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AbstractÐThis paper reviews the main models which have been proposed to describe thermally and opti-
cally stimulated luminescence phenomena for materials of interest in dating applications. The review
starts from the fundamental models established for the descriptions of the kinetics of thermoluminescence
(TL) production and develops these as necessary to account for a variety of experimental phenomena.
Among the experimental features discussed are anomalous fading, non-linear growth of thermolumines-
cence as a function of dose, sensitivity and sensitization, bleaching of TL glow curves with light, photo-
transferred TL (PTTL) and optically stimulated luminescence (OSL). The relevance of the models to
some dating applications is highlighted and it is concluded that e�orts to unify the disparate models for
luminescence from these materials are now required. # 1998 Elsevier Science Ltd. All rights reserved

1. MODELING

The history of technique and procedure develop-

ment in luminescence dating demonstrates a heavy

reliance upon the establishment of models to

explain the processes being used. The ®eld is replete

with explanations, suggestions, theories and ideas ±

many of which are labeled (rather loosely in some

cases) ``models'' ± in e�orts to provide a theoretical

basis from which to explain the observed e�ects

and the gathered data. This, in fact, is an example

of the scienti®c method at its best. Continually,

models have been suggested, tested, modi®ed and

improved and, in doing so, the practical techniques

and protocols used in luminescence dating have

become established, and more acceptable to the

user. Note that we speak here only about accept-

ability; reliability is another matter, and is dealt

with much more satisfactorily in the accompanying

papers in this issue. A procedure appears accepta-

ble, or at least credible, to the community if the

proposer can justify it on the basis of what is

known, or what is thought to be known, about the

physical processes that produce the observed e�ect.

Only actual use of the procedure, and testing of the

ultimate product, i.e. the age, against known age

standards, will establish its reliability.

An important purpose of models, therefore, is to

impose a feeling of security. By establishing models

we can answer questions such as: ``Under what cir-

cumstances can I expect an exponential optically

stimulated luminescence (OSL) decay curve?'', or

``When might I expect a linear growth of thermolu-

minescence (TL) as a function of dose?'', or ``Can

the correction procedure I propose really correct

for the e�ect I observe?''. These and a myriad other

such questions may appear esoteric at times, but at

others they are absolutely fundamental to the val-

idity of the procedures and protocols adopted
during dating.

A di�culty in understanding models for OSL and
TL is that these are inherently complex, interactive,
non-linear processes. Predicting the behavior of
even the simplest model to explain these phenomena

is not straightforward and can be full of frustra-
tions. However, in recent years the arrival (at our
desk-top computer keyboards) of the ability to per-

form complex numerical calculations to follow the
behavior of the non-linear, coupled, di�erential
equations which describe OSL and TL has opened

a window to an understanding, at a fundamental
level, of how such systems behave. This has pre-
sented us with the opportunity to test the behavior

of our suggested models, in ways not so easily done
in earlier years, to see if they can indeed produce
the e�ect we observe in our experiments. The pur-
pose of this paper is to review some of the progress

that has been made in this area. We do not ± and
indeed cannot, within the con®nes of one article ±
propose to be all-embracing in this review.

Undoubtedly some readers may be disappointed
that we did not cover an e�ect of particular interest
to them. Nevertheless, we believe that we do cover

some of the topical subjects of current interest and
importance to the luminescence dating community.
A more detailed description of models and theories

for TL, OSL and related phenomena is given, in
depth, by Chen and McKeever (1997).

2. THERMOLUMINESCENCE

We begin the discussion with a presentation of
the established models for TL. Inevitably, this is
something of a historical account since the earliest
of these models were introduced ®ve decades ago.
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However, this early work serves as a benchmark for
the development of later models for both TL and

OSL. As such, an understanding of these funda-
mental models is essential for an understanding of
the behavior of the more complex scenarios intro-

duced in later years.

2.1. Background

The traditional description of TL normally pro-
ceeds by invoking the absorption of energy from an
ionizing source by an insulating or semiconducting
material. The absorption causes the excitation of

free electrons and free holes and the subsequent
trapping of these electronic species at defects (trap-
ping states) within the material. After removal of

the excitation the sample is heated such that ther-
mal energy causes the liberation of charge carriers
of one sign (say, electrons) which are then able to

recombine with charge carriers of the opposite sign.
If the recombination is radiative, luminescence (TL)
is emitted. This description of TL can be formalized
in the following statements ± statements which in

fact describe most thermally stimulated relaxation
phenomena: TL requires the perturbation of the sys-
tem from a state of thermodynamic equilibrium, via

the absorption of external energy, into a metastable
state. This is then followed by the thermally stimu-
lated relaxation of the system back to its equilibrium

condition. As a description of a thermally stimulated
process (TSP), this statement is quite general. In the
speci®c case of TL, the perturbation is usually the

absorption of energy from ionizing radiation, and
the thermally stimulated relaxation back to equili-
brium is followed by monitoring the emission of
luminescence from the system during the transitions

of the freed charges back to the ground state. As
will become clear in the following sections, the
intensity of the emitted luminescence is related to

the rate at which the system returns to equilibrium.

The result is a characteristic ``glow curve'' consist-

ing of a luminescence peak (or peaks) in a plot of

luminescence against sample temperature, as illus-

trated in the many examples shown elsewhere in

this issue. In other TSPs the form of the pertur-

bation may di�er along with the property being

monitored during heating. For example, in ther-

mally stimulated conductivity (TSC), ionizing radi-

ation may still be used as the excitation source, but

one detects the thermal relaxation back to equili-

brium by monitoring the freed charges during their

passage through the delocalized excited state (i.e.

conduction band for electrons, or valence band for

holes). For thermally stimulated exoelectron emis-

sion (TSEE) one monitors the exoemission of elec-

trons, usually from surface traps, during the

relaxation process. Alternatively, for either deep

level transient spectroscopy (DLTS) or thermally

stimulated capacitance (TSCap), the excitation can

either be ionizing radiation or electrical energy, and

one monitors the change in capacitance across a pn

semiconductor junction, or a metal±semiconductor

junction, during the thermally stimulated transition

of the trapped charge from the traps into the delo-

calized bands.

Each of the above processes, and all related pro-

cesses, can be described in terms of the free energy

of the system and the perturbation of the equili-

brium Fermi level in the material under study. At

0 K and in thermodynamic equilibrium one can

expect from Fermi±Dirac statistics that all states

above the Fermi level EF are empty while all states

below EF are ®lled. The situation is illustrated in

Fig. 1 in which we see a ¯at-band energy band dia-

gram representing the bottom of the conduction

band Ec, the top of the valence band Ev and a dis-

tribution of energy states (traps) in the forbidden

gap between these two energy levels. We use ``®lling

diagrams'', as described by BraÈ unlich (1979), to rep-

resent the extent to which the energy states are ®lled

Fig. 1. Filling functions for a uniform trap distribution before and after perturbation by an external
stimulus, and during thermally stimulated relaxation. (After BraÈ unlich (1979).)
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Fn(E) for a uniform trap distribution during a ther-

mally stimulated relaxation experiment. Beginning

with the left-hand ®gure, we see the Fermi±Dirac

®lling function at 0 K. After perturbation by ioniz-

ing radiation we ®nd a new ®lling function showing

a distribution of electrons trapped at localized

states within the band gap above EF and an equal

concentration of holes trapped below EF. One can

de®ne two quasi-Fermi levels, one each for electrons

EFn and for holes EFp. These are useful devices for

describing the non-equilibrium state which follows

the perturbation in terms of equilibrium statistics

by making the assumption that the trapped electron

and hole populations are in thermal equilibrium

over their available energy levels. During thermally

stimulated relaxation, i.e. during heating, the ®lling

function Fn(E) gradually returns to its pre-pertur-

bation state, albeit now at a higher temperature.

During this process the quasi-Fermi levels gradually

move back toward the equilibrium Fermi level as

the trapped charge concentrations decay back to

their equilibrium values. In Fig. 1 the heating is

performed according to the function T(t) = T0+bt,
where T0 is the initial temperature, i.e. 0 K in the

above example, and b is the (constant) rate of heat-

ing. In principle, however, any other heating func-

tion could be used.

To develop this picture into a simple description

of TL we note several additional de®nitions and

assumptions:

(a) All transitions into or out of the localized

states involve passage of the charge (electrons or

holes) through the delocalized bands, i.e. for the

present we do not include direct transitions

between localized states.

(b) We adopt the usual de®nition of ``trap-

ping'' states to be those at which the probability

of thermal excitation from the level into the re-

spective delocalized band is greater than the

probability of recombination of the trapped

charge with a free charge carrier of opposite

sign. Conversely, a ``recombination center'' is

de®ned as one in which the probability of recom-

bination with an opposite sign charge carrier is

greater than that of thermal excitation of the

trapped carrier. Therefore, one can de®ne a de-

marcation level to be that energy level at which

these two probabilities are equal. Thus, we have

a demarcation level for electrons EDn, and one

for holes EDp.

(c) Transitions of electrons from the conduc-

tion band (ErEc) into electron traps of energy

E, for which Ec>E>EDn, are non-radiative,

emitting phonons. Similarly, hole transitions

from EREv to hole traps at EDp>E>Ev are

also non-radiative.

(d) Transitions of free electrons from ErEc to

trapped hole recombination sites at EF>E>EDp,

or free holes from EREv to trapped electron

recombination centers at EDn>E>EF are radia-

tive, emitting photons.

(e) Once a trap is emptied, the freed carrier

can no longer distinguish between it and all

other traps of the same type.

In Fig. 1 the ®lling diagrams are illustrated for a

uniform trap distribution. For any arbitrary density

of states function N(E), however, we may generalize

the equations of Adirovitch (1956), Haering and

Adams (1960), and Halperin and Braner (1960) and

write a series of rate equations describing the ¯ow

of charge into and out of the delocalized bands

during thermal stimulation en route to equilibrium,

thus:

dnc=dt �
�Ec

EDn

pn�E �N�E �f �E �dE

ÿ ncvn

�Ec

EDn

sn�E �N�E ��1ÿ f �E ��dE

ÿ ncvn

�EF

EDp

smn�E �N�E ��1ÿ f �E ��dE �1�

and

dnv=dt �
�EDp

Ev

pp�E �N�E ��1ÿ f �E ��dE

ÿ nvvp

�EDp

Ev

sp�E �N�E �� f �E ��dE

ÿ nvvp

�EDn

EF

snp�E �N�E �f �E �dE �2�

where pn(E) and pp(E) are the probabilities for ther-

mal excitation from the traps, given in general by

p � s expfÿE=kT g �3�
where k is Boltzmann's constant and T is tempera-

ture. The pre-exponential factor s is known as the

``attempt-to-escape'' frequency and is interpreted as

the number of times per second n that an electron

interacts with the lattice, multiplied by a transition

probability k, multiplied by a term which accounts

for the change in entropy DS associated with the

transition from the trap to the delocalized band

(Glasstone et al., 1941; Curie, 1960). Thus, s may

be written

s � �k exp

�
DS
k

�
�4�

One can expect, therefore, that s will take on a

value similar to the lattice vibrational frequency, i.e.

1012±1014 sÿ1. From detailed balance arguments, the

frequency factor can also be equated to the capture

cross-section s of the metastable state (Bube, 1960),

thus:
s � Nsvs �5�
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where Ns is the e�ective density of states in the
delocalized band, and v is the free carrier thermal

velocity. Note that since Ns, v and s all have a tem-
perature dependence, so s also usually exhibits a
temperature dependence.

In [1] and [2], N(E) is the density of states func-
tion; f(E) is the occupation, or ®lling function; nc is
the concentration of free electrons in the conduction

band, and nv is the concentration of free holes in
the valence band; vn and vp are free electron and
free hole thermal velocities; sn(E) and sp(E) are the

capture cross-sections for the retrapping of free car-
riers; and smn(E) and snp(E) are the recombination
cross-sections for the free carriers.

2.2. Simplest model

Several authors (e.g. Adirovitch, 1956; Halperin
and Braner, 1960) simpli®ed the above equations by
assuming only two types of localized state ± namely

a discrete electron trap at an energy Et, where
Ec>Et>EDn, and a discrete recombination
(trapped hole) center at an energy, E, where

EDp>E>Ev.
With the above conditions the concentration of

trapped electrons simpli®es thus:�Ec

EDn

N�E �f �E �dE ÿ4n, �6�

the concentration of empty traps becomes�Ec

EDn

N�E ��1ÿ f �E ��dE ÿ4N ÿ n �7�

and the concentration of available hole states (for
recombination) becomes�EF

EDp

N�E ��1ÿ f �E ��dE ÿ4m �8�

Furthermore, since the trap energy and the

recombination center energy are both single-valued,
then sn and smn are also single-valued. Finally, we
assume that only trapped electrons are thermally

freed during thermal stimulation (i.e. pp=0); this in
turn means that nv=0. (Note that in the treatment
which follows we will always assume that the TL
signal is stimulated by the release of trapped elec-

trons. Alternatively, one could just as easily assume
that the holes were the thermally unstable charge
carrier type. However, in this case the form of the

equations would be identical to those which follow,
and only the de®nitions of the terms would need to
be modi®ed.) Using [3], along with these simpli®ca-

tions, [1] and [2] become

dnc
dt
� ns exp

�
ÿ Et

kT

�
ÿ nc�N ÿ n�An ÿ ncmAmn �9�

and
dnv
dt
� 0 �10�

where An=vnsn is the retrapping probability and
Amn=vnsmn is the recombination probability (both

expressed in units of volume per unit time). With
the same notation we may also write

dn

dt
� nc�N ÿ n�An ÿ ns exp

�
ÿ Et

kT

�
�11�

and
dm

dt
� ÿncmAmn �12�

from which we see that dnc/dt = dm/dtÿ dn/dt.
Furthermore, charge neutrality dictates that

nc � n � m �13�

Finally we note that the intensity of TL emitted

during the return of the system to equilibrium is
given by

ITL � ÿZdm
dt

�14�

where Z is the radiative e�ciency. If all recombina-

tion events produce photons and all photons are
detected then Z = 1. Unless speci®cally stated we
shall assume Z= 1 in the discussions to follow. [9]±
[14] represent the system of rate equations describ-

ing the tra�c of electrons during heating (at rate b)
of a system initially perturbed from equilibrium.
They are coupled, ®rst-order, non-linear, di�erential

equations and, in general, are analytically insoluble.
Note that the concentrations nc, n and m are all
time and temperature dependent, with the t and T

dependencies linked through the heating rate func-
tion T = T(t). (In fact, nc, n and m should each be
considered as functionals nc{T(t)}, n{T(t)}, etc.,

since they depend on the history of the system.
They are solutions of the di�erential equations and
as such they depend upon t, T and the initial values
nc0, n0 and m0.) In writing the above equations we

have placed severe restrictions on the transitions
which are allowed during the return of the system
to equilibrium and upon the energy levels which are

available within the system. This simple scheme ±
known as the one-trap/one-center model ± is
depicted in Fig. 2 and forms the basis of many, if

not most, analyses of TL phenomena. Despite these
obvious limitations the challenge now is to use
these equations to develop an analytical expression

which gives explicitly the relationship between the
TL intensity and the temperature, i.e. to determine
the form of ITL(T). To do so, several simplifying
assumptions concerning the relative sizes of the var-

ious transition rates must be introduced into the
equations.

2.3. Approximations

2.3.1. Quasiequilibrium. Perhaps the most import-
ant of all the assumptions introduced into the
model is that of quasiequilibrium (QE). The QE
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assumption is ����dnc

dt

����� ����dndt

����; ���� dmdt
���� �15�

This assumption is of profound importance and,

stated simply, it requires that the free electron con-

centration in the conduction band is quasistation-

ary. It is this inequality which allows a

simpli®cation of the rate equations ([9]±[12]). If

combined with the additional dictate that the initial

free carrier concentration is small (i.e. nc020), it

means that free charge never accumulates in the

conduction band during thermal stimulation.

Applying the above inequalities leads to

ÿdn

dt
' ÿ dm

dt
� ITL �16�

and thus:

ITL � ns expfÿEt=kT gmsmn��N ÿ n�sn �msmn

� �17�

or

ITL � ns exp

�
ÿ Et

kT

��
1ÿ �N ÿ n�sn
�N ÿ n�sn �msmn

�
�18�

[17] and [18] have been termed the ``General One-

Trap'' (GOT) expression for TL emission (Levy,

1985, 1991). In [18] the term in square brackets is

the probability that the thermally released electrons

will not be retrapped, and the ratio (Nÿ n)sn/msmn

is the ratio of the retrapping probability to the

recombination probability. Further approximations

are normally introduced at this stage concerning the

relative sizes of these terms.

