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Abstract--A new possible explanation is given to the anomalous fading of thermoluminescence (TL), 
observed in some materials. It is suggested that anomalous fading may, in some cases, be normal fading 
in disguise. The existence of non-radiative centers which are competing with the radiative luminescence 
center may cause the occurrence of a very narrow TL peak. The apparent kinetics parameters, say Eapp 
and sapp in first order kinetics, may appear to be much larger than the real values due to the narrowing 
of the peak. This, in turn, results in the expectation of a very long decay time, za~p, at, for example, room 
temperature. The real values of the parameters are, however, such that the loss of trapped carriers is orders 
of magnitude faster. The details of the model are given in terms of rate equations, as well as examples 
of numerical solutions during excitation followed by relaxation and then heating during the read-out 
phase. From these, the effective expected lifetimes were up to five orders of magnitude larger than that 
of the observable effect, which can explain, at least in some cases, the anomalous fading. © 1997 Elsevier 
Science Ltd 

1. INTRODUCTION 

It is well known that when an excited sample is held 
at a temperature somewhat below that of a 
thermoluminescence (TL) peak, a decay of the peak 
is expected with time, the decay being faster as the 
temperature approaches that of the maximum. This 
thermal decay of TL is obviously associated with the 
thermal probability of detrapping of carriers, 
normally given by ?(T) = s.exp( - E/kT) ,  where E is 
the activation energy of the trapped carrier (eV), k is 
the Boltzmann constant (eV.K- ~), T is temperature 
(K) and s is the frequency factor (s - ~). This function, 
?(T), occurs in all the expressions describing the 
occurrence of the TL peak with an increasing heating 
function T(t). It is obvious that if a sample is held at 
a constant temperature a little below that of the 
maximum, ?(T) will be large enough so that 
detrapping occurs at the given temperature. Thus, an 
effect of thermal fading is taking place since the 
expected TL that can be measured at a subsequent 
heating is expected to be lower than otherwise 
anticipated following a given excitation. This thermal 
fading is considered to be "normal". 

Many researchers found, however, that with 
certain materials, a decay of the expected TL occurs 
even when the sample is held at temperatures well 
below that of the TL peak; besides this, they found 
the decay was much faster than expected for the given 
trapping parameters and the temperature at which 
the sample is held. This effect was termed 
"anomalous" or "abnormal" fading. The first report 
on anomalous fading was given in 1950 for UV 

stimulated TL in diamond (Bull and Garlick, 1950). 
Two peaks at 400 and 520 K, observed while heating 
the sample at 2.5°C s-~, were found to yield lower 
light levels if stored at 90 K for 6 h before glowing 
than if glowed immediately. Another researcher who 
described this effect was Hoogenstraaten (1958) who 
reported the decay of light levels at low temperatures 
in ZnS samples doped with Cu, Co and CI. He 
explained the effect of decay as due to the quantum 
mechanical tunneling of electrons from traps to 
empty activation centers. The effect of TL anomalous 
fading was discovered later in various materials. 
Schulman et al. (1969) reported the effect in CaF2:Mn 
TL materials. Garlick and Robinson (1972) and Blair 
et al. (1972) found anomalous fading in lunar samples 
and, again, explained it by tunneling. Similar effects 
were found by Kieffer et al. (1971) in organic glasses. 
It is to be noted that in these measurements, no 
temperature dependence of the anomalous fading was 
reported. Wintle (1973) and (1977) measured the 
effect in various minerals at different temperatures 
and discussed its implications as regards the dating of 
archaeological samples. In particular, Wintle (1977) 
considered the phenomenon in feldspar samples in 
which the anomalous fading was temperature 
dependent. Wintle (1977) suggested three alternative 
possibilities to explain anomalous fading. (1) Defect 
diffusion which allows a non-radiative escape of 
trapped electrons when the diffusing defect encoun- 
ters a trapping site. Wintle states, however, that it is 
difficult to explain the fading at very low tempera- 
tures (for example, RT) as being due to the diffusion 
of defects and this seems to suggest that diffusion is 
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usually not the cause of anomalous fading. (2) Direct 
transfer of an electron from a trap to an adjacent 
center, as suggested by Garlick and Robinson (1972). 
The temperature dependence, reported by Wintle 
(1977), of the anomalous fading in feldspars needs, 
however, a more complicated model. (3) One should 
consider whether anomalous fading can be caused by 
the reduction in the number of effective recombina- 
tion centers with time. 

