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methods borrowed from the analysis of thermoluminescence
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Abstract

A number of methods for extracting the activation energy, pre-exponential factor and reaction order associated with the
Polanyi–Wigner rate formulation have been reported in the literature. An entirely analogous equation had been utilized in the study
of thermoluminescence (TL) and several methods have been developed for the extraction of the relevant parameters. Some of these
methods are practically identical to those developed for the study of thermal desorption, whereas others have not been developed
for thermal desorption but can be used with only very minor adjustment to the analysis of thermal desorption curves. In the present
work, the utilization of the methods developed for the analysis of TL for the study of thermal desorption data is advocated. © 1998
Elsevier Science B.V.
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1. Introduction integer values of x [5]. In the particular first-order
case, the pre-exponential factor v has dimensions
of s−1 and is usually termed the ‘‘frequency-In the study of thermal desorption spectroscopy
factor’’. It is to be noted that although v and E(TDS), also termed temperature programmed
are basically coverage dependent, these dependen-desorption (TPD), the Polanyi–Wigner equation
cies are often very weak and can be ignoredis usually assumed to govern the process, namely
[3,4,6 ]. Methods have been developed for the[1–4],
determination of the relevant parameters based on

r=−dh/dt=v(h)hx [−E(h)/RT ], (1) different features of the shape of the peak in
question and its variation with the heating rate

where r is the rate of desorption, h is the adsor- [3]. It should be noted that the activation energy
bance coverage, t is the time, T is the absolute is usually given in cal/mol, whereas the gas con-
temperature, v is the pre-exponential factor of stant is R=1.9823 cal/(mol K).
desorption, x is the order of desorption, E(h) is Thermoluminescence (TL) is a physical phenom-
the activation energy of desorption and R is the enon in which a solid sample, typically an insula-
gas constant. Whereas some researchers assumed tor, after absorbing energy while being irradiated
only integer values of x (zero order, first order, at a given temperature by, say, nuclear radiation,

X-rays etc., is being heated and emits light in theetc.), others considered the possibility of non-
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shape of peaks of light emission intensity versus kind N and defining h=n/N. In addition, although
E and R in Eq. (1), on the one hand, and E andtemperature. The basic theory of TL [7] has to do

with imperfections in the crystal in question, impu- k in Eq. (2) do not have the same dimensions, E/R
in the former and E/k in the latter are exactly therities or defects. A single TL peak results from

electronic transitions between a trapping state, the same since the gas constant R is just the product
of the Boltzmann constant k and the Avogadroconduction band and a recombination center [7,8].

Basically, the process of these transitions leading number. This completes the analogy between the
two equations. A final point to be mentioned into the occurrence of a TL peak are governed by a

set of three simultaneous, nonlinear differential this respect is that orders of kinetics b other than
1 or 2 have been considered for TL, either in aequations in the concentrations of carriers in

trapping states, the conduction band and the specific case in which b=1.5 [11], which appears
to result from the special physical conditions, orrecombination center. Making some simplifying

approximations, including the ‘‘quasi-equilibrium’’ as a very useful empirical approach [12] yielding
different shapes of the TL peak which are foundassumption, different investigators [9,10] reached

a single differential equation governing the process, for various experimental peaks. In parallel, thermal
desorption with fractional order has also beennamely:
discussed in the literature [13].

I(t)=−dn/dt=s∞nb exp(−E/kT ), (2)

with b=1, 2. Here, n is the concentration of
trapped carriers, b is the kinetics order, s∞ is the 2. TL methods for parameter evaluation
pre-exponential factor, which in the case of b=1
(first-order kinetics) is usually denoted by s and In this section, a comparison is made between

similar methods for evaluating kinetic parametershas dimensions of s−1; E is the activation energy,
usually given in electronvolts and k is the in TL and in thermal desorption. Special attention

will be given to methods developed in the study ofBoltzmann constant.
It should be noted here that once a certain TL which have some specific advantage and no

parallel developed for thermal desorption curves.heating function T=T(t) is chosen in the experi-
ment, I(t) on the left hand side of Eq. (2) can be Thus, they can be utilized, practically unaltered,

by researchers investigating thermal desorption.replaced by I(T ). It is customary to choose the
linear heating function T=T0+bt, where b is the The presentation here will use the TL terminology,

namely looking at the Arrhenius function asheating rate. The hyperbolic heating function
T=T0/(1−b∞t), where b∞ is a constant with s−1 exp(−E/kT ) with E in electronvolts and k