2.3.2. First-order kinetics. Randall and Wilkins

(1945a,b) assumed negligible retrapping during the

thermal excitation period, i.e. they assumed that

msmn>> (Nÿ n)sn. Note that this is a condition

between functions n(t) and m(t) and thus while it

may be true at the beginning of a peak, the possi-

bility exists that it may become progressively untrue

at a later stage. Under these ``slow-retrapping'' con-

ditions the GOT equation becomes

ITL � ns exp

�
ÿ Et

kT

�
�19�

We note also from [16] that ÿdn/dtA n, and thus

we have a ®rst-order reaction. Integrating from

t= 0 to t, using a constant heating rate, b = dT/

dt, yields the well-known Randall±Wilkins ®rst-

order expression for the function ITL(T), namely

ITL � n0s exp

�
ÿ Et

kT

�

exp

(
ÿ
�
s

b

��T
T0

exp

�
ÿ Et

ky

�
dy

)
�20�

where n0 is the initial value of n at t= 0, T0 is the

initial temperature and y is a dummy variable repre-

senting temperature. The transitions allowed in the

Randall±Wilkins model are the same as those illus-

trated in Fig. 2 ± with the recombination transition

more probable than the retrapping transition. A

typical ®rst-order peak is shown in curve I of Fig. 3,

whereas curve II corresponds to a second-order kin-

etics peak discussed below.

2.3.3. Second-order kinetics. Garlick and Gibson

(1948) considered the alternative possibility that

retrapping dominates, i.e. msmn<< (Nÿ n)sn.
Applying this inequality to the GOT expression,

along with N>> n and n = m, yields

ITL � ÿdn

dt
� s

�
�n

N�mn

�
n2 exp

�
ÿ Et

kT

�
�21�

Fig. 2. The allowed transitions (thermal excitation, retrap-
ping and recombination) for the simple one-trap/one-cen-

ter model for TL.

Fig. 3. A typical ®rst-order peak calculated by the
Randall±Wilkins equation (curve I) and a typical second-
order peak (curve II). Both curves are numerically simu-
lated with E= 0.4 eV. In curve I, the frequency factor is
s= 1010 sÿ1. In curve II, the pre-exponential factor is
s' = 10ÿ11 m3sÿ1. Both curves are normalized to a maxi-

mum intensity of unity.
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In contrast to the ®rst-order case, the inequality

msmn<< (Nÿ n)sn will remain true throughout the

TL peak, if it is true at the beginning. Note now

that dn/dtA n2 and, thus, this represents a second-

order reaction. Integration of [21] gives

ITL � n20sn
Nsmn

� �
s exp

�
ÿ Et

kT

�"
1�

�
n0ssn
bNsmn

��T
T0

exp

�
ÿ Et

ky

�
dy

#ÿ2
�22�

where all the terms retain their previous meanings.

This equation is the Garlick±Gibson TL equation

for second-order kinetics. Note that one can also

arrive at a similar equation directly from [17], with-

out the assumption of dominating retrapping, using

only the assumption sn=smn, as long as n= m.

Here, the ratio sn/smn is unity and, therefore, it can

be omitted from [22].

Equation [22] may be recast in both cases as

ITL � n20s
0 exp

�
ÿ Et

kT

�"
1�

�
n0s
0

b

��T
T0

exp

�
ÿ Et

ky

�
dy

#ÿ2
�23�

in which we have de®ned s'= s/N (or s'= ssn/
Nsmn, if sn$smn,) as an ``e�ective'' pre-exponential

factor (in units of sÿ1m3). [23] can also be written

with s0 replacing n0s', in which s0 (in units of sÿ1) is
equivalent (in units) to s in the ®rst-order case. The

allowed transitions for the Garlick±Gibson model

are illustrated in Fig. 2. A characteristic second-

order peak is shown in curve II of Fig. 3.

2.3.4. General-order kinetics. The Randall±Wilk-

ins and Garlick±Gibson forms of the TL equation

have been derived with the use of speci®c assump-

tions concerning the relative sizes of the retrapping

and recombination probabilities. Considering the

form of the expressions produced from these

assumptions, speci®cally [19] and [21], May and

Partridge (1964) wrote an empirical expression for

general-order TL kinetics:

ITL � nbs' exp

�
ÿ Et

kT

�
�24�

where s' has the dimensions of m3(b ÿ 1)sÿ1 and b is

de®ned as the general-order parameter and is not

necessarily 1 or 2. Integration of [24] for b$1 pro-

duces

ITL � s0n0 exp

�
ÿ Et

kT

�"
1�

�
�bÿ 1� s0

�

��T
T0

exp

�
ÿ Et

k�

�
d�

#
ÿ

b

bÿ 1 �25�

where now s0 � s0n�bÿ1�0 . May and Partridge (1964)

developed this expression in order to apply it to
those cases where the inequalities used above do

not apply. Indeed, one can easily envisage many
combinations of values for N, n, m, smn and sn for
which the ®rst- or second-order assumptions may

be invalid, especially when it is remembered that
each of these parameters is temperature dependent
and in order for the Randall±Wilkins or Garlick±

Gibson expressions to be valid one needs the
restrictions concerning the relative sizes of these
terms to apply across the whole temperature range

of interest.
The question of interpreting the meaning of s'

and the kinetic-order parameter b in the May and
Partridge equation was dealt with by

Christodoulides (1990) who considered the case of a
single activation energy, ®rst-order kinetics, and a
distribution in the frequency factor s (i.e. n(s)). If

one assumes a G-distribution function in s (actually
in ln(s)) and applies this to the case of ®rst-order
kinetics, one can obtain the ``general-order''

equation, i.e. [24]. With this interpretation s' and b
are characteristic parameters of the distribution
function for s.

2.4. More complex models

2.4.1. Mixed-order kinetics. The treatment pre-
sented so far relies on the simple one-trap/one-cen-

ter model of Fig. 2. Over the years this has proved
to be an extraordinarily e�ective teaching tool to
describe the main features of TL production. How-

ever, despite the utility of this model and its sub-
sequent treatment, the fact remains that there are
no actual materials for which one can accurately

claim that there is only one trap and only one
recombination site. An important consequence of
the model discussed so far is that n = m, i.e. the
number of trapped electrons equals the number of

trapped holes. This is a consequence of the charge
neutrality condition ([13]) with the added assump-
tions of quasiequilibrium and nc020 (which

together lead to nc20). In most real materials,
however, there inevitably exist additional trapping
sites for which the thermal stability of the trapped

charge is greater than that for the TL signal being
monitored. In other words, at most temperatures,
there are likely to exist deep traps which retain

their trapped electron population during emptying
of the shallower traps and readout of the TL signal.
The result of this is that n$m. Indeed, retaining
the condition nc020, the charge neutrality ex-

pression now becomes

n� h � m �26�
where h is the concentration of electrons trapped in
these deeper traps. The deep traps are referred to as
being ``thermally disconnected''. Several authors
have preferred to include these in the analysis of
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TL processes (Dussel and Bube, 1967; Kelly and

BraÈ unlich, 1970). The rate equations now include

an additional term

dh

dt
� �H ÿ h�v�h �27�

and, as a result,

dnc

dt
� dm

dt
ÿ dn

dt
ÿ dh

dt
�28�

where H is the total number of available, deep,

thermally disconnected traps and sh is the capture

cross-section of the deep traps. The expressions for

dn/dt and dm/dt remain as in [11] and [12], respect-

ively. Writing the equations in this way takes
account of the fact that the deep, thermally discon-

nected traps may capture electrons released from

the shallow trap at energy Et. In this way the traps

are said to be ``interactive'', with the deep trap

competing with the recombination sites for the cap-

ture of electrons freed from the shallow trap. Under

the special circumstances that h2H, then dh/dt20

and we may write, following Kelly and BraÈ unlich

(1970), the equivalent of the ``General One-Trap''

equation for this ``two trap'' case, thus:

ITL � ns expfÿEt=kT g�n� h��mn

��N ÿ n��n � �n� h��mn� �29�

With this restriction, using the slow-retrapping

assumption ((Nÿ n)sn<< (n + h)smn) in [29] leads

straightforwardly to the Randall±Wilkins, ®rst-

order TL equation (i.e. [20]; BoÈ hm and Scharmann,

1971). Alternatively, the fast-retrapping case (i.e.

(Nÿ n)sn>> (n + h)smn) along with n<<N, leads

to

ITL � ns expfÿEt=kT g�n� h�smn

Nsn
�30�

Or, for sn=smn, we see that [29] becomes

ITL � ns expfÿEt=kT g�n� h�
�N � h� �31�

[30] and [31] can both be presented in the form

ITL � s 0n�n� h� exp
�
ÿ Et

kT

�
�32�

with s'= ssmn/Nsn, or s'= s/(N + h), respectively

(Chen et al., 1981). Expanding [32] produces

ITL � s 0nh exp
�
ÿ Et

kT

�
� s 0n2 exp

�
ÿ Et

kT

�
�33�

and, as pointed out by Chen et al. (1981), this looks

like a mixture of ®rst- and second-order kinetics.
Speci®cally, if h<< n, the equation reduces to the

second-order form, while for h>> n the equation

reduces to the ®rst-order form. For this reason this

was termed ``mixed-order'' kinetics by Chen et al.

(1981). The solution of [33] is

ITL �

s 0h2a expf�hs 0=b�
�T
T0

expfÿEt=kyg dyg expfÿEt=kT g"
expf�hs 0=b�

�T
T0

expfÿEt=kyg dyg ÿ a

#2

�34�

where a = n0/(n0+h).

From the foregoing treatments it is clear that the

size, shape, position (in temperature) and behavior

(as a function of trapped charge concentration and

heating rate) can be encapsulated in one of several

basic equations, depending upon the initial model

used. In each case, the TL peak is described by just

four basic parameters, i.e. n0, E, s and b (or a), and
the complex rate equations have been reduced to

either ®rst-order, second-order or mixed-order kin-

etics by the application of several assumptions.

Perhaps the two most fundamental of these assump-

tions are dnc/dt20 (i.e. quasiequilibrium (QE)) and

h2H (i.e. non-interactive kinetics). The validity of

the QE assumption will be dealt with in a later sec-

tion, but the non-interactive kinetics assumption

requires more discussion at this point.

2.4.2. Interactive kinetics. The most general way

of writing the rate equations to describe the ¯ow of

electrons into and out of the conduction band for a

system of multiple traps and multiple recombination

centers was given in [1]. For the case of a set of dis-

crete electron traps of index i = 1 to u and a set of

hole traps (recombination centers) of index j = 1 to

v we may rewrite the complete set of rate equations

as follows.

For i= 1 to u

dni
dt
� ÿnisi exp

�
ÿ Eti

kT

�
� nc�Ni ÿ ni �Ani �35�

For j= 1 to v

dmj

dt
� ÿncmjAmnj �36�

where Ani=vnsni and Amnj=vnsmnj.

The time rate of change of the free electron con-

centrations may be written

dnc
dt
�
Xu
i�1

nisi exp

�
ÿ Eti

kT

�

ÿ nc

�Xv
j�1

mjAmnj �
Xu
i�1

ÿ
Ni ÿ ni

�
Ani

�
�37�

and since only the thermal release of trapped elec-

trons is considered we still have dnv/dt= 0.
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To analyze this model one can proceed in several

ways. Levy (1985, 1991) retains the quasiequili-

brium approximation and develops the equivalent

of the ``General One-Trap'' equation for this more

complex case, i.e.

ITL �
Xv
j�1

E
mjAmnj

R�U
�38�

where

E �
Xu
i�1

nisi exp

�
ÿ Eti

kT

�
�39�

R �
Xv
j�1

mjAmnj �40�

and

U �
Xu
i�1
�Ni ÿ ni �Ani �41�

In writing [38] we have assumed that all electron±

hole recombination processes are radiative and con-

tribute to the TL signal. If this is not so, then only

a subset of the recombination terms would be used.

Furthermore, the equation also assumes that all

emitted photons are detected.

Bull et al. (1986) numerically solved the rate

equations for a series of electron traps and recombi-

nation centers, using u = 3 and v = 1. They showed

that when recombination dominates, the ``interac-

tive'' glow curve can be well represented as the sum

of ®rst-order curves. This is to be expected since, if

retrapping is slow, little interaction (i.e. trapping
into other traps) will occur compared to recombina-

tion. For the case where recombination and retrap-

ping are equally strong, however, the ``interactive''

glow curve is signi®cantly di�erent from that

obtained from a sum of second-order components.

The discussions of the foregoing sections have
assumed that the trap depths associated with the

localized states are single-valued in energy. While

this may be expected to be true for high quality

single crystal materials, one can expect that in

highly defective or, especially, amorphous or vitr-

eous materials, the trap depths associated with par-

ticular defects will be spread over a range of values

rather than being uniquely de®ned. In these latter

materials the structure of the lattice surrounding
the defect giving rise to the TL signal may exhibit

random variations in the nearest neighbor bond

angles and bond lengths. The result is that the acti-

vation energies (trap depths) tend to be distributed,

rather than discrete. For amorphous materials it is

no longer possible to talk about the forbidden

energy gap that one normally associates with crys-

talline materials. Instead one refers to the ``mobility

gap'' within which there can exist a ®nite density of
states localized near the Fermi level (Mott and

Davies, 1979). Given the variety of lattice ¯uctu-

ations that one might expect in highly defective or

amorphous materials, several kinds of energy distri-

bution can be used to describe these localized

states.

2.4.3. The SchoÈn±Klasens model. The entire dis-

cussion so far has been based on the consideration

of charge release from electron traps only. In this

context we wrote in [10] that dnv/dt= 0, and since

that point we have ignored hole transitions, stating

only that the equations developed for the release of

trapped electrons ± if the trapped holes are stable ±

are identical to those for the release of trapped

holes ± if the trapped electrons are stable. However,

what we have not considered is that both electrons

and holes may be released from their traps at the

same time, in the same temperature interval. Even

this is not necessarily a di�culty; we can still treat

the TL signals caused by hole and electron traps in

the same way as we would treat multiple electron

traps, or multiple hole traps. The di�culty presents

itself when (say) the holes are being thermally

released from the same centers as are acting as

recombination sites for the thermally released elec-

trons, and vice versa. These situations are summar-

ized in Fig. 4. The situations depicted in Fig. 4(a)±

(c) can each be treated using the same concepts that

have been discussed so far. In (d), however, we see

that the release of trapped holes removes recombi-

nation centers for electrons, and vice versa. This

situation was ®rst discussed by SchoÈ n (1942) and is

the same model later used by Klasens (1946) to

explain thermal quenching of luminescence in sul-

®de phosphors. The important point about this situ-

ation is that [16], i.e.

ITL � ÿdm

dt

is no longer valid, since holes are being removed

from the recombination site by pathways other than

recombination (Fillard et al., 1978). Furthermore,

since the luminescence intensity is governed by the

rate of recombination, which in turn is dependent

upon the concentration m, then any process which

results in a decrease in m will lead to a quenching

of the luminescence. Hence, the thermal release of

trapped holes from the recombination site will lead

to thermal quenching of the luminescence signal.

Although a process of the SchoÈ n±Klasens type is

not the only possible cause of a breakdown of [16],

or of thermal quenching, the common observation

of both phenomena in TL materials makes it im-

portant to examine this process in some detail.

Referring to Fig. 4(d) we may write a set of rate

equations describing the charge carrier transitions

between the energy levels during thermal excitation.

Simplifying the diagram to just one electron trap

and one hole trap, and adding retrapping transitions

of the freed carriers back into their respective traps,
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allows us to write the following complete set of

equations in which we retain the earlier de®nitions:

dnc
dt
� npn ÿ nc�N ÿ n�An ÿ ncmAmn �42�

dnv
dt
� mpp ÿ nv�M ÿm�Ap ÿ nvnAnp �43�

dn

dt
� nc�N ÿ n�An ÿ nvnAnp ÿ npn �44�

and

dm

dt
� nv�M ÿm�Ap ÿ ncmAmn ÿmpp �45�

where Ap=vpsp and Anp=vpsnp. Here, vp is the free

hole thermal velocity, and sp and snp are the hole

trapping cross-section and the hole±electron recom-

bination cross-section, respectively. M is the total

concentration of available hole traps.

