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Abstract. The increase in sensitivity of quartz caused by β or γ irradiation followed
by high-temperature activation has been studied further. The model previously
suggested, including a reservoir through which holes get into the recombination
centre, thus increasing the sensitivity to a given test dose, is now given a concrete
mathematical form. Sets of simultaneous differential equations for the various
stages of irradiation and heating are written and numerically solved sequentially in
order to simulate the physical processes taking place during the experiments.
The dependence of the sensitivity on the excitation dose is followed, in particular
for the high-dose range in which the sensitivity approaches saturation. A distinction
between reservoir and centre saturation is made. The assumption of an
exponential approach to saturation is tested, showing that, indeed, even in this
complicated situation the exponential approximation is valid. As shown in previous
works, using the exponential approximation in cases in which the sensitivity
dependence is beyond the linear range helps in evaluating the archaeological
doses in the dating of pottery by irradiation of the quartz grains in it. Also the effect
of radiation quenching and the attempts to correct for quenching in order to
improve the determination of the extrapolated natural dose which leads to the age
determination are considered. The effect of the existence of a competing electron
trap which appears to be a necessary condition for the occurrence of these effects
is also discussed.

1. Introduction

The sensitization of various thermoluminescence (TL)
materials byβ or γ irradiation followed by annealing
at high temperature is a well known phenomenon [1–5].
Briefly described, the sensitivity of a given sample is
its TL emission in response to a giventest dose. The
sensitivity of the sample can be changed in such a way
that, during a subsequent heating, the response of the
same TL peak in the same sample is different, normally
larger. The main reason, discussed here, for such a change
of the sensitivity is the application of a relatively large
dose to the sample, followed by relatively high-temperature
annealing. It should be mentioned that the following
discussion pertains mainly to the 110◦C peak in natural
quartz and the results considered are utilized for the pre-
dose dating technique. A typical example of the sequence
of actions performed and measurements made with a sample
of quartz is as follows [5].

(i) The initial sensitivity S0 to a small test dose
('0.01 Gy) is measured by heating the sample to about
150◦C following the administration of the test dose.
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(ii) The ‘high’ doseN (of the order of magnitude of
1 Gy), which simulates the natural dose in archaeological
samples, is applied followed by annealing at about 500◦C;
the sample is then cooled back to room temperature (RT).

(iii) Another test dose of the same size is applied and
the sample is heated at the same heating rate as in step (i) to
150◦C. The occurrence of the pre-dose sensitization effect
is expressed by the response to the second test dose,SN
being larger than the responseS0 to the first due to the
large irradiation followed by annealing.

Three important points are to be mentioned in this respect.

(i) This description explains only the basic fact that
there is an increase in the intensity. The full sequence
required to evaluate the total dose previously applied
(typically in antiquity in quartz from pottery samples) in
the pre-dose techniquehas to take into consideration the
fact that the sample has received an unknown dose which
is to be determined for the sake of age evaluation. Here,
calibration has to be performed following the previous
excitation with the unknown dose. Thus, the sample, with
sensitivitySN , is given a knownβ dose ofβ Gy followed
by annealing to 500◦C, yielding a higher sensitivity of
SN+β . A comparison between the differencesSN − S0 and
SN+β −SN can now be made, thus providing an evaluation
of the unknown doseN . The important question of whether
these changes of sensitivity are linear with the dose is one
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Figure 1. An energy level diagram including the electron trapping state, T, the competitor, S, the hole reservoir, R, and the
luminescence centre L. nc and nv are the free electron and hole concentrations, respectively, and x is the rate of production
of free electrons and holes. The transitions shown are those taking place during the excitation stage.

of the key issues concerning the derived pre-dose technique
and will be considered below. The full sequence required
for this dose evaluation has been given before [5].

(ii) In some cases, annealing alone or irradiation alone
can result in an increase in the sensitivity. The simplest
example is that of a superlinear dependence of the TL on
the dose, in which the administration of a first amount of
dose makes the sample more sensitive to further irradiation
[6].

