linear dependence.

(3) Three accompanying effects are only briefly men-
tioned. These are the quenching by high dose
exposure(8), the UV reversal(1) and the distinction
between reservoir and centre saturations(4). These
are seen in the results of the present calculations,
but will be discussed in detail elsewhere.

The number of parameters to be chosen is very large,

which may bring one to the conclusion that any behav-
iour can be explained. Indeed, different choices of para-
meters may bring about different behaviours. The main
point in this respect is, however, that it was easy to
choose sets of parameters that result in a good simul-
ation of all the above mentioned phenomena by just
keeping in mind some required relations between these
parameters. The choice of sets of parameters, and the
numerical qualitative results associated with one such
set follow.

The basic idea behind the concept of the reservoir is
that, during the irradiation, the created holes go prefer-
ably into the reservoir R. In the example discussed here,
and referring to Figure 1, Ar = 10210 cm3.s21 and
Al = 10212 cm3.s21 have been chosen. The Er and sr
values are to be chosen such that heating to|150°C
will not release any significant number of trapped holes
whereas heating to 500°C will do so. Er = 1.4 eV and
sr = 1013 s21 have been taken. Thus, although the retrap-
ping into R is stronger than the capture in L, most of
the holes move into L during the high temperature
annealing. Moreover, this choice ensures the UV rever-
sal since, once a hole is released (at RT) by UV from
L into the valence band, it will preferably go back into
R rather than to L. The Nr and M capacities have been
chosen to be 1013 cm23 and 1014 cm23, respectively.
The values of Et and st should be taken so that the peak
will occur at|110°C, i.e.|383 K. Here Et = 1.0 eV and
st = 1013 s21 have been chosen. In order to have both a
linear dependence of the signal on the test dose as well
as a dependence of the measured sensitivity on the
applied high dose, it has been argued by Chen(4) that a
necessary condition is that the trapping into the competi-
tor S should be faster than the recombination. Here
As = 10211 cm3.s21 and Am = 10212 cm3.s21 have been
taken. As for the retrapping probability At, the results
were found to be rather insensitive to changes in this
parameter, and At = 10212 cm3.s21 was chosen. The
capacities of the trapping and competitor states have
been taken as Nt = 1013 cm23 and Ns = 1012 cm23,
respectively. Finally, the initial values of the different
functions should be set. At first sight, setting all of them
to zero sounds reasonable. This indeed is the case as far
as nc, nv, nt and nr are concerned. If one assumes a prior
heating to high temperature, the choice of
nc(0) = nv(0) = nt(0) = nr(0) = 0 is obvious. However, S
is considered to be disconnected at least as far as heating
to 500°C (and perhaps more) is concerned. Up to this
temperature, ns is not depleted, which leaves nso ± 0 for
the next step. For the sake of neutrality, one has to
assume m(0)= ns(0) and these values may be non-zero.
The importance of choosing m0 ± 0 has to do with the
linear dependence of the TL signal on the size of the
test dose. As has been discussed before(5,6), the occur-
rence of a strong competitor (S in the present case) may
result in a superlinear dose dependence. Indeed, solving
the sets of equations with the above parameters along
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with m(0) = ns(0) = 0 yielded a quadratic test dose
dependence. However, a choice of

ns(0) = m(0) = 1010 cm23

made the test dose dependence linear and still showed
all the other experimentally observed features of sensi-
tisation, quenching and UV reversal. The test dose was
also chosen to be 53 108 cm23 and the increments of
the ‘large’ dose 100 times larger, namely,
5 3 1010 cm23. It is important to note that although the
approach to saturation looks natural in such a situation,
the processes leading to the final results are rather com-
plicated both in the real samples and in the presently
simulated results. One can ask whether the exponential
approach to saturation is a good approximation to the
numerical results. Since, both in the experimental results
in quartz and in the numerical values found here, S0 is
not negligibly small as compared to the sensitised values
of S, it was preferable to write the approximated dose
dependence of S as

S = S0 + S̀ (1 − e−D/B) (15)

rather than Equation 1. The sensitivities calculated
above were fitted to this 3-parameter expression, the
parameters to be determined being S0, S̀ and B. The
best fit for evaluating the three parameters is performed
by least squares. The ‘experimental’ points as well as
the best-fitted curve are plotted against the dose on the
same graph in Figure 2.

CONCLUSION

In this work, the model with one active trapping state,
one thermally disconnected competitor trap and two
hole states, namely, a radiationless reservoir and a radi-
ative luminescence centre was studied. The relevant sets
of differential equations have been numerically solved
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and the experimental procedures of having a sequence
of high dose increments have been simulated. This
curve is best-fitted to the expression 15, and the fit looks
very good.

All the experimental features previously observed in
the 110°C peak in quartz, were found here as a result
of these calculations, when the ‘appropriate’ set of para-
meters was chosen. Finding such a set of parameters
turned out to be rather easy when the qualitative con-
siderations mentioned in the literature concerning spe-
cific features were taken into consideration. These
experimental features include the linear dependence of
the signal on the size of the test dose, the approach to
saturation, the UV reversal and the radiation quench-
ing effect.
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Figure 2. Simulated sensitivity as a function of the number of
increments of high dose (3). The full curve is the best fitted
exponential function. The relevant parameters are given in the

text.