[42]±[45] are the rate equations describing the

tra�c of charge between the two energy levels. In

order to de®ne the TL intensity we must stipulate

which of the two recombination transitions is radia-

tive. In the most general case, we may consider

both to be radiative, and, with the assumption that

all the photons are detected with equal e�ciency,

the total TL intensity is then given by

ITL � ITLn � ITLp � ncmAmn � nvnAnp �46�

Of course, it is possible that only one of these

transitions may be radiative, or, if both are radia-

tive, the emission wavelengths may be di�erent such

that only one is detected. The important point,

however, is that, from [44] and [45], the recombina-

Fig. 4. (a) Multiple electron traps. (b) Multiple hole traps. (c) Multiple electron and hole traps. (d)
SchoÈ n±Klasens kinetics.
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tion center concentrations (m and/or n) are chan-

ging by mechanisms other than the process of

recombination.

BraÈ unlich and Scharmann (1966) considered

these equations and introduced several simplifying

assumptions in order to solve them. They de®ned

the parameters

R � An=Amn �47�
and

R* � Ap=Anp �48�

each of which expresses the ratio of the probabil-

ities of retrapping, compared to recombination.

Four cases can thus be de®ned: (i) R<< 1 and

R*<< 1; (ii) R>> 1 and R*<< 1; (iii) R<< 1 and

R*>> 1, and (iv) R>> 1 and R*>> 1. For each of

these cases the assumptions of n<<N and m<<M

are also made, while the neutrality condition

nc � n � nv �m �49�
holds throughout. Finally, the QE assumption is

made for both electrons and holes (i.e. dnc/dt, dnv/

dt<< 1). Using these assumptions and conditions,

for case (i) we may write npn1ncmAmn and nv1pp/

Anp. Thus

dn

dt
1ÿ npn ÿ nvnAnp1ÿ � pn � pp�n �50�

Writing

pn � sn exp

�
ÿ Etn

kT

�
�51�

and

pp � sp exp

�
ÿ Etp

kT

�
�52�

we have

n1n0 exp

"
ÿ 1

b

�T
T0

�
sn exp

�
ÿ Etn

ky

�
� sp

exp

�
ÿ Etp

ky

��
dy

#
�53�

Thus we have, from [46]

ITL1n0�sn expfÿEtn=kT g � spexpfÿEtp=kT g��

exp

"
ÿ �1=b�

�T
T0

�sn expfÿEtn=kyg � sp

expfÿEtp=kyg� dy
#

�54�

which is similar to the Randall±Wilkins equation

for slow-retrapping, and becomes identical to this

equation if we ignore either the transitions to the

conduction band (i.e. pn10) or to the valence band

(i.e. pp10). Furthermore, if we allow only the free

electron 4 trapped hole transition to be radiative,

we should ignore the second term in the ®rst

bracket. Conversely, if we allow only the free

hole 4 trapped electron transition to be radiative,

we should ignore the ®rst term in the ®rst bracket.

For case (ii) we may write nc1npn/AnN and

nv1pp/Anp. Thus

n1m1n0 exp

"
ÿ 1

b

�T
T0

sp exp

�
ÿ Etp

ky

�
dy

#
�55�

The TL intensity is thus

ITL � �n20R=N �sn expfÿEtn=kT g

exp

"
ÿ �2=b�

�T
T0

sp expfÿEtp=kyg dy
#
� n0sp

expfÿEtp=kT g

exp

"
ÿ �1=b�

�T
T0

sp expfÿEtp=kyg dy
#

�56�

which is reminiscent of the Randall±Wilkins form.

It becomes this equation exactly if we only consider

free hole 4 trapped electron transitions, or if we

ignore the thermal release of trapped electrons (i.e.

pn=0).

Case (iii) is symmetrical with case (ii), and yields

the equivalent equation

ITL �m0sn expfÿEtn=kT g

exp

"
ÿ �1=b�

�T
T0

sn expfÿEtn=kyg dy
#

� �m2
0R

*=M �sp expfÿEtp=kT g

exp

"
ÿ �2=b�

�T
T0

sn expfÿEtn=kyg dy
#
�57�

which also reduces exactly to the Randall±Wilkins

equation if we consider only free electron

4 trapped hole transitions to be radiative, or if we

ignore the thermal release of holes (i.e. pp=0).

For the remaining case (case (iv)) we have

nc1npn/AnN and

dn

dt
1ÿ pnRn

2

N
ÿ ppR

*m2

M
�58�

which gives

ITL �

�R=N �sn expfÿEtn=kT g � �R*=M �sp
expfÿEtp=kT g"�

1

n0

�
�
�
1

b

��T
T0

��
R

N

�
sn

exp

�
ÿ Etn

ky

�
�
�
R*

M

�
sp

exp

�
ÿ Etp

ky

��
dy

#2

�59�
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This is similar to the Garlick±Gibson second-
order equation and becomes identical to it if we

neglect all transitions to the valence band (i.e.
pp=0). Note, however, that the Garlick±Gibson
equation was obtained with R= 1.

Later analyses of the SchoÈ n±Klasens model
(McKeever et al., 1985) solved [42]±[45] numerically
without any of the assumptions of BraÈ unlich and

Scharmann (1966) and reached the same con-
clusions ± namely that the TL glow curve for this
more complicated kinetic model retains the simple

Randall±Wilkins or Garlick±Gibson shape, depend-
ing upon the chosen values of the parameters. The
di�culty arises in the interpretation of the Et and s
values used in the Randall±Wilkins or Garlick±

Gibson equations in order to obtain the ®t.
McKeever et al. (1985) concluded that the Et value
used in the simple equations is equal to the smaller

of Etn and Etp when both electron±hole (e±h) and
hole±electron (h±e) recombination transitions are
radiative. If e±h transitions only are radiative, then

Et2Etn, if Etn<Etp, or is somewhere between Etn

and Etp, if Etn>Etp. The opposite situation is true
for h±e radiative transitions.

2.5. An examination of the quasiequilibrium approxi-

mation

All of the preceding model analyses have been

centered on the use of the very important quasie-
quilibrium (QE) approximation, namely that the
free carrier density remains quasistationary during

the process of TL production. This assumption
allows the decoupling of the rate equations and
the development of all of the analytical solutions
described above. Maxia (1978, 1981) examined the

concept of QE by considering the TL emission to
be the result of two non-equilibrium phase trans-
formations ± namely, the release of an electron

into the conduction band, and the recombination
of the freed electron with a trapped hole. By
assuming a linear relationship between the rate of

entropy production and the transformation vel-
ocities for each of these reactions, Maxia applied
Gibbs' principle of minimum entropy production
to arrive at the conclusion that the free carrier

concentrations do indeed remain approximately
steady throughout the TL process. However, the
treatment is unsatisfactory in the sense that the

minimum entropy production principle is in fact
just another way of imposing the limitation of
quasi-steady-state on the free carrier concen-

trations and begs the question of whether the
principle is in fact valid during TL processes.
Furthermore, the assumption of a linear relation-

ship between the entropy production rate and the
transformation velocities is also questionable, and
is in fact invalid at the start of the reaction, only
becoming reliable towards the end of the process

(i.e. when the concentrations have been restored

to their equilibrium values anyway).

Other e�orts to test the validity of the quasiequi-

librium approximation have centered on the use of

numerical solutions to the rate equations for the

various models. Shenker and Chen (1972) conclude

that the simpli®ed expressions for TL arrived at

using the QE approximation are valid solutions

only if |dnc/dt| < 10ÿ3|dn/dt|. They further show

that, for the parameter sets examined by them, the

ratio of |dnc/dt| to |dn/dt| varies from 5�10ÿ5 to

1.0, with the higher values of the ratio appearing

toward the end of the peak ± in opposition to the

conclusions of the minimum entropy production

principle. An extensive study by Kelly et al. (1971)

supports the conclusions of Shenker and Chen, and

concludes that the QE approximation is valid for

only a part of the range of physically plausible par-

ameters. Exact solutions to the rate equations lead

to a wider variety of peak shapes, intensities and

positions than can be predicted from use of the ap-

proximate solutions. Thus, application of the sim-

pli®ed solutions is potentially undermined by

uncertainty surrounding the QE approximation.

Similar pessimism also surrounds the application of

the kinetic-order assumptions, since these too rely

upon the assumption of inequalities between the

various rate processes. Furthermore, a degree of

``degeneracy'' was found, in that di�erent sets of

parameters inserted into the model were found to

yield similar TL curves. In fact Kelly et al. (1971)

arrived at the altogether pessimistic conclusion that

application of simpli®ed phenomenological sol-

utions to real systems is of limited value and is

almost valueless at quantifying the trapping par-

ameters (Et, s, etc.; see also BraÈ unlich (1979)).

An entirely di�erent approach was adopted by

Lewandowski and colleagues (Lewandowski and

McKeever, 1991; Lewandowski et al., 1994). Here

any assumptions regarding QE and kinetic order

(KO) are abandoned and they are replaced by two

physically meaningful functions ± the Q- and P-

functions, respectively. Instead of the QE assump-

tion ([15]), we have the equality

ÿdnc
dt
� q

dm

dt
�60�

or

Q
dm

dt
� dn

dt
�61�

where Q= q+ 1. Both Q and q are functionals.

As such they depend on the history of the system

and are de®ned so that [60] and [61] are exactly true

at all temperatures. The value of Q is a measure of

the degree to which QE is maintained, as a function

of T. QE means that q10, or Q11.

The distinction between ®rst- and second-order

kinetics was determined by the ratio (Nÿ n)sn/
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msnm as described above. Thus, a KO function

P(T) is de®ned by the ratio (Nÿ n)sn/msmn:

P�T � � �N ÿ n�sn
msmn

�62�

where we also emphasize the fact that the value of

this ratio is a function of temperature. Slow-retrap-

ping (®rst-order kinetics) is then given by P<< 1,

while fast-retrapping is given by P>> 1. The main

advantage of de®ning the Q- and P-functions is to

separate the concepts of QE and KO and to allow

the degree of adherence to these restrictions to vary

with temperature. All analyses so far assume QE

before introducing approximations regarding the

KO. Furthermore, they require that the approxi-

mations be ®xed for all temperatures.

If we de®ne

Rrecom � rate of recombination

� ÿdm

dt
� ncvnsmnm �63�

Rex � rate of �thermal � excitation

� nsn exp

�
ÿ Et

kT

�
�64�

and

Rrecap � rate of recapture

� nc�N ÿ n�vnsn �65�
then we may write Q and P in terms of these reac-

tion rates:

Q � 1

Rrecom
�Rex ÿ Rrecap� �66�

and

P � Rrecap

Rrecom
�67�

We also note that

Q� P � Rex

Rrecom
�68�

and

Q

P
� Rex

Rrecap
ÿ 1 �69�

The Q- and P-functions are illustrated graphically

in Fig. 5. Note that Q varies from >>1 at low T to

00 at high T. Note also that Q11 at the peak

maximum. (In fact, Q = 1 exactly at the maximum

of the thermally stimulated conductivity, TSC peak;

note that TSC and TL maxima do not always co-

incide.) Finally we note that Q is independent of

the level of trap ®lling, but depends only upon tem-

perature. P, on the other hand, increases as we pro-

gress through the peak, owing to the increased

probability of retrapping as the trap empties. For

the parameters chosen, however, P<< 1 at all T.

Using these functions it is now possible to make

some general statements regarding the various

assumptions which are used when arriving at sim-

pli®ed solutions, each of which assume Q11.

(a) Slow-retrapping: This requires that Q11 and

P<< 1. This in turn requires that Rrecom>>Rrecap

and Rex>>Rrecap. This constitutes a legitimate, self-

consistent set of inequalities. Such relationships

may exist over wide temperature ranges. It is not

obvious from this consideration alone if the pessi-

mism of Kelly et al. (1971) is valid for this set of

assumptions.

(b) Fast-retrapping: This requires that Q11 and

P>> 1. In other words, we require Rex1Rrecap over

all T. If this were strictly true (i.e. Rex=Rrecap) then

the trap would not empty. Furthermore, from [66],

in order to have Q11, we must have a very small

value for Rrecom, suggesting a poor likelihood of ob-

serving a TL signal in the ®rst place, and the TSC

signal which accompanies the TL peak would not

be in the form of a peak at all, but would form a

Fig. 5. Curve shapes for (a) TL, (b) TSC (actually, nc), (c)
Q and (d) P. In the ®gure, f0 is the degree of trap ®lling,
and values for f0 range from 0.005 to 1.0. The curves have
been obtained from numerical solution of the rate
equations, with parameters chosen such that P<< 1. Note
that even though P varies dramatically with both T and
f0, the absolute value of P is always <<1. (After

Lewandowski and McKeever (1991).)
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step with a long, slowly decaying tail (Lewandowski

et al., 1994). Thus, in order to observe both TL and

TSC peaks it appears unlikely that one would have

simultaneously both QE and fast-retrapping.

Similar conclusions can be reached if P = 1

regarding the potential inconsistency of this restric-

tion and QE (Lewandowski et al., 1994).

This somewhat radical conclusion is supported by

the analysis of Kelly et al. (1971). Examination of

the curves produced by these authors from numeri-

cal solutions of the rate equations describing the

simple model for TL, and comparison with those

curves produced using the simpli®ed ®rst-order or

second-order equations, show that in almost all

cases where ®rst-order kinetics do not apply there

are gross discrepancies between the precise numeri-

cal solutions and the approximate analytical sol-

utions. However, much improved agreement is

observed when slow-retrapping conditions prevail.

A question arises concerning the generality of the

above results, however. Numerical solutions can

only be obtained after selection of particular par-

ameter sets (i.e. speci®c values for Et, s, sn, smn, N,

n0, m0, etc.) and since there is an in®nite number of

such sets to choose from, one inevitably questions

the practice of arriving at general statements from a

limited number of calculations. Lewandowski and

colleagues (McKeever et al., 1993; Lewandowski et

al., 1994) attempted to generalize the discussion by

solving the rate equations without any assumption

regarding QE and KO. They started with a model

of one trap, one recombination center and one

deep, thermally disconnected trap. From the rate

equations ([9]±[12]), with the addition of [27], one

arrives at

n � n0 exp

"
ÿ 1

b

�T
T0

�
Q

Q� P

�
s exp

�
ÿ Et

ky

�
dy

#
�70�

which gives for the TL intensity

ITL � n0

�
s

Q� P

�
exp

�
ÿ Et

kT

�

exp

"
ÿ 1

b

�T
T0

�
Q

Q� P

�
s exp

�
ÿ Et

ky

�
dy

#
�71�

This is the perfectly general equation for TL ±

within the con®nes of the chosen model ± since it

assumes neither QE nor a particular KO. It is easy

to see how it reverts to the Randall±Wilkins

equation when we impose Q11 and P<< 1.

However, it is not obvious how the Garlick±Gibson

form may be obtained if Q11 and P>> 1. Despite

its generality, however, [71] is of little practical use

since analytical expressions for Q and P, in terms

of macroscopic, measurable parameters, do not

exist. These functions are de®ned only in terms of

microscopic parameters, the values and temperature

dependencies of which are unknown. What is

required is a truly analytical solution to the rate

equations in which values for Q and P are not pre-

determined, and which can be expressed purely in

terms of measurable parameters. Unfortunately, at

this time, this has not been achieved for the per-

fectly general case ± but it has been performed for

the special case of slow-retrapping, i.e. P<< 1

(McKeever et al., 1993; Lewandowski et al., 1994).

To see how this is done, we ®rst of all set P<< 1 in

[71]. Since for most temperatures Q>>P, we may

rewrite [71] as

ITL � n0s

Q
exp

�
ÿ Et

kT

�
exp

"
ÿ s

b

�T
T0

exp

�
ÿ Et

ky

�
dy

#
�72�

If we represent the usual Randall±Wilkins

equation, [20], as I QE
TL , then we see that

I QE
TL � QITL �73�

With the de®nition of the free carrier recombina-

tion lifetime tn as the lifetime of a free electron

before it undergoes recombination, given by

tÿ1n � mAmn � �n� h�Amn �74�

Lewandowski et al. (1994) were able to show that

ITL � �n0=btn� expfÿ�T=btn�g
�T
T0

expf�y=btn�gs expfÿEt=kyg

� exp

"
ÿ �1=b�

�y
T0

s exp

�
ÿ Et

kO

�
dO

#
dy �75�

The approximations used in the development of

this equation are (i) the model (one trap, one cen-

ter, one deep trap), (ii) P<<Q and (iii) tn=constant

(i.e. h>> n). The last restriction can be removed by

placing all the tn terms inside the integrals, but the

form of the temperature function would need to be

known. P<<Q is an entirely reasonable assumption

for slow-retrapping, and the model will always be

an approximation, no matter which model is

adopted.