(iii) As reported by several authors [7, 8], an effect
of quenching of the sensitivity by the irradiation is often
observed. This merits some further explanation. When, for
example, after activating at 500◦C the naturally pre-dosed
sample which now has a sensitivitySN , we administer an
additional dose of, say,β = 2 Gy and heat to>110◦C
(but not too high, to prevent high-temperature activation),
the sensitivity measured before re-heating to 500◦C is S↓N
with S↓N < SN . A qualitative explanation of this effect will
be discussed below when the model is described. Also, the
numerical results which follow show the effect clearly.

The first theory explaining the pre-dose effect has been
given by Zimmerman [2, 3]. The basic energy level scheme
given by her includes one electron trapping state T and
two hole states R (the reservoir) and L (the luminescence
centre). During the excitation byβ or γ rays, electrons
are raised from the valence to the conduction band and
can be trapped in the trapping states T (see figure 1). The
holes go preferably to the reservoir R; however, there is
a non-negligible probability of the holes going to L so
that thermally freed electrons can recombine with them
during the heating, which results in the emission of TL
of the unsensitized material. The annealing, typically to
500◦C following the application of a high dose, empties
all the electrons from T, yielding a rather high TL peak
at about 110◦C (which may but need not be recorded).
Its more important effect is to release thermally the holes
in the reservoir R, which will subsequently be trapped in
the luminescence centre L. According to Zimmerman, this
increase in the concentration of holes in the luminescence
centre is the reason for the higher response to a subsequent
test dose. In a later work, Chen [9] argued that, in the

framework of the model with T, R and L levels, the
observations that the finally measured TL is proportional
to the filling of L and, at the same time, that there
is a linear dependence on the test dose, namely on the
concentration of trapped electrons in T, are contradictory.
Following previous concepts published by Kristianpoller
et al [10] for explaining superlinearity, which indeed occurs
in the 110◦C peak in the unannealed quartz (Chenet al
[11]), Chen [9] solved the above-mentioned contradiction
by assuming an extra electron level which competes for
electrons during the heating stage. The full energy level
diagram is shown in figure 1.

In the present work, we follow the model described,
with two electron and two hole trapping states, by writing
the relevant simultaneous differential equations and solving
them numerically for certain choices of sets of trapping
parameters. The sets of equations are to be presented
and solved for the different stages of ‘short’ irradiation
(with the test dose) and heating (readout), ‘long’, high-
dose irradiation followed by annealing and another ‘short’
irradiation and heating. Obviously, the sample parameters
are kept constant along such a sequence; thus, if a certain
choice of one or more parameters is required for explaining
a certain feature, the same values of the parameters are
to be kept along the sequence and only the final results
would show whether the feature in question really behaves
as expected when all the stages of the experiment are being
followed. Obviously, the situation is rather complicated
due to the large number of parameters involved. However,
what one can demonstrate is that a certain feature is
commensurate with an appropriate choice of the parameters.
Examples will be given below.

It is to be noted that an alternative model for
sensitization has been considered in the literature.
McKeever [12] suggested the possibility that the procedure
of high-dose irradiation followed by heating may remove
competitors which thus can increase the sensitivity to a
subsequent test dose. It should be mentioned that results
found in the present work will include this element since
the model includes such competitors and the solution takes
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into consideration transitions into them both during the
excitation and the heating stages.

One other important point is to be considered. The
basic pre-dose method assumed that, in the relevant dose
range, the dependence of the sensitivity on the dose is
linear. This need not be the case in particular when
a number of additional calibration doses are given to
the sample following the ‘natural’ dose which is to be
determined. Chen [9] suggested a way to extend the
applicability of the method to determine the dose (and
thereby the age) by assuming that the sensitivity depends
on the dose exponentially, namely,

S = S∞(1− e−D/B) (1)

where S∞ is the saturation value ofS, D is the dose
and B is a constant with the dimensions of a dose. A
further account taking into consideration the exponential
dose dependence was given by Bailiff and Haskell [13]. In
a recent work by Leunget al [14], a regression method
has been developed for the evaluation of a paleodose using
the pre-dose technique, making use of the assumption that
the approach to saturation is exponential. All this has
been done under the assumption that it is the luminescence
centre which goes exponentially with the dose whereas
the reservoir is being filled linearly. It has been obvious
to these authors that, when the reservoir is being filled
non-linearly, the results regarding the dose thus evaluated
are questionable. Using the numerical solutions in the
present work, we can follow these possibilities within the
framework of a comprehensive model.