Visocekas et al. (1983) studied the afterglow in 
CaSOa:Dy and showed that after the initial 
irradiation, a weak afterglow is observed for a long 
period of time, with the same emission spectrum as 
the following TL. The peak used for dosimetry at 
~ 250°C decays down to LNT with time, at RT and 
below, practically independently of the temperature. 
The explanation given is that the afterglow and 
anomalous fading in the material result from a 
quantum mechanical tunneling effect. 

2. THE MODEL 

In a recent work, Chen and Hag-Yahya (1996) 
showed the possibility of explaining the occurrence of 
very high E and s values in some materials (e.g. peak 
V, in LiF) by assuming two competitors to the 

luminescent center. The transitions into these centers 
are assumed to be radiationless and cause the 
measured peak to be anomalously narrow. This, in 
turn, makes the apparent values of Eapp and Sapp, 
evaluated by curve fitting or by the shape methods, 
to be much higher than the real ones, while the peak 
shape still looks like a normal first order peak as 
further explained below. In a simulation, they showed 
that with given values of E =  1.2 eV and s =  
2.5 × l0 tl s-I,  effective values of Eapp = 2.115 eV and 
Sapp = 5.6 × 102o S t could be seen. 

To illustrate this point, we consider a simple 
equation given by Chen (1969), which utilizes the full 
width of a single TL peak to evaluate the activation 
energy, 

E = 2.29kT~/to. (1) 

Here, to = T2- T,, where Ti and 7]2 are the half 
intensity temperatures and Tm is the maximum 
temperature (all temperatures in K); k is the 
Boltzmann factor (eV'K- ') ;  and the activation 
energy, E, is in eV. It is evident that if by any artificial 
means, the peak looks narrower than otherwise 
expected, the apparent activation energy evaluated by 
equation (1) will be larger than the real one. Similar 
results are expected with other shape methods for 
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Fig. 1. Energy level model of one trapping state and three kinds of recombination centers. The transitions 
shown are those taking place during the excitation. The meaning of the different symbols is given in the 

text. 
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Fig. 2. Transitions during the heating of a sample with three recombination centers for the same model 
as Fig. 1. The meaning of the symbols are the same as Fig. 1. 

evaluating activation energies. Also, the curve f i t t i ng  

me thods  are utilizing the same features of the TL peak 
and, therefore, similar results are expected. Indeed, 
Chen and Hag-Yahya (1996) reported that under 
these circumstances, similar effective values of E are 
calculated from the shape methods and the best fit. 
Obviously, for a certain value of Tm, once we get a 
narrow peak with a high apparent value of E, 
denoted by Eapp, the accompanying value of sapp will 
be orders of magnitude higher than the "nornlal". 
This can be seen from the condition for the maximum 
intensity in a first-order peak, 

f l E / ( k T ~ )  = s exp( - E / kT m)  (2) 

where fl is the heating rate. This can be written as 

s = flE/(kT2m) exp (E / kT ~)  (3) 

and since E appears in the exponent, a large apparent 
value, Lapp, will result in an apparent value, s,pp, 
orders of magnitude higher than the original value 
of s. 

In the present work, we utilize similar ideas to give 
an alternative possible explanation of the anomalous 
fading. Again, we take a kinetic model of one 
trapping state and three kinds of recombination 
centers. We write the appropriate equations govern- 
ing the processes which are taking place and solve 
them numerically. This is in order to demonstrate the 
possibility of getting high effective values of the 
activation energy and frequency factor as compared 

