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n the Computation of the Integral Appearing in anew ~~~~e~~~~~~~~ 

Dealing with the theories of thermoluminescence (TL) [l] and thermally srimu- 
lated currents (TSC) [2] one always has in the expression giving the intensity of the 
phenomenon the integral sFQ exp(--E/kr’) dT’? where E is the activation energy 
(ev), k-the Boltzmann constant (ev,/“K), T,, is the temperature (‘M) at .i&ich 
the crystal is excited before being heated, and 2’ the variable tem~erat~~re (“Kj. 
A method which is usually simpler and more accurate than numerical integration 
for evaluating the value of the integral is found by integration in parts [3, 41 of the 
same integral when the lower limit of integration is 0 instead of .T, : 

Thus the value of the needed integral is 151 

1: exp(-E/kT’) dT’ = F(T, E) - F{T,, , E). 
II 

Since F(T, E) is a very strongly increasing function of r, it is conventional to 
neglect F(T, ) E) in comparison to F(T, E), so that the right hand side of Eq. (1) 
is considered to represent the value of the integral (from TO) very well. The series 
on the right hand side of Eq. (1) is divergent but may give a good approxi~~at~o~ 
for the value of the integral as follows. If one takes ?V terms of this asymplotic 
series 

N 

the absolute value of the maximal possible error, 1 K, I -Nould not exceed the 
absolute value of the (N + 1)th term, ah,+l . Thus, 

The series in Eqs. (1) and (3) is very closely related to the Euler series [6]. 
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In previous treatment of Eq. (1) usually only the first term [3, 71 or first two 
terms [8] were taken as an approximation for the value of the integral. The former 
approach includes an error of IO-20 %. The latter one is reasonably good for the 
usual cases where EjkT is about 20 (error of about 1.5 ‘A), but becomes worse for 
extreme cases of EjkT m 10 appearing in certain cases, when the error can be of 
6 % or more. This is specially undesirable when first order glow curves are investi- 
gated since in this case the expression for the glow intensity includes the above 
mentioned integral appearing in the exponent: 

Z(T) = sn,exp(--E/kT)exp [-(s//3)/zoexp(-E/kT’)dT’] 

where s is the frequency factor (set-I), n, the initial concentration of electrons 
(cm-“) and p the heating rate (“K/set). In these cases it is desirable to take more 
terms in the series. This does not pose a serious problem when the glow curve is 
evaluated by the use of a computer [9, lo]. It is, however, of primary importance 
to decide the number of terms to be taken for optimal results and to evaluate the 
possible error for each case. 

The simple procedure for having the optimal value of the integral is taking the 
terms in the series down to the smallest one (or the preceding one), when the possible 
error would be about the same as this last term. Thus it is worthwhile taking N to 
be the highest number for which 1 aN/aAr-, I < 1. This can be written as 

(kT/E)N < 1. (6) 

Thus the number of terms, N, to be taken is the largest integer smaller than E/kT. 
The absolute value of the last term taken is (kT/E)N N! and the possible error is 
given again by Eq. (4) for the N fixed by Eq. (6). Since E/kT (and thus N too) is 
about 10 or more for all physically interesting cases, aN and aNfl differ only 
slightly from one another, but have opposite signs. One can take, therefore, &a, 
instead of aN as the last term in the series and by this reduce the maximal possible 
error to 

I R, I ,= 1 +aN+l / = +(kT/Q’+’ (N -t I)! :a Q(kT/E)N N! 

Let us define 0 ,( 01 < 1 such that 

EJkT= Nf a 
and thus have 

(7) 

(8) 

I/! R, j :% 3(N + CX)~/N! = 2NN(1 + CL/N)~/N! (9) 

Since we are dealing with N = 10 or more, we can use the Stirling formula 
N! m x’?%N~+~J%-~ and write (1 + a/N)N w e”. The possible error in the 
former would not exceed 1% and in the latter, about 5 %. 
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Thus we have now 

N + 01 is E,!kT by Eq. (8). By inserting E/kT instead of M in the square root. i:e 
may add an error of up to about 5 g/,, therefore 

1 RN 1 a d+rE/kT exp(-E/kT). 

Thus we have: an effective method to decide the number of terms to be taken in the 
series, an improvement by taking half of the last term thereby reducing the possible 
error to a half, and an effective method for estimating the error. In order to find 
the relative error we have to divide the term in Eq. (12) by the sum of the series, 
which can, for this purpose, be approximated by the first term kT/E, 

/ RN/Q / - v’+(E/kT)3 expj-EikT). 

For the case of interest, EjkT .XS 10, one has to take about 10 terms in the series 
and the possible relative error would be about 2 x 1P3, which would give very 
reasonable results for the calculated glow intensities. For E/kT e. 20 one may take 
20 terms in the series, thus having a possible relative error of about lO-T. This 
accuracy is not necessary in most cases and less terms can be taken when 3 is 
much larger than 10. 

As for the possible error generated by neglecting F(TO . E), it would be suficienj: 
to compare the first terms in F(T, E) and F(T, ) E). 8ne has 

fl(T0, E)/F(T. E) a (kT,“iE)exp(-EEik;S,!/[(kT”IE)exp(--Ei’k;r)j { 14; 

;vhich can be written 

F(T, ) E)/F(T, E) e (To/T)” exp[(E/kT)(l - TiTG)]. 

Since T > T, , this ratio will be smaller for larger values of E/kT. For the extreme 
cases of E/kT =X 10 one has to have T/T, = 1.55 in order to get an error which 
would not exceed 2 i: 1O-3 which was the possible error in evaluating F(T” E) 
Thus the value of T0 should be as low as possible when E/kT q 10 in order to have 
small errors while neglecting F(T, , E). In cases where the expression in (15) is 
quite high, one should calculate separately the value of F(T, - E) by Eq. (1) and 
subtract it from F(T, E). This would not cause any substantial difhculty as long as 
the calculations are carried out by the computer. 
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