2. The rate equations and their solutions

The first step in following numerically the above-mentioned
model is writing down the equations governing the
processes of excitation presented in figure 1. The set of
simultaneous differential equations (rate equations) is

dnt/dt = Atnc(Nt − nt ) (2)

dns/dt = Asnc(Ns − ns) (3)

dnc/dt = x−Atnc(Nt−nt )−Asnc(Ns−ns)−Ammnc (4)

dnv/dt = x − Alnv(M −m)− Arnv(Nr − nr) (5)

dm/dt = Alnv(M −m)− Ammnc (6)

dnr/dt = Arnv(Nr − nr). (7)

Here, nt (cm−3) and Nt (cm−3) are the concentrations
of trapped electrons and trapping states, respectively, in
the ‘main’ T traps, ns (cm−3) and Ns (cm−3) are the
concentrations of trapped electrons and trapping states of
the competitor, respectively,nr (cm−3) and Nr (cm−3)
are the concentrations of holes in the reservoir and the
trapping states in the reservoir, respectively,m (cm−3) and
M (cm−3) are the concentrations of the holes and states
in the luminescence centres, respectively,nc (cm−3) and
nv (cm−3) are the concentrations of free electrons and
holes, respectively,At (cm3 s−1) and As (cm3 s−1) are
the probabilities of trapping in T and S, respectively,Ar

(cm3 s−1) andAl (cm3 s−1) are the probabilities of hole
trapping in R and L, respectively, andAm (cm3 s−1) is the
probability of free electrons recombining with trapped holes
in the luminescence centres.x (cm−3 s−1) is the intensity
of the excitation irradiation which produces pairs of free
electrons and holes.

The set of equations has been solved by using the built-
in ode23 Matlab package solver. In order to get reliable
results, a very low value of the accuracy factor of tol=
10−9 has been chosen throughout. The price to pay has
been that each chosen period of time has been divided into a
large number of intervals, which increased the computation
times. Once this set of equations is solved for an irradiation
time of t seconds, the applied dose is calculated asD = xt .
In order to simulate the experimental situation, a period of
relaxation is to be taken into consideration. During this
time, the remaining electrons and holes in the conduction
band and valence band, respectively, are either trapped or
undergo recombination, thus the next stage of heating starts
with practically no carriers in the bands. This is done by
further solving the same set of equations by settingx = 0
and following the solution until negligible concentrations
of carriers remain in the conduction and valence bands.
Of course, the program described so far which follows the
process of excitation, can be used both for the test dose and
for high-dose simulations.

A second part of the program developed is that which
simulates the heating process. In addition to the magnitudes
described above with respect to figure 1,Et and st , the
activation energy (eV) and frequency factor (s−1) of the
electron trapping state, as well asEr andsr , the activation
energy and frequency factor, respectively, of the reservoir
are shown in figure 2. It should be noted that, in low-
temperature heating, up to about 150◦C, the main interest
is the intensity at the maximum of the peak. We therefore
let the program identify the maximum temperature and the
intensity there, but let the run continue until about 150◦C
in order to simulate properly the experimental conditions
and the possible effect on the subsequent stages of the
experiment. As explained by Aitken [7], the quenching
effect seen following ‘high’ excitation followed by only
low-temperature annealing (such as 150◦C) has to do
with the recombination with holes in the recombination
centre, which causes the final concentrationm following
the application of the next test dose to be smaller than
expected.