Although the above equation is complex, it rep-

resents the true shape of a slow-retrapping TL peak

more accurately than does the simple Randall±

Wilkins form. Lewandowski et al. (1994) tested the

validity of [75] by comparing TL curve shapes pro-

duced using it, with those produced using the

Randall±Wilkins equation, and with those produced
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using exact numerical solutions of the rate
equations. For certain parameter sets, all three sol-

utions were found to agree, while for other sets
some slight discrepancies exist between the exact
solutions and the Randall±Wilkins solutions. In all

cases, however, [75] gives the same solution as the
numerical analysis. However, it is interesting to
note that ®tting the RW equation to the numerical

data always results in an excellent ®t (Lewandowski
et al., 1994), with associated errors in Et only of the
order of 1±2% in most cases. Thus, the reservations

of Kelly et al. (1971) for the case of slow-retrapping
do not appear to be serious.
The above analysis is for slow-retrapping pro-

cesses only (i.e. P<<Q). Equivalent expressions to

[75] for other situations (e.g. P1Q or P>>Q) have
not been developed, which is unfortunate since it is
here that one suspects the arguments expressed by

Kelly et al. may have greater validity. Furthermore,
generalization of the Q-function to the case of mul-
tiple traps and centers, with interactive kinetics and

multiple, overlapping TL peaks has not yet been
forthcoming.

2.6. Tunneling

In the models discussed so far, the recombination
of electrons from traps with holes in centers has
occurred via the conduction band. In this way sub-

stantial di�usion of the electron through the crystal
can occur with the recombination occurring
between distant trap±center pairs. However, if the

trap and the recombination center are spatially
close to each other, one must be aware of the possi-
bility that the trapped charge wavefunctions may

overlap such that tunneling can occur between the
centers. In this way we can have recombination
without any involvement of the delocalized bands.
Mechanisms of this type have been suggested for

several TL and phosphorescence processes in a var-
iety of materials (Delbecq et al., 1974; Visocekas et
al., 1976; Visocekas, 1979, 1985, 1988).

To describe tunneling phenomena we make use
of Fig. 6. Here we see the potential of the electron
in the trap as a function of distance from the posi-

tive charge center. At distance r1 the electron is at
the bottom of a potential well of depth E1. Charge
recombination occurs via tunneling through the po-

tential barrier and usually occurs between shallow
centers, since the shallower the trap the more delo-
calized is the wavefunction.
For a trap and recombination center separated

by a distance r, the probability per unit time for a
transition of the electron from the trap to the center
(i.e. the tunneling rate) is given by

P�r� � P0 expfÿr=ag � P0 expfÿarg �76�
where P0 is the frequency factor, a is a constant
(roughly one-half of the Bohr radius of the electron

trap). The parameter a is given by

a �
2

������������������
�2m*E1�

q
�h

�77�

Here m* is the electron e�ective mass, �h = h/2p
where h is Planck's constant.

For randomly distributed traps and recombina-

tion sites (Thomas et al., 1965) the probability that

the separation between them is equal to r is

S�r� � 4pn0r2 exp
�ÿ 4pn0r3=3

	 �78�

where n0=m0 is the number of electrons in traps or

holes in recombination centers at time t= 0. If

n0r
3<< 1, we can ignore separations that are not

nearest neighbor and write that the concentration

of nearest-neighbor pairs having a separation

between r and r+ Dr is

dn�r� � n204pr
2dr �79�

Thus, this concentration of trap±center pairs will

decay with rate P(r) given in [76]. From this we

have the number of pairs surviving after time t

dn�r,t� � n20 expfÿP�r�tg4pr2 dr �80�

This describes a fairly sharp step after long times

at a distance rc, de®ned by P(rc) = 1.

Among the consequences of tunneling between

traps and centers is that the number of trapped

electrons diminishes with time after the irradiation

(perturbation) of the samples has ceased. This gives

rise to a ``fading'' of the subsequent TL signal, i.e.

the longer the time interval between irradiation and

heating to record the TL, the weaker the remaining

TL signal. One should note that this type of fading

is athermal, i.e. it is independent of temperature. It

depends primarily upon the concentrations of

trapped electrons and holes (n0 and m0) which in

turn depends upon the amount of radiation

absorbed by the sample. However, thermally-

Fig. 6. Schematic diagram of the potential barrier used for
the description of tunneling.
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assisted tunneling can also occur if there exists a
state within the potential well at an energy E2

(Fig. 6). Here the barrier width is reduced to r2 and
so the probability of tunneling recombination is
enhanced.

As discussed by Templer (1986a), a distribution
of r values with the same E1 values will give rise to
a distribution of E0=Et values (Fig. 6). Fading of

the TL signal will now occur from the highest Et

(=E0) ®rst, since these correspond to the lowest
values of r.

2.7. Localized transitions

Another process by which recombination can
take place without a transition of the electron into

the conduction band is depicted in Fig. 7. Here the
electron is thermally stimulated into an excited state
from which a transition into the recombination cen-

ter is allowed. Halperin and Braner (1960) gave the
following rate equations to describe this process:

ITL � ÿ dm

dt
� nemAme �81�

dn

dt
� sne ÿ s exp

�
ÿ Ee

kT

�
�82�

and

dne
dt
� sn exp

�
ÿ Ee

kT

�
ÿ ne�mAme ÿ s� �83�

Here, ne is the concentration of electrons in the

excited state, Ame is the transition probability for
the recombination of an electron from the excited
state into the recombination center, and Ee is the

energy di�erence between the trap and the excited
state.
In the above equations sne appears rather than

the usual term of the form ne(Nÿ n)Ae which might
have been expected (where here we de®ne Ae to be
the probability of retrapping from the excited state

into the ground state). However, since the excited

state is not delocalized, and the excited state elec-

trons do not move through the lattice, the total

number of available empty ground states, (Nÿ n),

is irrelevant since retrapping can only occur into
the ground state from which the electron was

excited. Detailed balance arguments (Halperin and

Braner, 1960) reveal that the rate of recapture is, in

fact, given by s.

By similar argument we see that, since the excited

state is localized, a transition into the recombina-

tion site can only occur if the trap and recombina-

tion center are spatially localized as a nearest-

neighbor pair ± analogous to the above discussion

regarding tunneling. To account for this Chen

(1976) replaced the term mAme in the above

equations with a constant probability n (in units of
sÿ1). With the additional assumption that the popu-

lation of the excited states is always considerably

less than that of the ground state (i.e.

m= n + ne1n) we have

ITL � ÿdn

dt
� ÿ dm

dt
� ne� �84�

where quasiequilibrium (dne/dt10) is implied. The

above set of equations produces

ITL �
�
�s

�� s

�
m exp

�
ÿ Ee

kT

�
� sm exp

�
ÿ Ee

kT

�
�85�

Upon integration, with the assumption that

n>>s, [85] produces an expression of the same form

as the Randall±Wilkins ®rst-order TL equation

with a frequency factor �s1s. However, if the
recombination rate is very low (n<< s) then we have

ITL1m� exp

�
ÿ Ee

kT

�
�86�

and integration of this equation produces an ex-

pression which is also of the same form as the

Randall±Wilkins equation, but with n replacing s.

Thus we arrive at the conclusion that localized tran-

sitions of the type described should always be gov-

erned by ®rst-order kinetics. Note that the value of

n can be small, such that the typical TL peak seen
in this case is very broad. Analysis of the peak

using any of the traditional methods will produce a

small value for the frequency factor (perhaps as low

as (say) 105 sÿ1, compared to the more usual 1012±

1014 sÿ1).
It should be recognized that the assumption of

only nearest-neighbor transitions during recombina-

tion is itself an approximation which may not be

entirely correct. Overlap of wavefunctions between,

for example, next-nearest-neighbors, may also be

possible, with a correspondingly reduced prob-
ability, n. A curious prediction arising from this

consideration is that under such circumstances we

Fig. 7. Localized transition scheme for recombination,
involving n trapped electrons (per unit volume), m trapped

holes and ne electrons in an excited state.
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may expect to have a second (and possibly third,
etc.) TL peak at higher temperatures.

We should also not forget that the above descrip-
tion uses quasiequilibrium (dne/dt10) and thus the
questions regarding the compatibility of this ap-

proximation with the assumption of fast-retrapping
(n<<s in this case) must be raised again.
During heating in a TL experiment, for the fast-

retrapping case, the combination of a small fre-
quency factor and a value of Ee<Et (Fig. 7) means
that the lifetime of the electrons in the trap can be

much reduced over that expected from a trap with
a depth below the conduction band of Et. For
example, consider a trap with Et=1.0 eV and
s = 1012 sÿ1, but with Ee=0.5 eV and n = 105 sÿ1.
Using the standard TL equations and assuming
recombination via the conduction band, i.e. using
the above values for Et and s, one can predict that

a TL peak should appear at approximately 1208C
(for a heating rate of 1.08C sÿ1). However, if one
considers recombination via the excited state, i.e.

using Ee and n, one would predict a TL peak at
01608C. Thus, recombination via the conduction
band will occur ®rst when the sample is heated

at this rate. However, the lifetime of the elec-
trons in the trap at room temperature, using
t = pÿ1=sÿ1exp{E/kT} is approximately 17 h if we
use E = Et=1.0 eV and s= 1012 sÿ1, but only

00.5 h if we use E = Ee=0.5 eV and s= 105 sÿ1.
Thus the electrons leak away from the trap via the
excited state and, as a result, the TL peak at 1208C
will be smaller the longer one waits between ir-
radiation and TL readout. The key issue here is the
heating rate. The fact that recombination via the

excited state can be more likely than via the con-
duction band if the sample is held at a constant
temperature, but less likely if heated at a few
degrees per second is related to the extreme depen-

dence of the excited state recombination route on
heating rate. This in turn is a result of the very low
value for the frequency factor under conditions of

fast-retrapping. Templer (1986a,b) used this to dis-
cuss the ``anomalous fading'' characteristics of sev-
eral materials.

2.8. Growth of TL versus dose

An essential ingredient in any dating procedure is
the production of a curve of TL (or OSL) versus

dose (the ``growth curve''). From such data cali-
bration parameters can be established which enable
the measured natural luminescence signal to be con-

verted into an equivalent dose and, from this, into
a date. The ideal signal-versus-dose curve would, of
course, be linear over the whole dose range of inter-

est. Furthermore, one would hope for a curve that
was single-valued such that the same luminescence
signal was measured for the same absorbed dose,
independent of the history of the sample and of the

number of measurements made. Regrettably, such

an ideal situation is rarely the case in practice. The

norm is to have a non-linear growth curve with,

quite often, a faster than linear dependence being

observed (i.e. superlinear, or supralinear, growth)

and alterations in the sensitivity of the sample

occurring as a result of radiation exposure and/or

thermal or optical readout. An example of TL from

pottery quartz is depicted in Fig. 8. It is seen that

the dose dependence is more than linear up to

0250 rad and linear at higher doses. One of the

major challenges of TL and OSL dating is to both

account for and correct for these e�ects. In this

context, an understanding of the causes of the

e�ects aids greatly in our con®dence of the adopted

experimental procedures. To this end, a discussion

of the models proposed to explain non-linearity and

sensitization is necessary.

Both TL and OSL are two-stage processes, in

that they involve an ``excitation stage'' and a ``read-

out stage''. Models have been proposed to explain

non-linear growth of luminescence which involve

mechanisms occurring in each of these stages separ-

ately, or both together. In the following sections we

brie¯y describe the e�ects in each stage, and then

unify them to describe the overall process. We

focus our attention in this review on competition

models since, in recent years, competition has

emerged to be the dominant process believed to

contribute to most of the observed non-linear and

sensitization e�ects.

2.8.1. Competition during excitation. The model

usually adopted to explain growth curve superli-

nearity is shown in Fig. 9. We will con®ne our dis-

cussion to TL, although, in principle, the comments

apply just as well to OSL. The model consists of an

active trap (level 1) responsible for the TL signal

(concentration N1, occupancy n1), a deep, compet-

ing trap (concentration N2, occupancy n2), and a

radiative recombination center (concentration M,

occupancy m). The allowed transitions during exci-

tation (i.e. irradiation of the sample) are shown in

Fig. 8. Dose dependence of the TL from pottery quartz.
The dose dependence is seen to be more than linear at low
doses, and becomes linear at higher doses. (After Aitken

(1974).)
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the ®gure. This model was initially proposed by

Suntharalingham and Cameron (1967), with later
modi®cations by Aitken et al. (1968) and by Chen
and Bowman (1978). To begin with, we shall give

an intuitive explanation for the superlinear ®lling of
the active trap under these circumstances. Suppose
that the concentration N2 of the competitor is lower

than that of the active trap N1, but the trapping
probability A2 of the competitor is larger than that
of the active trap A1. Qualitatively, at low doses,
the excitation ®lls both traps linearly. At a certain

dose, however, the competing trap N2 saturates,
hence more electrons are made available to the trap
of interest N1. This causes a faster, though linear,

®lling of this trap. The transition region from one
linear range to the other would, however, appear to
be superlinear since this transition obviously occurs

continuously. As long as the measured TL is
expected to depend mainly on the occupancy n1, the
TL dose dependence is expected to be superlinear.

We shall consider the case of electrons being
raised by the irradiation from the valence into the
conduction band, and being trapped in levels 1 and

2. As a ®rst step we neglect the possibility of band-
to-band or band-to-center recombination during ex-
citation (i.e. assume that they are less probable than

trapping; note that this is not a necessary condition
and computations show that the results extend to
ranges where band-to-center recombination is more

important). The equations governing the electron
transitions are:

dn1=dt � A1�N1 ÿ n1�nc �87�

dn2=dt � A2�N2 ÿ n2�nc �88�

dnc=dt � X ÿ dn1=dtÿ dn2=dt �89�
where nc is the concentration of electrons in the
conduction band, A1 and A2 are the transition
probabilities (m3sÿ1) into levels 1 and 2 respectively,

and X is the rate of creation of electron±hole pairs

by the irradiation. It is implicitly assumed here that

the excitation of the whole sample is homogeneous,

as is the case with irradiation by X-rays, g-rays, etc.
Also, the above assumptions lead to the conclusion
that all the created holes are accumulated in the

recombination center m. De®ning the dose

D � � td0 Xdt � Xtd, where td is the duration of the

irradiation, and using the usual quasiequilibrium

assumption, it is possible to determine the con-

ditions under which the active trap population n1
will grow superlinearly with dose. This occurs when

d2D=dn21 > 0, which is achieved when A2>A1.

Explicitly, this condition means that the trapping

probability in the competitor is larger than the trap-

ping probability in the active trap. Under these

same conditions d2D=dn22 < 0, meaning that level 2

grows sublinearly, i.e. towards saturation. If the
trapping probabilities are equal then both n1 and n2
grow linearly with D. An example of a superlinear

dose dependence of n1 as numerically calculated by

Chen and Bowman (1978) is shown in curves (a)

and (b) of Fig. 10.

Fig. 9. Energy levels involved in the competition during
excitation. The various parameters are de®ned in the text.

Fig. 10. The linear±superlinear±saturation dose depen-
dence as numerically calculated from the competition
during excitation model, on a linear scale (a) and on
a log±log scale (b). The parameters used
were N1=N2=1023 mÿ3, A1=A2=10ÿ22 m3sÿ1 and
A2=3� 10ÿ21 mÿ3sÿ1. (After Chen and Bowman (1978).)
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An important point to note in these consider-

ations is that the dose dependence being discussed

is that of the trapped charge concentration n1. It is

not the thermoluminescence intensity ITL, which is

the main focus of our discussion. In order to deter-

mine how the TL intensity would behave, it is

necessary to consider what happens to the trapped

charge concentrations during the readout phase of

the TL process ± a stage in which the same compe-

tition processes are still active.