to the real ones, which would explain the anomalous 
fading. The energy levels involved, and the transitions 
occurring during the excitation, are shown in Fig. 1. 
One trapping state is shown with an activation energy 
E (eV) and a frequency factor s (s-~). The 
concentration of this trap is N (m -3) and its 
instantaneous occupancy is n (m-3). Three recombi- 
nation centers, with concentrations of M~, M2 and M3 
(m -3) and occupancies mi, m2 and m3 (m-3), are 
assumed to participate in the process. During the 
excitation by external irradiation, the rate of pair 
production is x (m -3 s - ' ) .  The time during the 
excitation is denoted by t. Assuming a constant rate 
of excitation, the dose D of excitation is given by 
multiplying the rate, x, by the time of excitation tD, 
D = x . to .  The concentrations of free electrons and 
holes are nc and n~ (m - J), respectively. The transitions 
of holes into the centers are governed by the 
probabi l i t ies  B~, B2 and B3 (m 3 s-))  and recombina- 
tions during the excitation are also allowed, governed 
by Am~, Am2 and A~3 (m 3 s - ' ) .  In addition, retrapping 
of free electrons is allowed, associated with the 
retrapping probabi l i ty  A (m 3 s-I).  The equations 
governing the process at the excitation stage are 

d m , / d t  = - Am).m,'n¢ + B , (Mt  - m,)nv (4) 

dm: /d t  = - Am2"m2"nc + B2(M2 - m2)n~ (5) 

dm3/d t  = - A,,3"m3"nc + B3(M3 - m3)nv (6) 

d n / d t  = A ( N  - n)nc (7) 
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dnv/dt  = x - B, (M,  - m,)nv 

- Bz(M2 - m2)nv - B3(M3 - m3)nv (8) 

dnc/dt = d m , / d t  + dm2/dt  

+ dm3/dt  + dnv/dt  - d n / d t .  (9) 

The numerical solution of  these simultaneous 
differential equations was performed by the use of  a 
fifth order Runge-Kut ta  algorithm [see, for example, 
Zonneveld (1970)]. 

Following the excitation, a relaxation period is 
simulated. At the end of  the excitation, non-zero 
concentrations of  electrons in the conduction band 
and holes in the valence band are expected. In order 
to follow the normal experimental procedure, we 
should consider the relaxation time until the 
conduction and valence bands are practically empty. 
This is done numerically by solving the set of  
equations (4 ) - (9 )  while setting the excitation 
intensity, x, to zero. The numerical solution is 
performed using the same algorithm. 

The next stage is that of  the heating. The 
transitions involved are shown in Fig. 2. The trapped 
electrons are now thermally raised into the conduc- 
tion band and may recombine with the three centers 
M,, M2 and M3. Also, retrapping of  electrons with 
empty electron trapping states may take place. The 
equations governing the process are given by: 

- -  dma/dt  = A , , : m : n c  (10) 

- dmz /d t  = A,,2"m2"nc (l 1) 

-- dm3/dt  = A,,3"m3"nc (12) 

d n / d t  = - s-n.exp( - E / k T )  + A ( N -  n)'nc (13) 

dnc/dt  = drn~/dt + dm2/dt  + dm3/dt  - d n / d t .  (14) 

Here too, the numerical solution is performed using 
the same fifth order Runge-Kut ta  algorithm. 

Only the transitions into one of  the recombination 
centers, m2, is assumed to be measurable whereas the 
two others are assumed to be radiationless. Thus, the 
intensity of  emitted visible thermoluminescence is 
proportional to the rate of  change of  m5 and assuming 
the proportionality factor to be unity (which sets a 
certain set of  units to the emitted light), we can write 
the emitted light I ( T )  as 

I ( T )  = - d m J d t  . (15) 

3. N U M E R I C A L  R E S U L T S  

The parameters chosen for the trapping state are 
E = 0.7 eV and s = 106 s -  '. The decay time at room 
temperature for these traps is z = s  -~ exp(E/ 
k T )  = 5.75 x 105 s, which is just under a week. 
The other parameters chosen are: the retrapping 
probability, A = 1 × 10 -25 m 3 s - ' ;  the three recom- 
bination probabilities, Am, = 1.2 × 10- 's  m 3 s - l ,  
A,,5= 2.8 x 10-19m3s i, A, , ,3=7.  5 × 10-20m3s 1; 

the trapping probabilities for holes into the 
recombination centers, B, = 1 x 10 -z'  m 3 s - ' ,  
B2 = 1.1 × 10 -2' m 3 s - ' ,  B3 = 1.2 × 10 -z' m 3 s-1; 
the total concentration of  traps, N = 1.2 x 102' m-~; 
and the concentrations of  the three centers are chosen 
to be M, = Mz = M3 = 4 x 1050 m -3. The radiation 
intensity in the appropriate units is x =  5 × 
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Fig. 3. The rates of transitions into the three competing centers as a function of temperature: 
(a) - dmddt; (b) - dmddt  and (c) - dm3/dt, as calculated by the numerical solution of the sets of 
simultaneous differential equations. The values of the parameters chosen for the calculation are given in 

the text. 
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Fig. 4. Curve (b) from Fig. 3 which is assumed to be the only radiative, measurable TL emission. The 
chosen parameters are the same as Fig. 3. 