Boltzmann’s constant. As explained above, theunits, has some theoretical advantage, but is harder
to attain experimentally. In fact, for some translation into the thermal desorption language

is immediate.purposes, any heating function T(t) can be utilized,
providing it is monotonically increasing. The As pointed out by Garlick and Gibson [10] as

early as 1948, irrespective of the details of the TLinstantaneous heating rate in this general case is,
obviously defined by b=dT/dt. kinetics, as long as one concentrates on the ‘‘initial-

rise’’ range, one can write:It is evident that there is a direct analogy
between Eqs. (1) and (2), with two minor differ-

I(T )3exp(−E/kT ). (3)
ences. Eq. (1) is in h which is a relative coverage
defined in Ref. [4] as Nad/Ns, where Nad is the Thus, a plot of ln[I(T )] versus 1/T is expected to

yield a straight line with a slope of −E/k, fromadsorbed concentration of particles and Ns the
concentration of active sites on the surface; n in which the activation energy is readily evaluated. It

has been pointed out that going up to ~5% of theEq. (2) is the concentration of carriers per unit
volume. Eq. (2) can easily be made very similar to maximum intensity would yield a good result for

the energy and going up to ~10% of the maximumEq. (1) by dividing both sides of the equation by
the total concentration of traps of the relevant intensity may result in an error of 2–3% in the
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evaluated value of E. The obvious disadvantage activation energy as well as an estimate of the
kinetics order. A very similar method for thermalof this simple method is that it can be used yielding

good results only for relatively high-intensity desorption curves has been developed by
Niemantsverdriet et al. [19].peaks. Practically the same method has been devel-

oped by Habenschaden and Küppers [14] for the
study of thermal desorption and termed the ‘‘lead-
ing-edge analysis’’.

3. Peak shape methodsThe process of extracting the activation energy
from the initial-rise range can be presented in a

Although the shape of the peak in TL as wellslightly different manner, namely calculating in the
as in thermal desorption depends on all the param-relevant range:
eters, E, s∞ and b in Eq. (2), it has been shown

EIR=−k d ln I/[d(I/T )]. (4) that the shape of the normalized peak depends
very strongly on the kinetic order b and very littleIt has been noted that the pre-exponential factor
on E and s∞ (or s in the first-order case). For b=itself can be somewhat temperature dependent. In
1, the first-order solution of Eq. (2) is, for a linearTL, dependencies like s3ta with 2≥a≥−2 have
heating function,been considered [15,16 ]. Using the same procedure

as above would yield a nearly straight line with a I(T )=n
0

exp(−E/kT )
slope which, according to Eq. (4) is

×exp C−(s/b) P T
T
0

exp(−E/kt) dtD. (7)EIR=E+akT, (5)

from which one can get the corrected initial-rise
A synthetic, normalized computer calculatedvalue
example of this expression is given in curve I of
Fig. 1. The parameters used are given in the cap-E=EIR−akT. (6)
tion. For the evaluation of the integral, use has

The correction term −akT is relatively small and
therefore, being temperature dependent, it is irrele-
vant in the narrow temperature range utilized in
the initial-rise method. Note that a similar power
of temperature dependence of the pre-exponential
factor has been considered in the study of thermal
desorption curves (see, for example, Kreuzer and
Payne [17]).

Another improvement of the initial-rise method
was suggested by Halperin et al. [18]. In cases
where the kinetics order b is known, it is suggested
to plot ln(I/nb) versus I/T. The straight line would
now extend ideally to the whole temperature range
of the peak. The value of n can be found from the
interval over the peak from each specific point to
the end of the peak. This may be complicated if
more peaks at higher temperatures exist; in particu-
lar, the situation is difficult if there is a strong

Fig. 1. A typical first-order peak calculated by theoverlap between peaks. As for the order of kinetics
Randall–Wilkins equation (curve I ) and a second-order peak

b, if it is not known, one can try the plots with (curve II ). Both curves have been simulated numerically with
different values of b and find the best straight line. E=0.4 eV. In curve I, the frequency factor is s=1010 s−1. In

curve II, the pre-exponential factor is s∞=10−11 m3 s−1.This is expected to yield the best value for the
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been made of the asymptotic series either t, d or v. For example, for first-order peaks,
the equation isP