2.8.2. Competition during readout. We will start

by giving an intuitive explanation to the superli-

nearity which can result from competition during

readout (i.e. during heating). Let us assume a situ-

ation in which the trap and center directly involved

in the creation of a TL peak are linearly dependent

on the dose, at least at low doses. At a very super-

®cial evaluation of the situation one may think that

since two entities, the trapping state and the recom-

bination center are involved, with initial ®llings of

n0 and m0 respectively following the excitation, then

the emerging TL should be dependent on the pro-

duct n0m0. If we are dealing with a dose range in

which both n0 and m0 are linearly dependent on the

dose, one would expect a quadratic dependence on

the dose. As is well known, however, a common

dependence of TL on the dose is linear or nearly

linear, which suggests that the above explanation is

incorrect in many cases. In fact, under most circum-

stances, if S denotes the measured TL (be it the

area under the peak or the maximum intensity), we

expect to have SAmin(n0,m0) rather than

SAm0n0. The explanation for this is that the total

number of recombinations should be determined by

an integration over the TL intensity ITL(T) which

can be written also as ITL(t) for a certain heating

function T = T(t). As explained above, with the

appropriate choice of units, we have ITL(t) =ÿ dm/

dt. For the sake of the present discussion, let us

assume the existence of only one TL peak. We can

integrate over ITL(t) from an initial time t0 (which

we can set to zero) to in®nity, and get

m0 ÿm1 �
�1
0

�ÿdm=dt�dt �
�1
0

ITL�t�dt � S �90�

If m0<n0, the peak terminates because the center

(m) is exhausted, therefore m1=0 and thus

m0 �
�1
0

ITL�t�dt � S �91�

and the right-hand side is, in the appropriate units,

the area S under the glow peak. If, however,

m0>n0, the peak terminates because the trap (n) is

exhausted, thus we remain with m1=m0ÿ n0 holes

in the centers and therefore

S �
�1
0

ITL�t�dt � m0 ÿm1 � n0 �92�

Equations [91] and [92] can be summed up as

S � min�n0,m0� �93�

Thus, if n0AD and m0AD, we still have SAD,

which agrees with the behavior usually seen in the

experiments. As for the maximum intensity Im, it is

normally close to being proportional to the total

area S, and therefore, usually ImAD. This situ-

ation may change substantially in the presence of a

competitor.

Let us consider again the energy level scheme of

one kind of recombination center and two trapping

states, this time concentrating on the transitions

during heating, as shown in Fig. 11. Continuing the

intuitive, qualitative argument, we can slightly

change the statement that SAmin(n0,m0) by saying

that the area under the peak should be proportional

to the quantity n0 or m0 which expires ®rst. When

these two levels are the only active ones in existence

this should indeed be min(n0,m0), however, in the

presence of a strong competitor this may not be the

case anymore. We may very well have a situation in

which we start with n0>m0, but since during the

heating some of the electrons are trapped in the

competitor rather than recombining with holes in

the centers, the peak may terminate when n0 is

exhausted, whereas some holes still remained in the

center. Therefore, we have SA n0, where n0 is

assumed to depend linearly on the dose. In ad-

dition, if we consider the electrons in the conduc-

tion band during the heating, they will distribute so

that some recombine with trapped holes m and

others go into the competitor. Roughly speaking,

we can say that if the concentration of empty com-

petitors N2ÿn2 does not depend strongly on the in-

itial dose (i.e. if N2 is far from saturation, or

N2>> n2), then the larger the value of m, the more

recombinations into the center are expected.

Therefore, if m0 is proportional to the dose, this is

an additional dependence on the dose of the TL

Fig. 11. Energy levels involved in the competition during
heating (readout). The various parameters are de®ned in

the text.
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intensity, and therefore, under these circumstances,

SA n0m0 and thus, SAD2. As will be shown

below, if the competitor is in the range of an

approach to saturation, the dependence of the TL

intensity on the excitation dose may be even stron-

ger than D2.

This hand-waving argument for explaining the

superlinear dose dependence of TL under compe-

tition during heating has been given a more convin-

cing mathematical formulation by Kristianpoller et

al. (1974). With reference to Fig. 11, the equations

governing the processes occurring during heating

are

dn1=dt � ÿgn1 � A1nc�N1 ÿ n1� �94�

dn2=dt � A2�N2 ÿ n2�nc �95�

ITL � ÿdm=dt � Ammnc �96�

dm=dt � dn1=dt� dn2=dt� dnc=dt �97�

Kristianpoller et al. were able to demonstrate

that under the assumptions of quasiequilibrium the

dose dependence of the TL signal S can be written

S � m0 ÿm1 � �Am=A2�N2 ÿ n20��m0n10 �98�

Furthermore, if level 2 is far from saturation,

N2>> n20, we get

S � �Am=A2N2�m0n10 �99�
which yields a quadratic dose dependence, even if

both m0 and n10 are in their linear range. As pointed

out by Chen et al. (1988), if n20 in [98] is dose

dependent, the overall dose dependence of S can be

more than quadratic, which may be very signi®cant

in ranges where the competitor is coming close to

saturation. (Note that [98] is not valid when N2ÿn20
is close to zero, since one of the conditions leading

to this expression is n10>>N2ÿn20 (Kristianpoller et

al., 1974) which is clearly not possible when all the

competitors are nearly full.)

We can thus distinguish between two elements of

superlinear dependence of TL due to competition

during heating. When the competitor N2 is far from

saturation, we can expect a quadratic dependence

on the dose in agreement with [99] while still assum-

ing linear dependencies on the dose of the ®lling of

the recombination center and the active trap (level

1). In addition, in the range of approach to satur-

ation of the competitor, an extra element of superli-

nearity, which may be quite strong, may occur.

Kristianpoller et al. (1974) simulated this situation

by assuming the approach to saturation of n20 as

n20 � N2�1ÿ exp�ÿaD�� �100�
where a is a positive constant. In a numerically cal-

culated result, at low doses, S grows quadratically

with the dose up to a point where the approach to

saturation of the competitor becomes noticeable, at

which point the dose dependence function becomes

steeper. At still higher doses S grows linearly with

D as the competitor is practically full and is there-

fore ine�ective as a competitor. A more accurate

treatment of the model should take into account

the real dose dependence of n10 and m0. The idea of

assuming an exponential approach to saturation of

all three relevant trap and center occupancies has

been further discussed by Sunta et al. (1994), who

describe results concerning the expected superlinear-

ity of the dose dependence. Of course, the disadvan-

tage of this treatment is in assuming the simplest

kind of approach to saturation rather than the real

results of the same energy level model during the

excitation stage.

A rather similar situation, which at ®rst glance

may appear to lead to a similar kind of superlinear-

ity, is a model with one trapping state n and two

kinds of centers, m1 and m2, as shown in Fig. 12(a)

and (b). As far as the ®lling of the center is con-

cerned, the general considerations given in the pre-

vious section hold. This means that one of the

centers, say m2, which we consider as being the

radiationless competitor, starts linearly with the

dose, and tends to saturation when it is about to be

®lled to capacity. The center m1, which is con-

sidered to be the active one (assuming that during

the heating phase transition into it will result in TL

emission), starts linearly with the dose, becomes

superlinear at the range where m2 is saturated, and

®nally goes itself to saturation as it is close to being

®lled to capacity. The situation is entirely di�erent

when the tra�c of carriers during the heating phase

is considered. Although our main concern here is

the competition during heating, let us write ®rst, for

the sake of completion, the set of simultaneous

di�erential equations governing the processes mod-

elled in Fig. 12, since in the next section we will dis-

cuss the combined e�ects of competitions during

excitation and heating. We have, again, a set of ®ve

simultaneous equations:

dmh=dt � X ÿ Ah1mh�M1 ÿm1� ÿ Ah2mh�M2 ÿm2�
�101�

dm1=dt � Ah1mh�M1 ÿm1� ÿ Am1m1nc �102�

dm2=dt � Ah2mh�M2 ÿm2� ÿ Am2m2nc �103�

dn=dt � An�N ÿ n�nc �104�

dm1=dt� dm2=dt� dmh=dt � dn=dt� dnc=dt �105�

Here, M1 and M2 are the concentrations of the

two centers and m1, m2 are their occupancies. Ah1
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and Ah2 are the probabilities of capturing free holes

from the valence band, and Am1, Am2 are the

recombination probabilities of free electrons. X is

the rate of creation of free electrons and holes in

the conduction and valence bands, respectively. nc
and mh are the concentrations of these free elec-

trons and holes. N is the concentration of traps and

n its instantaneous occupancy. An is the trapping

probability from the conduction band into the

traps. The dose D is again given by D= Xtd,

assuming that the excitation intensity X is constant.

If we wish to follow, analytically or numerically,

the whole procedure of excitation and heating in

the model, we have to consider here a relaxation

period which simulates the period of time between

the end of excitation and the beginning of the heat-

ing stage. Mathematically, this would mean the sol-

ution of [101]±[105] with X set to zero, for a period

of time such that nc and mh decay to negligible

values.

The transitions in the next stage of heating are

shown in Fig. 12(b). Here, Et and s are the trap

depth and the frequency factor of the trap, respect-

ively. The governing set of equations is now

ITL � ÿdm1=dt � Am1m1nc �106�

ÿdm2=dt � Am2m2nc �107�

ÿdn=dt � sn exp�ÿEt=kT � ÿ An�N ÿ n�nc �108�

dn=dt� dnc=dt � dm1=dt� dm2=dt �109�

The numerical solution of the simultaneous sets

of equations ([101]±[105]) and subsequently [106]±

[109] will be discussed in the next section. However,

approximate considerations, similar to those made

above in the case of competition between traps,

show that competition between centers leads to an

entirely di�erent result. Making the analogous

assumptions to those leading to [99], we get a very

similar result with m20 replacing (N2ÿn20), where

m20 is the ®nal ®lling of M2 following the ®rst

stages of excitation and relaxation, i.e. the initial

concentration for the heating stage. The result is

S � �Am1=Am2m20�m10n0 �110�

Although this expression is analogous to [99], the

consequences concerning the dose dependence are

entirely di�erent. If, for example, n0 and m20 behave

in a certain dose range in a similar manner, say,

both grow linearly with the dose, the measured TL

dependence on the dose will behave in the same

way as m10. If, due to competition during exci-

tation, m20 is sublinear with the dose, the superli-

nearity of TL will be stronger in this range. As

opposed to the case of competition between traps,

however, this kind of trap and center ®lling may

account for a behavior that starts linearly, becomes

superlinear at higher doses and approaches satur-

ation. This is opposite to the previous case, where

the initial dose dependence was expected to be

quadratic, and at higher doses became even more

superlinear before starting its approach to satur-

ation. The reason for the fundamentally di�erent

behavior between the competing trap and the com-

peting center cases lies in the fact that the number

of competing traps (N2ÿn2) decreases with dose,

whereas the number of competing centers m2

increases with dose.

Since these conclusions are based on simplifying

assumptions, it would be advisable to support them

by numerical calculations demonstrating the two

kinds of possible behaviors. This has been done by

Chen et al. (1996) who chose particular sets of par-

Fig. 12. (a) An energy level scheme for a model consisting
of two competing recombination centers and one trap.
The meanings of the di�erent parameters are given in the
text. The transitions shown are those occurring during the
excitation period. (b) The transitions occurring in the
model shown in (a) during heating. It is assumed that the
measured emission is only from m1, and therefore, the TL
intensity I is directly related to ÿdm1/dt. (After Chen et al.

(1996).)
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ameters for each of the two di�erent models. Of

course, the advantage is that no simplifying
assumptions were required, and the calculated
results were the direct outcome of the properties of

the physical situation embodied by the relevant
model. At the same time, it is obvious that results
based on the choice of speci®c sets of parameters

are just special cases that may demonstrate that cer-
tain behavior is possible, but do not prove a general

attribute. In this sense, each of the two mathemat-
ical approaches, i.e. numerical solutions of speci®c
cases versus quasi-general results based on approxi-

mations, are complementary methods that can be
used to understand trends, including the dose
dependence of the models, as discussed here.

2.8.3. Combined competition during excitation and
readout. It is obvious that the complete separation

of competition during excitation and competition
during heating, as discussed so far, is rather arti®-
cial, and can point mainly to trends in the expected

behavior rather than be used to explain details. As
alluded to above, the obvious reason is that follow-
ing a given irradiation of a sample, one measures

the resulting TL without being able to observe
directly the ®lling of the active trap. Also, the

assumptions of linear dose dependence of m0 and
n10 as well as an exponential approach to saturation
of n20 on the dose, do give an idea of the possible

expected dose dependence of the measured TL, but
in doing so, we are assuming externally given dose
dependencies rather than solving the model

equations from scratch. In fact, in principle one
should start with the set of [87]±[89], along with the

condition for charge neutrality, and solve them
during the excitation period. In order to mimic the
experimental results, one should then consider at

this point a period of relaxation, during which time
the free electrons and holes left in the conduction
and valence bands, respectively, relax and become

trapped, or recombine, prior to the heating. As
noted earlier, the equations governing this process

are the same with X set to zero. The contribution
of this relaxation may or may not be signi®cant,
depending on the set of parameters being used.

More often than not, the addition to the trapped
carriers during this time is negligible.
Finally, one has to solve the set of [94]±[97] with

a chosen heating function T = T(t), be it linear or
not. Of course, the same energy level scheme with

exactly the same parameters is used in the heating
stage as is utilized in the excitation and relaxation
stages. The procedure explained so far appears to

be rather di�cult, and in most cases it is. As men-
tioned before, since the di�erential equations under
consideration are not linear, we cannot expect to be

able to get an analytical solution. In principle, we
can choose one of two routes to tackle the problem.

Unfortunately, each of them has its own serious pit-
falls. One way is to use assumptions which may
lead to analytical, albeit approximate, expressions.

Taking this route, it may happen that the combi-

nation of the assumptions made will lead the ana-
lytical results astray, and in this sense, the

``general'' result obtained is questionable. The
alternative is to solve numerically the set of di�er-
ential equations during the three stages. With mod-

ern numerical methods, this can be done very
accurately. We believe that the combination of the

two mentioned routes can bring about a better
understanding of the possible dose dependencies.

Example numerical solutions of the relevant
equations are presented by Chen and Fogel (1993)

who consider the two-trap/one-center model, and
by Chen et al. (1996), who consider the two-center/

one-trap model. In the former case, competition
during heating is shown to be the dominating e�ect,
as shown in Fig. 13, whereas in the latter case com-

petition during excitation is the governing process,
as shown in Fig. 14.

2.8.4. Summary remarks. To conclude this section
on the growth of TL with dose, the following points

may be made.

1. It is inadequate to consider the two kinds of

competition (i.e. during excitation or during
heating) separately.

2. The superlinear e�ect due to competition during
heating has two elements. One has to do with

the ®nal result being proportional to the concen-
trations of charge carriers in both traps and cen-
ters in the presence of a strong competitor.

Thus, if each of them is proportional to the
dose, the total dose dependence is quadratic. The

other is that in the dose range where the compe-
titor approaches saturation, the reduction in

Fig. 13. Representative results of the numerical calcu-
lations related to a model with two traps and one center.
n1, n2 and m are the values attained for given doses of ir-
radiation following the ®rst two stages of excitation and
relaxation. Imax is the resulting maximum of TL, calcu-
lated from the heating stage. The parameters chosen were
N1=1023 mÿ3, N2=10ÿ19 m3sÿ1. (Redrawn from Chen and

Fogel (1993).)
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competition causes some extra superlinearity
(more than quadratic behavior).

3. The numerical solutions of the sets of simul-
taneous di�erential equations enable us to

bypass the possible problems of artifacts due to
the approximations made. Thus, if a certain

behavior is observed, we can be sure that it is a
net e�ect of the model under consideration and,

therefore, can be compared with the relevant ex-
perimental results. On the other hand, the nu-
merical results are associated with the chosen

sets of parameters, and it is rather di�cult to
draw general conclusions. It is felt, however, that

it is of prime importance to be able to demon-
strate that the experimentally observed behaviors

can, indeed, be associated with these models.
4. As opposed to what might have been thought, it

is found, both from analytical considerations
and numerical results, that there is a big di�er-
ence between a situation with a competition of

two trapping states and a competition between
two centers. In the former, a typical behavior is

an initially quadratic dose dependence followed
by stronger superlinearity before saturation

e�ects set in. In the latter, a typical dependence
is an initial linear range, followed by moderate
superlinearity, and in turn, going back to linear-

ity and saturation. It appears that the main
di�erence between a trap competitor and a cen-

ter competitor is that, in the former case N2ÿn2,
which competes with m10 for released electrons,
decreases with the dose. In the latter case m20,

which is the relevant competitor, increases with
the dose.