The rate equations governing the process taking place
during heating are related to the transitions shown in
figure 2 and are as follows:

dnt/dt = Atnc(Nt − nt )− st exp[−Et/(kT )]nt (8)

dns/dt = Asnc(Ns − ns) (9)

dnc/dt = stnt exp[−Et/(kT )] − Atnc(Nt − nt )
−Amncm− Asnc(Ns − ns) (10)

dnv/dt = nrst exp[−Er/(kT )]
−Arnv(Nr − nr)− Alnv(M −m) (11)

dm/dt = Al(M −m)nv − Amncm (12)

dnr/dt = Arnv(Nr − nr)− nrsr exp[−Er/(kT )]. (13)
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Figure 2. Transitions taking place during the heating stage in the same energy scheme as that shown in figure 1. Both the
thermal excitations from the electron trapping state T and those from the reservoir R are shown, although they have different
roles in different stages (see the text).

The intensity of the emitted TL is assumed, as mentioned
above, to be the result of recombination of free electrons
with trapped holes in the M centres; thus it is given by

I (T ) = Ammnc. (14)

It is to be noted that the implied heating functionT = T (t),
a monotonically increasing function, is to be taken into
account. In the rather conventional case, a linear heating
function is utilized, namely,T (t) = T0+βt , whereβ is the
(constant) heating rate andT0 is the initial temperature. The
parameters appearing in equations (8)–(14) are the same
as those in equations (2)–(7) since we are dealing with
the same physical system. Four additional parameters are
considered here which were not included for the excitation
stage since the excitation is performed at a relatively low
temperature. These areEt andEr , the activation energies of
trapping states and the reservoir andst andsr , the respective
frequency factors.

It is important to note that, although, in principle, all
these levels are involved during the heating stage, be it the
‘small’ heating to about 150◦C or the ‘large’ one to about
500◦C, in the former, the temperature is not sufficiently
high to release trapped holes from the reservoir into the
valence band. Thus the equations governing the change
of nr and nv can be ignored, whereas the only change in
the concentration of the trapped holes in centresm is via
recombinations from the conduction band electrons. This
has been taken into account in the subprogram dealing with
the heating to about 150◦C during which the measured TL,
before and after sensitization, is being measured.

The part of the program dealing with the heating
deserves some special attention. Again, the Matlab ode23
solver has been utilized in the programs dealing with the
‘short’ and ‘long’ heatings with the low value of tol= 10−9

for the accuracy factor. It is to be noted that all the solvers
utilized in Matlab are for constant values of the parameters.
Here, however, the exponents appearing in equations (8),
(11) and (13) are temperature dependent and, therefore,
during the heating are rather strongly time dependent. The
approximation we have used to overcome this difficulty has

been to fix the temperature for 0.1 s, solve the equations
using significantly smaller sub-intervals determined by the
program to yield the required accuracy and continue to
the next time interval of 0.1 s, raising the temperature by
0.5 K. Of course, this implies a heating rate of 5 K s−1,
which is rather typical to measurements of this sort with
archaeological and geological quartz grains.

All the parts of the simulated procedure were integrated
by a framework program termed predose.m. This program
governs only the order of calling the programs of test-dose
excitation and heating, high-dose excitation and annealing
and a second test-dose excitation and read out by heating.
In cases we wished to simulate a sequence of several high-
dose irradiations followed by high-temperature annealings
and test-dose responses to monitor the sensitivity, a small
change has been made in the framework program such as
to allow this repeated cycle of events.

3. Details of the model and numerical results

The general considerations made in the past concerning
the pre-dose effect usually took effects occurring during
the excitation and during the heating of the sample
into consideration separately. In this sense, the present
treatment is more comprehensive, performing all the stages
of the procedure, namely, low- and high-dose excitations
as well as low- and high-temperature annealings, on the
same sample which in our case is represented by the same
set of trapping parameters. The experimental results to be
explained by the model are as follows.

(i) The linear dependence of the signal on the size of
the test dose.

(ii) The apparently exponential approach to saturation
(see equation (1) above) of the sensitivity with repeated
additive doses. At low doses, this can be approximated as
a linear dependence.

(iii) The quenching effect on the sensitivity of exposure
to a high dose followed by a low-temperature annealing at,
say, about 150◦C. The correction for quenching suggested
in the literature [7] of adding up the ‘lost’ sensitivity by
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quenching to the measured one, thus extending the linear
range of dependence, should be considered.