102o m -  3 s-  ' and the irradiation time is 200 s. The 
simultaneous equations governing the process during 
the excitation and heating are solved numerically in 
three stages, excitation, relaxation (in which the 
excitation intensity, x, is set to zero) and simulated 
emission of the TL, which is followed while 
mimicking the heating of the sample at a heating rate 
o f 5 K s  -~. 

Figure 3 depicts the curves of - dm, /d t ,  - dm2/dt 

and - d m 3 / d t  (curves a, b and c). As suggested 
above, only the middle curve is assumed to be 
measurable. Figure 4 shows only curve b; this looks 
exactly like a simple TL peak. The maximum 
temperature here is found to be 515 K (242°C). The 
symmetry factor is defined as /tg= 6/o9 where 
6 = T 2 - T m ,  t o = T 2 - T ~  and where Tm is the 
maximum temperature and T~, T: are the low and high 
temperatures at half intensity. Here, the value found 
is #g = 0.424, which is typical of first order kinetics. 
Using the equation for evaluating E from a first order 
kinetics peak yields E~pp = 1.3 eV. Using the equation 
for the maximum of a first order peak results in the 
apparent frequency factor to be s~pp = 1.6 x 10 ~2 s - '. 
With these values, the apparent lifetime at RT is 
found to be Z~pp = Sa~ x exp(E~pp/kT) = 4.3 x 109 s 
or ~ 137 y. The ratio between the apparent and real 
lifetimes is ~ 104. 

In a similar calculation, the activation energy 
chosen was E = 0.8 eV with all the other parameters 
kept the same. In this case, the lifetime expected at 
room temperature is z = s -~ e x p ( E / k T ) =  2.75 x 
107 s, which is about 45 weeks. When the calculation 
is carried out in a similar way to that discussed above, 
solving the same sets of equations numerically, we 

found a peak at 584 K (311 °C) which looks like a first 
order peak, with a shape factor of 0.425. The 
apparent activation energy and frequency factor 
found here are, respectively, Eapp= 1.5 eV and 
Sap p ~ 2 × 1012 s i, yielding Zap p = 7.9 x 1012 s, or 
~ 2.5 x 105 y. The ratio between the apparent and 
real lifetimes is Zapp/Z ~ 3 x 105. It is obvious that this 
is a demonstration of a situation in which one would 
expect no decay of the peak at any measurable length 
of time, but an observable decay of ~ 4.5% per two 
weeks can be found. 

4. CONCLUSION 

An alternative possibility for explaining anomalous 
fading as normal fading in disguise has been 
presented. The explanation is within the framework 
of the conventional kinetic theory, pertaining to 
transitions between trapping states and recombina- 
tion centers without resorting to the quantum-mech- 
anical tunneling effect which appears to be the reason 
for anomalous fading in some of the materials in 
which the effect occurs. In this case, the thermal 
detrapping associated with the E and s parameters of 
the TL peak in question is normal. However, the 
shape of the peak may be changed due to competition 
with non-radiative transitions. It has been shown that 
if the peak gets narrow due to competition of the 
radiative center with non-radiative centers, the 
apparent E~pp and sapp values will be significantly 
larger than the original ones, and therefore, the 
apparent lifetime, Zapp, will be orders of magnitude 
larger than the measured decay lifetime z. Two 
numerical examples are presented, in which the 
resulting glow peak looks like a genuine 
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first-order peak, but with apparent lifetimes 4-5 
orders of  magnitude larger than the real ones. This 
may be, in some cases, an explanation for anomalous 
fading. It is to be noted that this explanation can 
apply only to those cases where the anomalous fading 
is temperature dependent. 
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