0

T
exp(−E/kt)$T exp(−E/kT ) E

v1
=2.52kT2m/v−(1+0.5a)2kTm , (11)

where a is the power in the dependence of the× ∑
n=1

(kT/E)n(−1)n−1n!. (8)
frequency factor on temperature, s3Ta; in many
cases, a is assumed to be zero and the second termSome terms in this expansion have been utilized
obviously becomes −2kTm. For second-orderby researchers in both TL [7] and thermal desorp-
kinetics, the formula istion [1]. It has been shown by Chen [20] that the

best accuracy using this series is attained by going E
v2
=3.54kT2m/v+(1+0.5a)2kTm . (12)

to the term smallest in absolute value and adding
It is to be noted that although the half-widthone half of the next term.
equation appears very simple to use, widths atThe main feature of curve I is its being asymmet-
other fractions of the maximum intensity haveric, with the fall-off half being significantly nar-
later been used. These include 2/3 and 4/5rower than the low-temperature half. This property
employed by Mazumdar et al. [21] in the study ofhas been given a quantitative measure by Halperin
TL as well as 3/4 utilized by de Jong andand Braner [7] who termed the maximum temper-
Niemantsverdriet [3] in the analysis of desorp-ature by Tm and the low-and high temperatures
tion curves.by T1 and T2. They then defined the full half-

For the general-order kinetics given in Eq. (2),width v=T2−T1, the low-temperature half-width
the solution yields [13]t=Tm−T1 and the high-temperature half-width

d=T2−Tm. By the use of these magnitudes, the
I(T )=s∞nb

0
exp(−E/kT ) G[(b−1)s∞nb−1

0
/b]shape factor

mg=d/v, (9)
×P T

T
0

exp(−E/kt) dt+1H−b/(b−1) . (13)has been defined. It has been shown [6 ] that first-
order peaks are characterized by −mg#0.42, with

Obviously, for b=2 one obtains Eq. (10). For b=rather slight dependence on the other two parame-
1, the expression is meaningless, but it can beters E and s. The solution of Eq. (2) for b=2 and
shown that as b�1, Eq. (13) goes to Eq. (7). Itlinear heating function is
has been shown [13] that while changing b grad-

I(T )=n2
0
s∞ exp(−E/kT ) ually from 1 to 2, the shape factor mg changes

continuously from 0.42 to 0.52 (see Fig. 2). Chen
×C1+(n

0
s∞/b) P T

T
0

exp(−E/kt) dtD−2 . [13] suggested using the measured value of mg as
an interpolation factor which enables the evalua-
tion of the activation energy for a broad range of(10)
the order parameter b.

A typical curve of this form is II in Fig. 1, calcu- An equation of the same family as Eqs. (11)
lated for the parameters given in the caption. A and (12) for this general situation has been given
typical value of the shape factor in this case is [12] as
mg#0.52, again with slight variation with different

E
v
=[2.52+10.2(mg−0.42)]kT2m/vE and s∞ values. These values of mg mean that

second-order peaks are nearly symmetrical. −(1+0.5a)2kTm , (14)
Halperin and Braner [7] have developed methods
for evaluating the activation energy by using the where a is the power of temperature dependence

of the frequency factor mentioned above and sim-shape of the peak. These have been modified by
Chen [16 ] who gave simple formulas for evaluating ilar equations based on the low-temperature half-

width t and the high-temperature half width d.E, based on the measurement of Tm as well as
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The difference of the numerical coefficient in these
two expressions indicates the relatively large asym-
metry of the first-order peak. As for second-order
peaks, the analogous equations are

E=1.763kT
1
Tm/t=1.763kTmT

2
/d (17)

which yields T1/t=T2/d from which one can imme-
diately obtain

T−1m =0.5(T−1
1

+T−1
2

). (18)

This means that the peak is exactly symmetrical
under these circumstances in reciprocal temper-
ature, which also implies that it is nearly symmetri-
cal in temperature as well. It should be noted that
the advantage of using hyperbolic heating func-
tions had been originally mentioned by Arnold
and Sherwood [23] for TL peaks and by Ehrlich
[24] for thermal desorption peaks.

4. Various heating rates
Fig. 2. Calculated shape factor mg as a function of the given
order b. The central curve shows the average values; the upper

Let us consider again the Eq. (7) for a first-and lower dashed lines give the largest and smallest values for
order curve with a linear heating function. Asdifferent values of E and s∞ for each given order b.
pointed out by Randall and Wilkins [9], the condi-
tion for the maximum, attained by equating theThe validity of these equations has been tested for
derivative of Eq. (7) to zero issynthetic, computer generated general-order peaks

and yielded very good accuracy. Of course, exactly bE/(kT2m)=s exp(−E/kTm). (19)
the same expressions can be used for the evaluation