(iv) The UV reversal described by Zimmerman [2].
Once the irradiated and annealed sample is illuminated by
UV light, the sensitivity decreases substantially. A repeated
high-temperature annealing increases the sensitivity back to
nearly the same level as the previous one following the first
high-temperature annealing.

(v) One should distinguish between centre and reservoir
saturations. As first discussed by Fleming [15] and further
elaborated by Chen [9], the approach to saturation of the
filling of the reservoir and that of the centre cannot be
expected in general to be the same. The implication
regarding the evaluated natural dose is that it can be
considered reliable only ifN , the natural dose, is equal
to the incremental doseβ (which may be administered a
number of times). As explained by Chen [9], this requires
performing a number of sets of measurements with various
β and choosing as the best result the one withN ≈ β.

The number of parameters to be chosen is very
large, which may lead one to the conclusion that any
behaviour can be explained. Indeed, different choices
of parameters may bring about different behaviours; for
example, the quenching mentioned above need not occur
or even an inverse quenching may take place, namely,
that the sensitivity increases with high dosing followed by
low-temperature cleaning. This was seen experimentally
with some quartz samples and could also be simulated by
a certain choice of the parameters. The main point in
this respect is, however, that it was easy to choose sets
of parameters that result in a good simulation ofall the
above-mentioned phenomena just by keeping in mind some
required relations between these parameters. The choice of
sets of parameters and the numerical results associated with
one such set follow.

The basic idea behind the concept of the reservoir is
that, during the irradiation, the created holes go preferably
into the reservoir R. In the example discussed here,
referring to figures 1 and 2, we have chosenAr =
10−10 cm3 s−1 andAl = 10−12 cm3 s−1. TheEr and sr
values are to be chosen such that heating to about 150◦C
will not release any significant number of trapped holes
whereas heating to 500◦C will do so. We have taken
Er = 1.4 eV and sr = 1013 s−1. Thus, although the
retrapping into R is stronger than the capture in M, most
of the holes move into M during the high-temperature
annealing. Moreover, this choice ensures that the UV
reversal will occur since, once a hole is released (at RT)
by UV from M into the valence band, it will preferably go
back into R rather than to M. TheNr andM capacities have
been chosen to be 1013 cm−3 and 1014 cm−3, respectively.
The values ofEt and st should be taken so that the peak
will occur at about 110◦C ('383 K). We have chosen here
Et = 1.0 eV andst = 1013 s−1. In order to have both
a linear dependence of the signal on the test dose and
a dependence of the measured sensitivity on the applied
high dose, it has been argued by Chen [9] that a necessary
condition is that the trapping into the competitor S should
be faster than the recombination. We have taken here
As = 10−11 cm3 s−1 andAm = 10−12 cm3 s−1. For the

retrapping probabilityAt , the results were found to be rather
insensitive to changes in this parameter and we have chosen
At = 10−12 cm3 s−1. The capacities of the trapping and
competitor states have been taken asNt = 1013 cm−3 and
Ns = 1012 cm−3, respectively. Finally, the initial values of
the various functions should be set. At first sight, setting
all of them to zero sounds reasonable. This indeed is the
case insofar asnc, nv, nt and nr are concerned. If one
assumes a prior heating to high temperature, the choice of
nc(0) = nv(0) = nt (0) = nr(0) = 0 is obvious. However,
S is considered to be disconnected at least insofar as heating
to 500◦C (and perhaps more) is concerned. Up to this
temperature,ns is not depleted, which leavesns0 6= 0
for the next step. For the sake of neutrality, one has to
assume thatm(0) = ns(0) and these values may be non-
zero. Another way to look at the possibility thatm(0) 6= 0
is to consider that, during excitations and heatings,m