2.9. Optical bleaching of TL

2.9.1. Kinetics. Removal of an electron from a
trap by optical absorption reduces the subsequent

TL signal. Assuming the simplest model of one trap
and one recombination center, the rate of detrap-
ping may be expressed by the usual rate equations:

dn

dt
� ÿnf � nc�N ÿ n�A �111�

with

dnc

dt
� nf ÿ nc�N ÿ n�Aÿ ncmAm �112�

Here f is the optical excitation rate, given by

f �l� � f�l�so�l� �113�
in which f is the photon ¯uence (photons/m2/s),

so(l) is the optical cross-section, and all the
other terms in [111]±[113] have already been
de®ned. For the simplest case of no retrapping

(nf>> nc(Nÿ n)A) we arrive at

n � n0 expfÿftg �114�
where n0 is the original trapped charge level at time

t= 0, and 1/f= td is the decay constant. For a
single trap the subsequent TL signal S decays in a
similar ®rst-order process as a function of illumina-

tion time

S � So expfÿt=tdg �115�
equivalent to the isothermal decay of phosphor-

escence. Eventually the TL signal due to this con-
centration of trapped charge must asymptotically
decay to zero under constant illumination. This is

true even if retrapping events become important at
longer illumination times, although in this latter
case the decay is no longer exponential. With retrap-

ping, the second term in [111] cannot be ignored
and to proceed, one has to eliminate nc by adopting
the same procedure as used in the case of thermal
detrapping. Here the usual assumption of quasiequi-

librium is made and, using the rate equations [111]
and [112], the optical equivalent of the ``General
One-Trap'' (GOT) equation is obtained, i.e.

dn

dt
� ÿ nfmAm

�N ÿ n�A�mAm
�116�

With N>> n, R= A/Am, n = m, and fast-retrap-
ping ((Nÿ n)A>>mAm), [116] becomes

dn

dt
� ÿ n2f

NR
�117�

Rearranging yields

dn

n2
� ÿ f

NR
dt �118�

Fig. 14. A sample result of the model with two centers
and one trap. The parameters chosen are Et=1.0 eV,
s= 1013 sÿ1, X= 1021 mÿ3sÿ1, Am1=Am2=10ÿ21 m3sÿ1,
An=2� 10ÿ21 m3sÿ1, M1=9� 1023 mÿ3, M2=1023 mÿ3,
Ah1=10ÿ21 m3sÿ1, Ah2=10ÿ20 m3sÿ1 and N= 1024 mÿ3.

(After Chen et al. (1996).)
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or

n0
n
� 1� n0

ft

NR
�119�

As t41, n 4 0. Thus, a TL signal due to this

charge concentration will approach zero for long

optical bleaching times. An example of a TL peak

which appears to behave in this straightforward

fashion is the so-called 3258C peak in quartz, the

detailed behavior of which is described by Spooner

(1994).

Sometimes, however, it may be observed that a

TL signal is reduced by prolonged illumination, but

does not go to zero. Experimentally, there may be

several causes for this ± for example, an overlap of

several TL peaks, some of which are emptied by the

particular wavelength used, and some of which are

not. However, notwithstanding experimental pro-

blems such as this, one may ask if it is intrinsically

possible that a TL peak, due to a single trap level,

may be reduced initially, but not to zero ± no mat-

ter for how long the illumination is applied. An

apparent example of this type of behavior was

noted by McKeever (1994) who described the decay

of a TL peak at 2458C from a sample of natural

(Arkansas) hydrothermal quartz following 60Co ir-

radiation and illumination with 460 nm light at

room temperature. The data obtained can be

described by the summation of a ®rst-order decay

plus an unbleachable residual.

In order to explain these e�ects it is necessary to

consider a model which is signi®cantly more com-

plex than the simple one-trap/one-center model

described above. Chen et al. (1990) introduced a

model in which they allowed for retrapping into the

electron trap, but also included the optical exci-

tation of electrons from the recombination level

into the conduction band during illumination. A

similar mechanism is discussed by Shlukov et al.

(1993). The model of Chen et al. is illustrated in

Fig. 15(a). The signi®cance of this latter transition

is that the recombination center lies below the

Fermi level, and thus the concentration of holes at

this center actually increases during the illumination

phase. As a result, it is impossible for the sub-

sequent TL signal to decay to zero as a result of the

illumination. An important prediction is that the

®nal residual level is independent of the original

absorbed dose, or the intensity of illumination. In

fact, from Fig. 16 we see that the residual level at

long illumination times is the same whether the

traps are initially empty or initially full. Thus, with

this model, the illumination is seen to generate a

TL signal in a previously unirradiated specimen.

With respect to the results for quartz, insu�cient

data presently exist to determine if the residual level

observed by McKeever is dose dependent or inde-

pendent.

An alternative model for the explanation of a

non-zero residual level after bleaching is illus-

trated in Fig. 15(b). Here the TL signal of inter-

est is due to the release of electrons from level 2,

but the illumination does not bleach this level;

instead it empties charge from a deep level ±

Fig. 15. The models of (a) Chen et al., and (b) McKeever,
to explain optical bleaching of TL in which a ®nite re-
sidual level is reached at long illumination times. (After

Chen et al. (1990) and McKeever (1991).)

Fig. 16. Example bleaching and excitation curves from the
model of Chen et al. (Fig. 15(a)). The curves (a), (b) and
(c) refer to three di�erent illumination intensities. (After

Chen et al. (1990).)
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level 3. Also included in the model is a shallow

trap (level 1) and two recombination centers (4

and 5), only one of which (level 4) is radiative.

The important features of the model are that the

charge is not bleached from the level of interest

(level 2) during illumination and thus this trapped

charge concentration does not go to zero during

illumination. In fact, because of phototransfer

from level 3, it may actually increase during the

illumination process. Some example data obtained

from solutions to the rate equations describing

this model are shown in Fig. 17. In this particu-

lar example, the TL from level 2 decreases from

its initial level to an unbleachable, residual level.

The cause of the reduction in the TL signal can

be found in the fact that there are two recombi-

nation centers competing for the charge released

from level 3 during bleaching. Furthermore,

during heating, the model of Fig. 15(b) represents

a classic competition-during-heating situation, as

described in the previous section. In general, sev-

eral possible behaviors are possible, dependent

upon the relative concentrations of the trapped

charges in the various levels. The bleaching pro-

cess stops when the charge from level 3 is

depleted. At this stage, a residual (``hard-to-

bleach'') component remains, such that

n11+n21=m41+m51, where n11, n21, m41 and

m51 are the concentrations of electrons and holes

in level 1, 2, 4 and 5 remaining when the concen-

tration of electrons in level 3 has been depleted.

If n3 is large enough at the start of the bleaching

procedure, m41 may be 00, and thus the ®nal re-

sidual TL level will also be zero. However, if n3
is such that m41$0, a non-zero residual TL

level will be reached.

Fig. 17. (a) Trapped charge concentrations (refer to Fig. 15(b)) versus bleaching time for the model of
McKeever. (b) Predicted TL versus bleaching time, illustrating the non-zero residual TL level at long

bleaching times. (After McKeever (1994).).
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2.9.2. Thermal assistance. It may be that tran-

sitions from a defect ground state to a delocalized

band do not take place directly, but instead occur

via a localized excited state. The most direct evi-

dence for this in materials relevant to dating comes

not from TL studies, but from OSL studies.

Although we will be dealing with OSL in a later

section in this paper, it is of interest to discuss these

results at this point.

Illumination of LiF containing F-centers at a

wavelength of 250 nm is able to transfer electrons

from the F-centers to stable electron trapping states.

The transfer is observed to be temperature depen-

dent, with an activation energy of 0.12 eV (Sunta

and Watanabe, 1976). The F-center in LiF is

believed to have an excited state 0.16 eV below the

conduction band and the measured activation

energy for phototransfer is suggested to correspond

to thermal activation from this excited state into

the conduction band. Similar mechanisms have

been suggested by HuÈ tt and colleagues (HuÈ tt et al.,

1988; HuÈ tt and Jaek, 1993) who monitored the

OSL which results from illumination of irradiated

feldspar samples with infrared light (0825±950 nm).

The production of OSL in this manner was

observed to have an activation energy of 00.10 eV.

The TL traps emptied by this illumination are deep,

however, and thus it was suggested by HuÈ tt et al.

that the infrared illumination excited the trapped

electrons from a localized ground state to a loca-

lized excited state, from where thermal excitation

into the conduction band (activation energy

0.10 eV) leads to bleaching of the TL traps and pro-

duction of OSL.

Poolton et al. (1995a,b,c) examined this proposal

further for a variety of feldspars. Using the Bohr

model for the hydrogen atom, the energy En and

radius Rn of the nth excited state can be calculated

using

En � ÿEh
�m*=me�
�Ern�2

�120�

and

Rn � RhnEr
�m*=me�

�121�

where Eh and Rh are the ionization energy and

Bohr radius of free hydrogen, respectively (13.6 eV

and 0.53 AÊ ), m* is the electron e�ective mass, me is

the free electron mass, and Er is the relative permit-

tivity. Assuming a hydrogenic model for the defects

responsible for IR-stimulated OSL, with

m* = 0.757me for each feldspar type, the transition

energies to the ®rst excited state are calculated to

be 1.441 eV, 1.422 eV and 1.225 eV for orthoclase,

albite and anorthite, respectively. This compares

very well with the measured IR absorption energies

required for production of OSL in these materials,

i.e. 1.44020.003 eV, 1.42220.003 eV and
1.27520.004 eV, respectively. This gives broad sup-

port to the model proposed by HuÈ tt and colleagues
for thermal assistance of the OSL mechanism.
However, Poolton et al. (1995b) demonstrate that

the measured thermal activation energies for the
three feldspar types are inconsistent with the HuÈ tt
et al. model. The thermal activation energies,

measured using the IR energies noted above, are
0.105 eV (orthoclase), 0.065 eV (albite) and 0.03 eV
(anorthite) ± the opposite of what one might expect

based on the measured (and calculated) excited
state energies. These authors point out, however,
that the radii of the ®rst excited states, calculated
using [121], increases as one goes from orthoclase

to anorthite. Thus, Poolton et al. (1995b) propose
that the measured thermal activation energy is the
hopping energy from the excited state of the

``donor'' defect to an ``acceptor'' defect, which acts
as a recombination center. This donor±acceptor
recombination model predicts a zero value for the

thermal activation energy if the overlap between the
excited state wavefunction is high enough, and
Poolton et al. suggest that this explains why the

measured activation energy decreases as one goes
from orthoclase to anorthite.
Spooner (1994) also observed that the OSL from

quartz when illuminated with visible light is depen-

dent upon temperature. In this material, the
measured thermal activation energy for OSL pro-
duction depends smoothly upon the wavelength of

the light used. This is also inconsistent with a HuÈ tt-
type mechanism for which one would expect that
either the thermal activation energy would be inde-

pendent of the wavelength, or it would vary discre-
tely as higher excited states are populated. Because
of this Spooner suggests a model based on the ther-
mal excitation of charge within an array of ground

state levels, from where optical excitation into the
conduction band then occurs.

2.10. Phototransferred thermoluminescence

2.10.1. General. Phototransferred thermolumines-

cence (PTTL) is the TL from shallow traps resulting
from the transfer by light of charge from deeper
traps. PTTL has been observed and studied for a

wide variety of materials and has been suggested as
a tool in radiation dosimetry and in dating of cer-
amic samples (Jain, 1984; Baili� et al., 1977; Bow-

man, 1979; Milanovich-Reichhalter and Vana, 1990,
1991). Examinations of the PTTL properties lead to
useful information regarding the optical energies

likely to be most e�cient in transferring charge
between centers and help to identify the mechan-
isms involved in the optically stimulated and TL
processes.
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2.10.2. Models. The simplest model to describe

phototransfer is that of one shallow trap into which

the charge is transferred, one deep trap from which

the charge is excited, and one recombination center.

If n and h are the concentrations of electrons in the

shallow and deep traps, respectively, and m is the

concentration of holes in the centers, an analysis of

PTTL may start from the initial condition that

n0=0, and h0=m0 at some point after the ir-

radiation and immediately before illumination. If

the illumination excites electrons from the deep

traps at rate f then we may write the following rate

equations during the illumination period:

dh

dt
� ÿhf � nc�H ÿ h�Ah �122�

dn

dt
� nc�N ÿ n�An �123�

and

dm

dt
� ÿncmAm � m

�
�124�

where t = (ncAm)
ÿ1 is a lifetime and all the other

terms have their usual meanings. With the ad-

ditional stipulations of quasiequilibrium and no

retrapping into the source traps (hf>> nc(Hÿ h)Ah)

the solutions to the above equations are

h�t� � h0 expfÿtf g �125�

n�t� � N�1ÿ expfÿBtg� �126�
and

m�t� � m0 expfÿt=�g �127�
where B = ncAn. Note that B and t are considered

approximately constant only if the quasiequilibrium

approximation (dnc/dt<< 0) is true. Thus, at the

end of the illumination period, i.e. at t= t*, there

will be a certain concentration of charges in each of

the traps and centers, as de®ned by [125]±[127].

We now consider warming of the sample after

the illumination has been switched o�. This is a

classic competition-during-heating situation and one

which has already been fully analyzed in an earlier

section. With the assumptions of quasiequilibrium

and n(t*)<<Hÿ h(t*), we arrive at

S�t*� � Cm�t*�n�t*�
�H ÿ h�t*�� �128�

or

S�t*� � C expfÿt*=tgN�1ÿ expfÿBt*g�
�H=h0 ÿ expfÿt*f g �129�

Under the restrictions described, [129] describes

the variation in the PTTL peak due to the shallow

trap as a function of the illumination time during

PTTL stimulation. Note that as t*41, h4 0,

m4 n and S will start from 0 at t* = 0, and

increase smoothly to a maximum, given by

S�1� � Cn21
H

�130�

where n1=m1=the ®nal concentrations at

t* =1.

The analysis of PTTL based on this simplest

energy level scheme results in a PTTL versus time

curve which grows monotonically from zero to a

maximum level. However, one often ®nds exper-

imental PTTL versus time curves which show an in-

itial increase up to a maximum, and are then

followed by a decrease at longer illumination times.

One obvious interpretation of this behavior is that

the illumination, in addition to ®lling the traps in

question, is also emptying the traps via optical

bleaching. Such processes have already been

described for the main TL peak from Al2O3 in

which transfer of charge from deep traps can occur

simultaneously with optical bleaching out of the

trap, dependent upon wavelength (Walker et al.,

1997). This has also been suggested to be the expla-

nation of the similar observation for the PTTL

from the 1108C peak in quartz (Wintle and Murray,

1997). Sometimes, however, it is uncertain whether

or not the illumination does in fact optically empty

the trap in question. An example of this is the

PTTL signal for some of the low temperature

(<RT) peaks in crystalline quartz. It was noted

above that McKeever and colleagues had discussed

a model which explains how one can get partial

bleaching of a TL signal down to a residual level,

with no further bleaching of the signal being poss-

ible. A similar model can be used to explain how a

PTTL peak can exhibit a growth, and then a decay,

without invoking the requirement of optical exci-

tation out of the trap. Referring to Fig. 18, the

model allows for the transfer of charge into the

trap in question (in this case, transfer from level 2

to level 1) but does not include the optical emptying

of charge from level 1. Nevertheless, an increase in

the PTTL signal from level 1, followed by a

decrease at longer illumination times is observed

(Alexander et al., 1997).

To explain this result we consider the non-radia-

tive recombination center in Fig. 18. This center

provides a competing, non-radiative recombination

pathway and the conditions for charge neutrality

are
nc � n1 � n2 � n3 � m4 �m5 �131�

Here n1, n2 and n3 are the concentrations of elec-

trons in the three electrons traps, and m4 and m5

are the concentrations of holes in the radiative and

non-radiative recombination centers, respectively.

The description of PTTL using this model now fol-

lows the principle described earlier, in which the re-

duction in the PTTL as the illumination proceeds is
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caused by the removal of holes from the radiative

recombination sites during the illumination period.