It is obvious that for a peak with given E and s,of the activation energy from thermal desorption
changing the heating rate b should change thepeaks. It is to be noted that a different parameter
maximum temperature Tm. Writing Eq. (19) ashas been defined for quantifying the skewness of

the thermal desorption peak [3] based on the same b=(sk/E )T2m exp(−E/kTm), (20)
measured magnitudes:

shows that when b increases, Tm should increase
x=100×(d−t)/v. (15) as well since the right-hand side of Eq. (20) is an

increasing function of Tm. Booth [25], Bohun [26 ]Although the scale here is entirely different than
and Parfianovitch [27] showed independently thatin the above-mentioned mg, basically it determines
if one utilizes two linear heating rates b1 and b2the same property using the same measured quanti-
and gets two maxima Tm1 and Tm2, the use ofties. Also should be mentioned a work by Kelly
Eq. (19) twice yields an explicit expression for theand Laubitz [22] which showed that if a hyperbolic
activation energy:heating rate is utilized, namely, T=T0/(1−b∞t)

where b∞ is a constant with dimensions of s−1 E=[kTm1Tm2/(Tm1−Tm2)] ln[(b
1
/b
2
) (Tm2/Tm1)2 ].

simpler equations for the evaluation of the activa-
(21)tion energy for first-order kinetics can be written

as
This value can be re-inserted into Eq. (19) to yield
the value of the frequency factor s. HoogenstraatenE=1.46kTmT

1
/t=0.985kTmT

2
/d. (16)
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[28] suggested the use of several (constant) heating shown to yield a straight line with a slope of −E/k
with different constant heating rates can, in fact,rates; having performed this, a plot of ln(T2m/b)
be used with different nonlinear heating functionsversus (1/Tm) should yield a straight line from the
as well. This, of course, is true both for TL peaksslope of which, E/k, E can readily be found.
[30] and for thermal desorption curves. It is clearExtrapolation to 1/Tm=0 gives the value of
that the hyperbolic heating function mentioned inln(sk/E) from which s can be calculated by the
the previous section, being a monotonicallyinsertion of E/k found from the slope.
increasing function, is included in this generalOsada [29] extended the method for nonlinear
discussion.heating functions. He proved that Eq. (19) is valid

Although rigorously proven only for first-orderfor an exponential heating function
peaks, Chen and Winer [30] showed that theT=T2−(T2−T0) · exp(−at) where a is a con-
method can be utilized for non-first-order kineticsstant (s−1) and T2 the final temperature
very successfully. They showed this for both com-approached asymptotically with time. This heating
puter generated second- and general-order peaks,scheme is the one we obtain ‘‘naturally’’ if we let
as well as experimental TL peaks in ZnS:Er3+,a cold sample warm up, while being in thermal
known not to be of first order. Further discussioncontact with an infinite thermal bath at temper-
on this point can be found in Ref. [15]. It shouldature T

2
. The instantaneous heating rate at T

2 be noted that different investigators used thewhich we can denote by bm should now replace b
different heating-rate methods for TL peaks with-in Eqs. (19) and (20). This leads directly to the
out checking the order of kinetics and with goodvalidity of Eq. (21) for various exponential heating
results as far as the values of the parameters couldfunctions as well as to the use of the
be compared with results attained by other meth-Hoogenstraaten method in this case. A remark to
ods. A recent analogous discussion on thermalthe same effect, related to thermal desorption
desorption curves of first- and second-order kinet-curves, can be found in a recent work by Garcı́a
ics (though with linear heating functions only) haset al. [4]. Chen and Winer [30] have shown that,
been given by Zhou et al. [31].in fact, Eqs. (19) and (20) are correct for any first-

order peak measured under any monotonically
increasing heating function. This was performed

5. Curve fitting and deconvolutionby re-writing Eq. (7) as

The initial-rise ( leading-edge) method men-I=n
0
s exp(−E/kT )

tioned above is concentrating on the shape of the
peak at its low-temperature range. A method which×exp C−s P

T

T
(dt/dt)−1 exp(−E/kt) dtD, (22)

appears to be more reliable is the curve fitting,
using information from a broader range of the

where T(t) [or t(t)] is any heating function. The peak. Basically, this consists of simulating a TL
requirement that the heating function is monotoni- or thermal desorption peak using a set of parame-
cally increasing is in order to assure that dt/dt≠0. ters, comparing it to the experimental curve in
Setting the derivative of Eq. (22) to zero yields hand and varying the parameters used so as to get

the best fit between the experimental and computed
bmE/(kT2m)=s exp(−E/kTm), (23) curves. In principle, this is very close to the formula

given by Garcı́a et al. [4] for thermal desorption
where bm=(dT/dt)m. Obviously, the extension of peaks. Previous methods, developed for other ther-
Eq. (21) as well as the plot of ln(mm/T2m) versus mally stimulated processes, can be considered
1/Tm for the evaluation of the activation energy E instead. These include the works by Doyle [32]
can be readily performed in this general case. It and Zsakó [33] used in the study of thermogravim-
can rather easily be shown that the method of etry, Cowell and Woods [34] in thermally stim-

ulated conductivity and Mohan and Chen [35]plotting ln[I(Tm)] versus 1/Tm which had been
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