changes via transitions from the valence band, as well as
recombinations from the conduction band. At the end of
such a process, one may remain withm 6= 0 which ism0 6=
0 for the next stage. The importance of choosingm0 6= 0
has to do with the linear dependence of the TL signal on the
size of the test dose. As has been discussed before [10, 11],
the occurrence of a strong competitor (S in the present
case) may result in a superlinear dose dependence. Indeed,
solving the sets of equations with the above parameters
together withm(0) = ns(0) = 0 yielded a quadratic test
dose dependence. However, a choice ofns(0) = m(0) =
1010 cm−3 made the test-dose dependence linear and still
provided all the other experimentally observed features of
sensitization, quenching and UV reversal. We have also
chosen the test dose to be 5×108 cm−3 and the increments
of the ‘large’ dose 100 times larger, namely, 5×1010 cm−3.
Also, for the variation of the size of the first large dose, it
has been changed from 50 to 500 times the test dose, as
explained below.

It should be noted that taking ten times smaller ‘high’
incremental doses resulted in a nearly linear dependence.
We have preferred, however, to look into the saturating
range and have chosen the higher doses mentioned. In
this respect, it is important to note that, although the
approach to saturation looks natural in such a situation, the
processes leading to the final results are rather complicated
both in the real samples and in the presently simulated
results. One can ask whether the exponential approach to
saturation is a good approximation to the numerical results.
Since, both in the experimental results for quartz and in
the numerical values found here,S0 is not negligibly small
relative to the sensitized values ofS, we preferred to write
the approximated dose dependence ofS as

S = S0+ S∞(1− e−D/B) (15)

rather than equation (1). The sensitivities calculated
above were fitted to this three-parameter expression, the
parameters to be determined beingS0, S∞ andB. Another
indication thatS0 should be considered separately is the
experimental fact pointed out by Bailiff [5] that the
emission spectrum of the sensitized part ofS is different
than that of the originalS0.
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The best fit for evaluating the three parameters is
obtained by least squares as follows. The sum of squares
of the difference between the function (15) of these three
parameters and the ‘experimental’ values (here, the values
calculated by the solution of the two sets of differential
equations, sequentially) is minimized using the Matlab
multi-variable minimization program ‘fmins’. Once the
best S0, S∞ and B are found, they are re-inserted into
equation (15) and the best-fit curve is calculated. The
‘experimental’ points as well as the best fitted curve are
plotted against the dose on the same graph.

Figure 3 shows the results (×) obtained by the solution
of the sets of equations in the sequence mentioned above
and the given set of parameters. Here, each point is
reached by starting every simulation from the initial values
discussed above. Each point represents, therefore, a single
‘high’ dose and thus the non-linear behaviour observed may
represent the approach to saturation either of the reservoir
or of the luminescence centre. The curve fitted best to the
exponential function (15), shown as the full line, is seen to
be in very good agreement with the calculated points.

Figure 4 shows the results (◦) obtained again by
the solution of the sets of equations. Here, each
point is calculated with the initial values being the final
concentrations of its predecessor. Thus, this calculation
simulates the experiment with repeated ‘high’ doses and,
therefore, is basically associated with the approach to
saturation of the centre. Note that, here too, the exponential
expression fits the numerical results very well. The upper
curve (×) shows the same results using corrections for the
accumulated quenchings found in the simulation (see details
below). With the higher values here, the initial part of this
curve indeed is closer to a straight line. The whole curve
still shows an approach to saturation and the best fitted
exponential curve still gives a very good fit, though it is
slightly inferior to that of the original points.

4. Discussion

In this work, the model with one active trapping state, one
thermally disconnected competitor trap and two hole states,
a radiationless reservoir and a radiative luminescence centre
has been studied. The relevant sets of differential equations
have been solved and the experimental procedures of either
having different ‘high’ doses or using a sequence of high-
dose increments have been simulated. Each of these curves
is fitted to the expression (15), and the best fit looks very
good in both cases. It should be noted that, when lower
‘high’ doses were utilized, the curve reached was much
closer to linearity, as expected.

All the experimental features previously observed in the
110◦C peak in quartz were found here as a result of these
calculations, when the ‘appropriate’ set of parameters was
chosen. Finding such a set of parameters turned out to be
rather easy when the qualitative considerations mentioned
in the literature concerning specific features were taken
into consideration. These experimental features include
the linear dependence of the signal on the size of the test
dose, the approach to saturation, the UV reversal and the
radiation-quenching effect.