This removal occurs via recombination and is the

source of the OSL signal observed during illumina-

tion. Although a similar removal also takes place

with the simpler model described above, it is im-

portant to recognize that in that model n1 is always

less than (or equal to) m, because of the charge neu-

trality condition. Thus, if n1 is increasing during

illumination, there are always enough holes avail-

able such that the resulting PTTL signal simply fol-

lows n1. However, in the more complex model of

Fig. 18, n1 may be less than, or greater than, m4,

according to the new charge neutrality condition

([131]). This means that even though n1 may be

increasing, there may, for a given illumination time,

no longer be enough holes in the radiative recombi-

nation site to accommodate this. Of course, the

total number of available holes (m4+m5) will

always be greater than (or equal to) the number of

electrons in the shallow traps. Thus, at the start of

the illumination, the number of electrons in the

shallow traps will be less than the number of holes

in the radiative recombination center and the PTTL

intensity will grow as n1 grows. At longer times,

however, n1 may (depending upon the values of the

various parameters) become greater then m4. The

PTTL intensity will now follow m4 and will

decrease as m4 decreases. This reasoning follows

that given earlier in the section concerning the dose

dependence and can be summarized in the present

case as

SPTTL � min�n1,m4� �132�

However, as already explained, this simple, hand-

waving argument is too simplistic when there is

competition and multiple recombination/retrapping

pathways for the electrons. Under these circum-

stances the PTTL intensity will not always follow

the minimum of n1 or m4. In fact, the only way to

be sure where the charge is going, and what the

resultant PTTL intensity will be for a given set of

conditions and parameter values, is to solve the

appropriate rate equations numerically. Figure 19

shows the numerical solution to this more complex

model for PTTL. The wavelength dependence was

built into the model using the relationship between

excitation intensity f, the intensity of the illuminat-

ing light f, and the photoionization cross-section s
from deep traps and an expression for the wave-

length dependence of s assuming deep levels and

parabolic bands, namely

so � C
������
Eo

p �h�ÿ Eo�3=2
h��h�ÿ gEo�2

�133�

Here, C is a constant and hn is the incident pho-

ton energy. g = 1ÿm*/me is a constant dependent

upon the e�ective mass m* of the electron and the

free electron mass me. Eo is the threshold photon

energy required for photoionization.

The solution shown in Fig. 19 is typi®ed by an

increase in the PTTL intensity at short illumination

times, and a decrease at longer times. The exact

form of the curve is seen to vary with the wave-

length of the light used to stimulate the e�ect. At

shorter wavelengths both the growth and decay are

more rapid than at longer wavelengths. The point

to observe about the result is that a decrease in the

PTTL intensity is obtained even though there is no

optical excitation out of the shallow traps. In the

examples shown, the steady-state PTTL is not zero

and is attained when there are no more electrons to

be excited from the source traps (i.e. n240 as

t41). Clearly, depending upon the relative initial

values of n2 and m4, one could have a ®nal steady-

state value of m4 which is approximately zero, and

thus the PTTL steady-state value must also be ap-

proximately zero, even without optical stimulation

out of the traps. Alternatively, the ®nal, steady-

state level m41 may not be zero, and hence the cor-

responding steady-state PTTL level will also be

non-zero.

Fig. 18. Model for PTTL and OSL, including an optically
active trap (level 2); a deep, competing trap (level 3); a
shallow, competing trap (level 1); a radiative recombina-
tion center (level 4); and a non-radiative recombination

center (level 5).

Fig. 19. Numerical simulations of the PTTL versus illumi-
nation time using the model described in the text. (After

Alexander et al. (1997).)
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Experimental data showing the wavelength

dependence of the PTTL response from quartz are
shown in Fig. 20. It is clear that extracting the
PTTL excitation spectrum from such data by
simply taking the PTTL intensity at a ®xed time

can be equivocal, in that the result will depend
upon the time chosen to extract the PTTL intensity.
At short illumination times the PTTL after short

wavelength illumination is greater than that after
long wavelength illumination. However, at longer
illumination times, the reverse is true. Nevertheless,

published examples of PTTL excitation spectra
extracted in this way are common (e.g. Jain, 1984;
Milanovich-Reichhalter and Vana, 1990, 1991).
Using the numerical solutions to the rate equations,

as described above, Alexander et al. (1997) showed
that the true excitation spectrum is obtained by tak-
ing the initial slope of the PTTL versus time curves.

3. OPTICALLY STIMULATED

LUMINESCENCE

3.1. Background

OSL has become a popular method for determin-

ing equivalent doses for sedimentary deposits in
dating applications and is growing in popularity in
dosimetry applications. The method was ®rst intro-
duced for dating by Huntley et al. (1985), and since

then the technique has been developed into an im-
portant dating procedure. In each of these studies
the optical excitation is continuous wave (cw) and

is either a high power arc lamp source, along with a
monochromator or ®lter system to select the exci-
tation wavelength, or a laser operating at or near

the desired wavelength. The luminescence is moni-
tored continuously while the excitation source is on,
and narrow band and/or cut-o� ®lters are used in

order to discriminate between the excitation light
and the emission light, and to prevent scattered ex-
citation light from entering the detector. Usually,
the OSL is monitored from the instant the exci-

tation light is switched on and is observed to take
the form of a luminescence decay curve, following

an exponential-like function, until all the traps are
emptied and the luminescence ceases. The integrated
emission signal (i.e. the area under the decay curve)

is then recorded and used to determine the
absorbed dose.

3.2. OSL models

3.2.1. General features. In general, the shape of
an OSL decay curve does not lend itself to analysis
using simple descriptions. The decay is often non-

exponential, typically exhibiting a long tail at long
illumination times. Under some circumstances, and
for some samples, the OSL may even display an in-

itial slow increase after the illumination is applied,
followed by the more usual decrease at longer
times. Overall, the decay shape is dependent upon

the sample, the absorbed dose, the illumination
intensity and the temperature. An earlier analysis of
the infrared-stimulated OSL decay from a collection
of feldspar samples by Baili� and Poolton (1991) il-

lustrated that, for microcline, sanidine and albite,
the decay followed a A(1 + Bt)ÿP law, with P = 1
and where A and B are constants and t is time. Fur-

thermore, the constant A was observed to be expo-
nentially related to temperature, suggesting a
thermally activated process, as previously proposed

by HuÈ tt and colleagues (HuÈ tt et al., 1988). In con-
trast, for labradorite, the OSL followed a
(1 + Bt)ÿP law and was independent of tempera-

ture, with P = 2.
Later measurements on potassium feldspars by

Baili� and Barnett (1994) gave values of P varying
between 1 and 2. Poolton et al. (1994) suggested

that the infrared-stimulated OSL from feldspar is
in¯uenced by localized, donor±acceptor pair recom-
bination. Evidence for this was obtained by observ-

ing the decay of the OSL signal after successively
longer exposures of an irradiated sample to green
light. For long green light exposures, the IR-stimu-

lated OSL displayed a clear increase as a function
of IR illumination time, up to a maximum, before a
decay was observed. The longer the green light ex-
posure, the longer the IR illumination time required

for the IR-induced luminescence to reach a maxi-
mum. This was interpreted as being caused by an
increase in the mean donor±acceptor distances for

lower concentrations of donors and acceptors. It
should be stressed that donor±acceptor recombina-
tion is not predicted for OSL stimulated by green

light for which delocalized transport via the con-
duction band is believed to be the case.
Smith and Rhodes (1994) and Bailey et al. (1997)

attempted to ®t the decay of the green-light-stimu-
lated OSL from quartz using a summation of three
exponentials. One might expect a multi-component
OSL decay curve if more than one trap is being

Fig. 20. Experimental data showing the illumination time
dependence of the 358 K PTTL peak from quartz. (After

Alexander et al. (1997).)
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emptied at the illumination wavelength being used.

Smith and Rhodes (1994) also note an increase in

the OSL decay rate as the temperature increases.

The thermal dependence of the OSL from quartz

was studied further by Spooner (1994) who pre-

sented evidence for a thermally assisted process for

OSL production.

A long tail is often observed in the OSL decay

curve. This may be caused by either the in¯uence of

shallow traps ± which localize charges released

during illumination and slowly release them again

at a rate determined by the trap depth and the

sample temperature ± or a contribution from traps

which are emptying slowly at the excitation wave-

length used in the experiment. The shallow traps

yield an optically-stimulated phosphorescence com-

ponent to the OSL decay, and they give rise to a

temperature-dependent OSL component, since at

higher temperatures the shallow traps become less

e�ective at trapping charge.

3.2.2. Simplest model: one trap/one center. Most

models for OSL assume transport of the optically

excited charge through the delocalized bands in

order to reach the recombination site. Thus, the

simplest model by which OSL can be produced is

shown in Fig. 21(a). Here light stimulates trapped

electrons, concentration n, into the conduction

band at rate f, followed by recombination with

trapped holes, concentration m, to produce OSL of

intensity IOSL. With the usual de®nitions, the rate

equation describing the charge ¯ow is

dnc

dt
� ÿdn

dt
� dm

dt
�134�

which can be derived from the charge neutrality

condition

nc � n � m �135�

With the assumptions of quasiequilibrium (dnc/

dt<< dn/dt, dm/dt and nc<< n, m) and negligible

retrapping we have

IOSL � ÿ dm

dt
� ÿ dn

dt
� nf �136�

the solution of which is

IOSL � n0 f expfÿtf g � I0 expfÿt=tg �137�

Here, n0 is the initial concentration of trapped

electrons at time t= 0, I0 is the initial luminescence

intensity at t= 0, and t = 1/f is the decay constant.

One can observe a straightforward relationship in

which the initial intensity is directly proportional to

the excitation rate and the decay of the OSL with

time is a simple exponential. The excitation rate is

given by the product of the excitation intensity f
and the photoionization cross-section ( f= fs).
3.2.3. Competing, deep trap. For two optically

active traps (concentrations n1 and n2 and excitation

rates f1 and f2) the same assumptions yield

dm

dt
� ÿ dn1

dt
ÿ dn2

dt
�138�

Along with the charge neutrality condition of

n1+n2=m we have

n1 � n10 expfÿtf1g �139�
and

n2 � n20 expfÿtf2g �140�

Thus

IOSL � n10 f1 exp fÿtf1g � n20 f2 expfÿtf2g

� I10 exp

�
ÿ t

t2

�
� I20 exp

�
ÿ t

t2

�
�141�

and the OSL decay curve is the sum of two expo-

nentials.

Alternatively, if the additional trap is optically

(and thermally) inactive, i.e. it acts as a deep, com-

peting trap only (Fig. 21(b)), the OSL intensity may

be written

IOSL � n10f expfÿtf g ÿ dn2
dt

�142�

where
dn2
dt
� nc�N2 ÿ n2�A2 �143�

adopting the standard de®nitions. With an

additional assumption of N2>> n2 then

Fig. 21. (a) Simplest model for OSL, involving one elec-
tron trap, one hole trap (which acts as a radiative recom-
bination center) and transport through the conduction
band. (b) Model containing an additional, deep competing
trap. (c) Model containing a shallow competing trap. (d)
Model containing two recombination sites ± one radiative

and one non-radiative.
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ncN2A21constant, C. Therefore

IOSL � n10 f expfÿtf g ÿ C �144�
and the OSL is reduced in intensity by the extent of
the retrapping into the deep traps. In the limit, as

t41, nc40 and therefore C4 0. Thus, C is in
fact a very slowly varying function of time.
3.2.4. Competing, shallow trap. If the competing

traps are shallow traps which are thermally meta-

stable at the temperature of the OSL measurement
(Fig. 21(c)), [143] becomes

dn2
dt
� nc�N2 ÿ n2�A2 ÿ n2p �145�

where p is the rate of thermal excitation out of the

trap. Now we have

IOSL � n10f expfÿtf g � n2pÿ nc�N2 ÿ n2�A2 �146�

The last two terms in [146] combine to produce a

long-lived, temperature-dependent tail to the OSL
decay. The form of this component will be an initial
increase, followed by a decrease at longer times.

Depending upon the relative size of this component
compared with the ®rst term, the overall OSL decay
curve may exhibit an initial increase, followed by a

decrease. The relative size of the two components
also depends upon the excitation rate f such that at
low values of f, the temperature-dependent term

may be signi®cant.
3.2.5. Competing recombination center. For the

case of two recombination centers (Fig. 21(d)), one
of which (m1) is radiative and the other (m2) is non-

radiative, we have n = m1+m2, n = n0exp{ÿtf},
and

IOSL � n0 f expfÿtf g ÿ dm2

dt
�147�

As with the case of the deep traps, the OSL

intensity is reduced by the existence of a non-radia-
tive pathway. Since

dm1

dt
� ÿncm1Am1 �148�

and

dm2

dt
� ÿncm2Am2 �149�

then, with quasiequilibrium (dnc/dt10) we have

m11m10 expfÿtncAm1g �150�
and

m21m20 expfÿtncAm2g �151�
from which we have

m1

m2
1m10

m20
expfÿtnc�Am1 ÿ Am2�g �152�

from which we see that the ratio m1/m2 is a time-

dependent function. However, if Am1=Am2, then

m1/m2=a constant, k. In these circumstances the

charge neutrality condition is written

m1 �m1

k
� n �153�

or

m1 � n

1� 1=k
� n

K
�154�

where K = 1 + 1/k. From this

dm1

dt
� 1

K

dn

dt
� ÿ nf

K
�155�

and

IOSL � 1

K
n0 f expfÿtf g � I

0
0 expfÿt=tg �156�

In this way we see that the OSL decay curve may

still be exponential in the case of two types of

recombination centers, but only if the recombina-

tion cross-sections are the same. Comparing [137]

with [156] we observe that, as expected, the latter

case describes a weaker OSL signal (by a factor

1/K).

An alternative approach is to assume that retrap-

ping into the optically active trap is allowed. For

the simple case of one trap and one center we may

write

IOSL � dm

dt
� ÿ dn

dt
� nf ÿ nc�N ÿ n�A �157�

and again the decay is no longer exponential. For

the case of N>> n, A/Am=R and R>> n/(Nÿ n), a

bimolecular (second-order) function results:

IOSL � n2f

NR
� dm

dt
� ÿ dn

dt
�158�

Rewriting

dn

n2
� ÿ f

NR
dt �159�

which yields, after integration,

I � I0

�
1ÿ n0ft

NR

�ÿ2
�160�

where I0 � n20 f =NR. For the more general case,

where I= nbf/NR, the OSL decay curve is

described by

�
I

I0

� 1ÿ b

b �
�
1ÿ n0ft

NR

�
�161�

or
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I � I0

�
1ÿ n0ft

NR

� ÿ b

1ÿ b �162�

3.2.6. A realistic model? It must be stressed that a

real material is likely to have several optically active

traps, and a combination of deep competing traps,

shallow competing traps, and both radiative and

non-radiative centers. In consideration of this, it

should be recognized that a simple exponential

shape for the OSL decay curve will only occur in
real materials under certain special circumstances

and sets of experimental conditions. The curve

shape will, in general, be temperature and excitation

rate dependent.

Examples of OSL decay curves calculated by sol-

ving numerically the rate equations for the model

of Fig. 18 (McKeever et al., 1997) show that at low

temperatures, the shallow traps, deep traps and
non-radiative recombination centers conspire to

produce a weak, non-exponential OSL decay curve,

as illustrated in Fig. 22. As the temperature

increases, so the shallow traps begin to play less of

a role. The OSL intensity increases accordingly and

a peak appears in the OSL curve at short times. At

the highest temperatures the shallow traps play no

part and the intensity is the highest. In general, the

presence of the deep traps and non-radiative centers
may still produce a non-exponential decay curve,

however, Bailey et al. (1997) argue that if the rela-

tive probabilities for the various trapping and

recombination pathways do not change during the

OSL emission, then exponential curves will still be

obtained. Accordingly, they present experimental,

non-exponential OSL decay data for quartz and in-

terpret this to be due to the sum of three exponen-

tial decay curves. They propose that the three

curves are caused by the emptying of three di�erent

traps.

The preceding analyses presume that the released

charge is transported via the delocalized bands to

the recombination site. As such, the analyses will be

valid whether or not the optical transition is direct

to the conduction band, or is thermally assisted via

an excited state (HuÈ tt et al., 1988; HuÈ tt and Jaek,

1993). The latter process merely imposes a tempera-

ture dependence on the excitation rate, thus

f � fo exp

�
W

kT

�
�163�

where W is the required thermal activation energy.

Since the OSL decay constant t = f ÿ1, then the

OSL decay rate will also be thermally activated

according to

t � to exp
�
ÿ W

kT

�
�164�

This provides a means by which thermally

assisted processes may be recognized experimen-

tally.

However, Poolton et al. (1995a,b,c) suggest that

IR-stimulated OSL from feldspars may not proceed

via the conduction band, but instead may occur via

a donor±acceptor recombination mechanism. These

authors argue that once excited into the excited

states of the donor, wavefunction overlap with the

acceptor allows for recombination to occur via a

hopping process. The phenomenon of donor±accep-

tor pair recombination has been well established in

the luminescence properties of semiconductors for

many years (Dean, 1973). The probability of recom-

bination in this fashion depends upon the separ-

ation distance between the donor (d) and the

acceptor (a). This can be estimated for a given con-

centration N of donors and acceptors using the

donor±acceptor pair distribution function G(r),

where r is distance:

G�r� � 4pr2N exp

�
ÿ 4pN

�r
0

r2 dr

�
�165�

where G(r) is normalized such that
�1
0 G�r� dr � 1.