The very good fit of the numerically evaluated points
and the exponential approach to saturation merits a few
more words. Obviously, in principle, there is an infinite
number of ways for a function to approach saturation. The
simulated points are computed by a rather complicated
procedure and, therefore, no specific form of an approach
to saturation can be expected. The fact that such a
good fit is attained with a simple exponential function is
somewhat surprising, but also encouraging. If a sample
with an unknown doseN is to hand, incremental doses
β can be given along the mentioned sequence and, using
the exponential behaviour [9],N can be evaluated. As
mentioned already, this is accurate only ifN ≈ β due to
the possibility of reservoir saturation.

The quenching effect mentioned above [7] was
considered to be detrimental when one tries to determine the
natural dose by extrapolation. It has been suggested [7] that
a correction for quenching should be performed in order to
account for the lost sensitivity. This was done by adding
the loss of sensitivity to the measured one, saySN+β , and,
in the case of addition of several increments, the losses up
to a stagek were summed up and the total correction added
to SN+kβ . The corrected sensitivityS suggested [7] can be
written as

S = SN+kβ +
k∑
i=0

(SN+iβ − S↓N+iβ) (16)

whereS↓N+iβ is the radiation-quenched sensitivity following
i additional β increments andSN+iβ is the sensitivity
measured following the subsequent high-temperature
annealing.

No justification for this linear summation has been
given and, in fact, the rather complicated processes leading
to this quenching cannot guarantee that such a correction
has a great advantage. Empirically, however, the correction
for quenching extended the initial linear range so that, when
the original linear extrapolation was utilized, it appeared to
be of help. The present results in figure 4 neither confirm
nor refute the validity of this correction. Both curves fit
quite convincingly exponential curves of the form given in
equation (15), with different values of the three relevant
parameters. Thus, if the extrapolation to the natural dose
N is performed, the success with the two curves is expected
to be more or less the same.

Complicated as the present model and, in particular,
the sets of coupled differential equations to be solved
may look, in fact, in most real-life samples, including
quartz, the situation is even more involved. Insofar as the
110◦C peak is concerned, the 325 and 375◦C traps may
be considered thermally disconnected for low-temperature
heatings. However, most probably, deeper levels which do
not empty at temperatures up to 500◦C are to be assumed
to act as the competitor S.

The details of the UV reversal have not been given here.
We only briefly mention that a set of rate equations which
follows the release of holes from recombination centres
has been solved. With the given parameters for which the
probability of capture in the reservoir is larger than that of
capture in the centre, the transfer of holes from the latter
into the former comes out naturally.

2633



R Chen and P L Leung

Figure 3. The simulated sensitivity calculated as a function of the ‘high’ dose, by solving sequentially the sets of equations
for varying high doses, followed by high-temperature annealing, excitation by a test dose and heating above the maximum at
about 110 ◦C. (×), calculated points; full line, best fitted curve. The parameters are given in the text.

Figure 4. The simulated sensitivity as a function of the number of increments of the high dose (◦). The upper curve (×)
represents the sensitivity with correction for quenching as a function of the number of dose increments. In both cases, the
full line is the best fitted experimental function. The relevant parameters are the same as those in figure 3.

Finally, although the present model has been quite
successful in explaining the main phenomena associated
with the pre-dose effect, it is not suggested here that
this is the only possible explanation. In this respect, we
should mention that Yang and McKeever [16] proposed
the possibility that movement of hydrogen ions between
defects during irradiation and annealing may be responsible
for the pre-dose effect. In a later work, McKeever [17]

suggested that the UV reversal is associated with the release
of electrons from deep traps which then recombine with
trapped holes in(H3O4)

0 centres, thereby reducing the
concentration of recombination centre. In our numerical
experiments, the mere effect of sensitization could be seen
even when the competitorS was entirely missing. As
mentioned above, however, the whole set of trapping states
was required in order to explain all the results of the 110◦C
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peak in quartz and, as pointed out above, even under
these circumstances only simulation with certain sets of
parameters yielded all the experimental results.
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