The decay kinetics for d±a recombination lumines-

cence are complex and depend critically upon con-

centration, with faster decays occurring for higher

concentrations. For high concentrations, the decay

proceeds as tÿ2 at long times, while it proceeds as

tÿ1 for low concentrations. At short times the decay

is much faster and cannot be expressed analytically

(Dean, 1973).

Fig. 22. Theoretical OSL curve shapes obtained from a
solution to the rate equations for the model of Fig. 18. (a)
Temperature dependence. (b) Excitation intensity depen-

dence.
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4. SOME IMPLICATIONS FOR DATING

4.1. Anomalous fading

Anomalous fading is the fading of a TL (or OSL)
signal at a temperature which is far below the tem-
perature at which the trap is known to empty

during heating. That is, it is an abnormal fading at
temperatures at which the trap may be expected to
be thermally stable from a consideration of its trap-

ping parameters (trap depth, etc.). It is a character-
istic of anomalous fading that the initial fading rate
is quite rapid, followed by a slower decay at longer
times. The conclusions reached by Visocekas and

Geo�roy (1977) from a study of the fading from
calcite is that the intensity I of the afterglow
observed during anomalous fading follows a hyper-

bolic law, namely IA tÿ1, where t is time. A tem-
perature-independent hyperbolic law is indicative of
a tunneling mechanism in accordance with

Mikhailov's model for tunneling (McKeever, 1985).
Here, an electron in a trap of depth Et is separated
by a distance r from a positive charge, at which
recombination would produce the emission of a

photon. The rate of tunneling of the electron
through the potential barrier separating the two
centers was given in [76] as P(r) = P0 exp{ÿar}
where P0 is a frequency factor and a was given in
[77]. By approximating the electron trap to a square
potential well, as shown in Fig. 6, and assuming the

decrease in the number of trapped electrons n fol-
lows a ®rst-order reaction, the luminescence (after-
glow) intensity is given by

I � ÿ dn

dt
�
�1
0

n20 expfÿP�r�tg4pr2 dr �166�

where n0 is the initial trapped electron concen-
tration. For large r1rc, this becomes

Itot ' ÿK=t �167�
where K is approximately constant, and thus the
observed tÿ1 law is obtained (Templer, 1986a).

[167] holds if t>> ti where ti is the irradiation
time and t is measured from the end of the ir-
radiation at t= 0. If an extended irradiation time is
taken into account, then

I � K

ti

�0
ÿti

dt 0

�tÿ t 0� �
K

ti
ln�1� t=ti � �168�

Beyond t = 10ti the di�erence between [167] and
[168] is negligible.

Alternatively, instead of monitoring the phos-
phorescence (afterglow) emitted during charge leak-
age from the trap, one could monitor the remnant

TL, i.e. the TL remaining after the charge has
escaped. If we de®ne the parameter R to be the
ratio of the TL at time t to the initial TL at time t0,
then we may write

R � TL�t�
TL�t0� � ÿ

ln�t=tm�
ln�tm=t0� �169�

where tm is the maximum time for which the tunnel-
ing mechanism holds. It should be noted that since

tunneling is more likely for the deeper traps (Fig. 6,
and [76] and [77]) then, as pointed out by Templer
(1986a), the loss of the TL signal is expected to be

more rapid from the high temperature side of the
glow curve than from the low temperature side.

This is the opposite that one would expect from
thermal fading or, as we will see below, from fading

due to a localized transition model, and thereby
provides an experimental tool by which fading due
to tunneling can be recognized.

Visocekas et al. (1976) also considered the possi-
bility that the electron had to be thermally excited

to an intermediate state (energy E2 in Fig. 6) before
tunneling could take place. The tunneling prob-

ability will now include a Boltzmann term and the
probability of this ``thermally assisted tunneling''
will increase as the temperature increases. Such

appears to be the case in calcite (Visocekas et al.,
1976). If n2 is the population of the excited state

and n1 is the population of the ground state in
Fig. 6, then

n2
n1
� exp

�
ÿ E2

kT

�
�170�

where the total charge density is n0=n1+n2. The
total tunneling probability is now

P�r� � P0�expfÿa1rg � expfÿa2rg�
1� expfÿE2=kT g �171�

where

a1 � 2

������������������
�2m*E1�

q
=�h

and

a2 � 2

��������������������������������
�2m*�E1 ÿ E2��

q
=�h

and a temperature dependence is expected.

As noted above, Templer (1986a,b) suggested an
alternative to tunneling to describe anomalous fad-

ing. This was the localized transition model in
which an alternative pathway to transport via the
conduction band is available via an intermediate,

localized state. The mathematics describing this case
have been described above. Here we note that the

phosphorescence (afterglow) intensity expected from
this case is obtained from [85] and is

I � n0

�
�s

�� s

�
exp

�
ÿ Ee

kT

�

exp

�
ÿ
�
�s

�� s

�
t exp

�
ÿ Ee

kT

��
�172�

where all the terms have been previously de®ned.
Templer (1986a) describes the shape of the phos-
phorescence decay expected from the localized tran-
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sition model if the traps are distributed in energy.
For a general distribution of traps the afterglow

intensity is given by

I �
�1
0

n�Ee�
�
��Ee�s
��Ee� � s

�
exp

�
ÿ Ee

kT

�

exp

�
ÿ
�
�s

�� s

�
t exp

�
ÿ Ee

kT

��
dEe �173�

For a uniform distribution n(Ee)dEe=n0dEe we
get

I � n0kT

t

�
exp

�
ÿ t

tmax

�
ÿ exp

�
ÿ t

tmin

��
�174�

where tmax and tmin are the trapped charge lifetimes

corresponding to the upper and lower limits of the
energy distribution.
Again, the 1/t component dominates except at

short times when the exponential part causes a

slower than 1/t decay. If the irradiation time ti is to
be accounted for we have

I � n0kT�0
ÿti

�
expfÿ�tÿ t 0�=tmaxg ÿ expfÿ�tÿ t 0�=tmin�g

tÿ t 0

�
dt 0

�175�

where t' is a dummy variable for time. Tyler and
McKeever (1988) argue that the localized transition
model ®ts the data better than the tunneling model

in olioclase feldspar, and that the mis®t between the
data and the former model probably arises from the
assumption of a uniform trap distribution.

If the remnant TL is monitored, rather than the
afterglow, one observes that the fading occurs from
the low temperature side of the glow curve for the
localized transition model, in contrast to that

expected for tunneling (Templer, 1986a). In this
case the remnant TL parameter R is described by

R � Ei�ÿt=tmin� ÿ Ei�ÿt=tmax�
Ei�ÿt0=tmin� ÿ Ei�ÿt0=tmax� �176�

where Ei[x] is the exponential integral function.

4.2. Bleaching of OSL and TL

At various points throughout the discussion of

the various luminescence models we have referred
to examples of TL and OSL behavior extracted
from studies of materials of signi®cance for dating,

i.e. quartz and feldspars. The detailed experimental
behavior is described more fully in the accompany-
ing papers in this issue, and we do not intend to

repeat this information here. We wish to emphasize,
however, some additional general points which
emerge from a consideration of the possible lumi-
nescence models described in the preceding sections.

With regard to the bleaching of TL, the central
assertion is that exposure of the material to light

(sunlight) will give rise to a reduction of the TL sig-
nal due to the emptying of the charge from the trap
responsible for that signal. In this way, the ``TL

clock'' is reset to zero. There are a number of prac-
tical issues which need to be accounted for in deter-
mining whether or not the TL is in fact ``zeroed''

(including the wavelength distribution of the light,
the intensity and time of bleaching, the temperature
at which the bleaching took place, whether the

bleaching was in air or in water, etc.).
Notwithstanding these serious practical consider-
ations, however, one of the points considered in the
foregoing discussions was the possibility that a cer-

tain TL signal may not be zeroed in principle. Two
possible models were reviewed, each of which could
lead to the situation where a TL peak may be

reduced by light exposure, but for which it would
be impossible for the light to completely zero the
signal ± even if the exposure were to take place for

an in®nite amount of time. These models were
those of Chen et al. (1990), and McKeever (1991)
(Fig. 15).

The point here is not that these models have been
proved (or disproved) to be representative of the
actual situation with any given material, but simply
that it is possible that such an e�ect could occur.

As a result, there emerges the necessity of thorough
experimental investigations to verify in fact that the
mechanism giving rise to the reduction of a given

TL signal is indeed that of the release of charge
from the responsible trap. Such appears to be the
case for the so-called ``3258C'' TL peak in quartz,

as described in the accompanying paper by
Spooner. The situation regarding the so-called
``3708C'' peak, however, is far from clear. This
``hard-to-bleach'' signal may indeed be one that it is

not possible to zero, as originally suggested by
McKeever (1991). Franklin et al. (1995) go further
to suggest that the ``3258C traps'' and the ``3708C
traps'' are part of two di�erent ``families'' of centers
within quartz. The former group includes the traps
responsible for the OSL signal (probably the same

traps as those responsible for the 3258C TL peak)
and those responsible for the 1108C TL peak.

4.3. Sensitivity changes

Throughout the history of TL studies there have
been many models put forward to explain changes
in the sensitivity of TL materials. Studies of such

changes in TL dosimetry materials have demon-
strated a link between the changes in sensitivity and
the non-linear properties of the TL dose±response

curve. As noted in this paper, such non-linear prop-
erties may be linked to competition e�ects between
the various trapping and recombination levels that
exist in the materials of interest. In recent studies it
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has become clear that such competition e�ects may
also be responsible for sensitivity changes in ma-

terials of interest to TL (and OSL) dating. Also rel-
evant here is how and why sensitivity di�erences
exist between similar materials of di�erent origin.

For example, large di�erences in OSL sensitivity
exist between sedimentary quartz and quartz from
heated archaeological samples (Aitken and Smith,

1988; Bùtter-Jensen and Duller, 1992). Sensitivity
variations from sample to sample are especially pro-
blematic in the use of silicate materials as lumines-

cence dosimeters in retrospective dosimetry in
which a range of materials must necessarily be col-
lected from a wide geographical area (Bùtter-Jensen
et al., 1995a). (For a detailed description of retro-

spective dosimetry the reader is referred to the
paper by Baili� in this issue.) It becomes relevant
to ask, therefore, if all such sensitivity changes and

variations can be explained on the basis of compe-
tition e�ects.
Bùtter-Jensen et al. (1995b) examined TL, PTTL

and OSL sensitivity changes in quartz as a result of
annealing using the same model as illustrated in
Fig. 18 (namely an optically active trap, a shallow

trap, a deep trap, a radiative center and a non-
radiative center). Changes in sensitivity as a result
of annealing are well known for quartz. Studies
have highlighted the increase in the luminescence

e�ciency of TL and radioluminescence (RL)
(McKeever et al., 1983; Chen et al., 1988), and of
OSL (Bùtter-Jensen et al., 1993), along with altera-

tions in the TL emission spectra (Hashimoto et al.,
1994). Other observations included the inducement
of a non-linearity into the TL or OSL growth curve

after annealing (Bùtter-Jensen et al., 1995b). Based
on these observations Bùtter-Jensen et al. (1995b)
used the model of Fig. 18 to propose that the
annealing either removed non-radiative, competing

recombination centers, or created radiative recombi-
nation centers. Numerical solutions to the rate
equations describing the production of OSL using

this model were shown to mimic the sensitivity
changes found in practice, including the inducement
of the non-linear growth curve. No distinction

could be made, however, between the ``center-
removal'' or the ``center-creation'' models.

4.4. Single-aliquot procedures

OSL single-aliquot dating is growing in popular-
ity as a dating tool and detailed descriptions of it
can be found in the paper on dating protocols by

Wintle in this issue. Sensitivity changes associated
with the re-use of the same aliquot are also proble-
matic with these protocols, especially the regener-

ation single-aliquot method (Duller, 1991, 1994,
1995; Richardson, 1994). Speculations based on ex-
perimental data (Li and Wintle, 1992) and compu-
ter simulations (McKeever and Morris, 1994) have

indicated that here too the sensitivity changes may

be the result of changes in the occupancies of the

various traps altering the competition pathways

available for charge during irradiation and readout.

McKeever and colleagues therefore used the model

of Fig. 18 once again to simulate sensitivity changes

for both annealed (McKeever et al., 1996) and

unannealed quartz (McKeever et al., 1997). The

simulations showed that sensitivity changes will

result from the accumulation of charge in deep,

hard-to-bleach, competing traps and the results of

the simulations compared very well with the exper-

imental data obtained for both quartz and feldspar.

Example data for a simulated regeneration single-

aliquot procedure are shown in Fig. 23.

Using the model of Fig. 18 McKeever et al.

(1997) predicted the dependence of the sensitivity

changes upon various parameters, including natural

dose, readout method and laboratory added dose.

With respect to the latter they showed that the sen-

sitivity changes are insensitive to the size of the

added dose. This in fact is the central assumption

in the single aliquot regeneration and added dose

(SARA) method suggested by Mejdahl and Bùtter-

Jensen (1994). In this technique one gives a di�erent

added dose (0, b1, b2, b3) to each of four samples

and performs a single-aliquot regeneration pro-

cedure on each of them, so determining the appar-

ent equivalent doses, DE1, DE2, DE3 and DE4 in

each case. A plot of DE against added dose then

reveals the true equivalent dose from the intercept

on the added dose axis by extrapolation of the line

to DE=0. The major assumption that the sensitivity

changes are approximately the same for all added

doses seems to be supported by the computer simu-

lations.

Fig. 23. Simulated OSL sensitivity changes, using the
model of Fig. 18, for di�erent bleaching times and con-

ditions.
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5. WHERE DOES MODELING GO FROM
HERE?

Returning to the remarks made in the

Introduction to this paper concerning the need for

modeling studies, we believe that the detailed dis-

cussions which we have presented do indeed sup-

port the view that modeling is important for the

purpose of determining if suggested mechanisms

can indeed produce the e�ects observed in practice.

We believe we have demonstrated that the detailed

examinations of proposed models can point to the

way to proceed in practical developments and can

give con®dence and support to the adopted proto-

cols.

However, we perceive some problems with model-

ing and the way that such studies have developed

over the years. The ®rst is the fact that many

authors propose this model or that model to

explain their data without any attempt to test actual

behavior of the model proposed. Hand-waving

arguments are the norm. While acceptable as a

starting point, leaving the model at that juncture is

unsatisfactory. Even the simplest of models to

explain TL and OSL involve sets of coupled, non-

linear, ®rst-order, di�erential equations. The

detailed behaviors of such systems are notoriously

di�cult to predict. The systems described by these

equations are almost chaotic in that the behavior is

deterministic but unpredictable. Certain behaviors

are sensitive to certain parameters, but not to

others. Other behaviors are sensitive to di�erent

sets of parameters. What does emerge from a study

and testing of particular models is an appreciation

of what is possible with the model, and what is not

possible.

A second disturbing feature of model develop-

ment is that it has proceeded entirely ad hoc, i.e.

models have been proposed to explain a certain ob-

servation ± most often without regard to how well

that model succeeds in explaining other behaviors

in the same material. Indeed, often two or more

models may be suggested to explain di�erent beha-

viors of a material without regard as to whether or

not the models are compatible with each other. One

obvious example of this is the model suggested to

explain the pre-dose e�ect in quartz, and the model

suggested to explain other sensitivity changes in the

TL, PTTL and OSL in the same material, as

described in the previous section. The pre-dose

e�ect (the model for which has not been described

in this paper) was observed initially by Zimmerman

(1971) and a model was proposed based on the

transfer of holes between centers (so-called lumines-

cence (L) and reservoir (R) centers). The e�ect may

be reversed by illuminating the sample with light

(UV-reversal). This e�ect, and the sensitization

e�ects already discussed in this paper (e.g. during

single-aliquot usage) each involve irradiation, heat-

ing and illumination phases, but each model has

been developed entirely separately from the other.
So far, no attempt has been made to unify the

models, i.e. to present a single model to explain
both e�ects.
In our view uni®cation of models is an essential

step for the future. When developing models to
explain our data we should be continuously mindful
of existing suggestions to explain other data in the

same material. Our aim should be to reduce the
plethora of models which have emerged, and which
only serves to confuse.
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