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Abstract—An algorithm is developed for the location of p service centers with one or more continuous
demand areas. The method is based on the repeated solution of finite relaxation problems, Due to
the infini ber of d d points distributed on arbitrarily shaped, bounded regions, an
interactive computer graphical method is utilized. Here, the user has to determine the initial points
to be included in the relaxation set, to inspect on the screen at each stage whether a displayed
solution as demonstrated by circles covering the given demand region, is feasible, and if not, to
choose a “good” demand point to be added to the relaxation set. Using a desktop PC, various
problems were solved including locating optimally up to four centers over the area of Israel as a
demand region.

Keywords: Center problems, interactive method, planar location model.

INTRODUCTION

One of the popular criteria used to optimally locate new centers which are to serve given
demand points is the minimax criterion. Different versions of this problem appear in the
literature with different metrics (Chen and Handler, 1987; Drezner, 1984a, b; Elzinga and
Hearn, 1972; Elzinga et al., 1976; Vijay, 1985; Watson-Gandy, 1984) and on networks (see,
for example, Handler and Mirchandani, 1979) for single and multiple service centers to be
optimally located. In the present work, we are dealing with the solution of the p-center
location problem in Euclidean space. The term p-center is used for the problem of locating
p identical centers such that the demand points are served each by its closest service center.
We are concerned here with the uncapacitated version of the problem which means that
any call for service at a demand point can immediately be served by its closest center.
Chen and Handler (1987); and Vijay (1985) show that the problem is identical in the
equi-weighted situation to that of covering all the demand points by p circles, the radius
of the largest of which is to be minimized.

The minimax criterion is utilized in different situations such as when emergency facilities .
are located, in which case one may not be interested in minimizing the total cost but,
rather, the best (fastest) service to the farthest customer is of prime importance. The practical
application of this problem is that of positioning emergency centers when the effective
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distances are Euclidean, which is the case in transportation problems where the vehicle
employed is, say, a helicopter or a boat. In fact, it has been shown that in problems related
to the travel of motor vehicles on dense road networks the distances can be approximated
as being proportional to the Euclidean distance (Love, 1988). Also included are the
interesting problems of covering a certain area by p broadcasting stations, amplification
stations used for the coverage of given areas by cellular phones and radar installations.
Coverage of given regions by p alarm sirens or lamps are also problems of the same sort.
Another important application is that of optimally locating and finding the minimal number
of defensive missiles with a given range, in order to cover a given region. In this situation,
the p-center problem is solved, as here, forp=1,2,3, ... until a value of p is found for
which the “p-radius” r, is not larger than the range of the defensive missile. The p-radius
is defined for a problem with a finite number of demand points as

r,= min max w min r; 1
X, cE* 1 J

where X, = {(x}, y)}f=1. 1y =@ = x)** (b — y)*1"{(ai b))}, are the locations of the

n demand points, with associated weights w,, usually assumed to be equal (unity), and

{(x), y)}f=1, are the p service centers to be located.

A special class of minimax location problems in Euclidean space with general constraints
and with a finite number of demand points has been suggested and solved by Brady and
Rosenthal (1980) for a single facility, and by Brady, Rosenthal and Young (1983) for the
multi-facility p-center version. These problems were solved to optimality by an interactive
user-computer graphical method.

In the present work we extend the Chen and Handler (1987) method of optimally solving
the p-center problem in Euclidean space to cases in which there is an infinite number of
demand points, distributed over one or more continuous regions. In this case, the finite
set {(a;, b)}i, is extended to include any point (g, b) in the demand area, and w, should
be replaced by a continuous weight function. Since the weights in the minimax problem
are usually considered to be equal in the first place, we will omit the weights, replacing
them by unity. The present problem is now formulated as

r = min max minr; 2)
X, < E? (a, )eC J

where r; = [(a — x)* + (b — y)*1"%, and C is the demand region which is a subset of E*.

THE RELAXATION METHOD

Chen and Handler (1987) developed a relaxation method for solving (1). They used an
idea, carried over from the solution of the p-center problem on a network (Handler and
Mirchandani, 1979), of solving iteratively the p-center problem for a sub-set of the demand
points. Once a feasible solution to the relaxed problem is found, its feasibility to the full-size
one is checked. If the full-size problem is not covered, a point farthest from its closest
center is added to the relaxed problem and the procedure is repeated. If the full-size
problem is covered, one has a feasible solution in hand, and the process continues to try
and find a better one. The algorithm terminates when it is shown that no better solution
of the relaxation problem can be reached. Some more details on the relaxation method
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for solving problems with a finite number of demand points are given in a concise way in
a recent work by Chen and Handler (1993).

The present work describes the extension of the relaxation method to solving (2). It has
been shown in an example by Handler and Rozman (1985) that an attempt to use the
relaxation method developed for a finite number of demand points to the continuous case
may result in convergence to a non-optimal solution. Their counter-example which consists
of the location of two service centers on a single link network is, in fact, a counter-example
in the present Euclidean case as well. These authors suggest a remedy which is a crucial
modification of the original relaxation algorithm. As described below, the same idea (with
some important modifications) is adapted in the present Euclidean distance problem. A
special feature of the present procedure is its interactive nature, capitalizing on the efficiency
of the human pattern recognition. At different stages, a human operator sees the problem
(the region to be covered) on the screen as well as the circles in the incumbent solution.
The operator has to make decisions which, at different stages, can be one of the following:

1. At the beginning, choose the points to be included in the initial relaxation problem.
2. Check and see whether the whole demand area is covered by the current solution circles.
3. If not, choose a “good™ uncovered point to be added to the relaxation set.

Human pattern recognition seems to be of great help in these stages, in particular when
an area which is not nicely defined geometrically is to be checked for coverage. It is to be
emphasized, however, that the method is optimal, and the difference between “good” and
“bad” user choices results only in the speed of convergence to optimality.

THE ALGORITHM FOR PROBLEMS WITH AN INFINITE NUMBER OF DEMAND POINTS

In this section we give the details of the new algorithm for finding the optimal coverage
of the infinite problem using relaxations. The first two steps are identical to those in the
finite problem algorithm (see Chen and Handler, 1987) and the third and fourth are different.
It is to be mentioned that the present version, which is crucial in the solution of the infinite
problem, can, in fact, be used for the finite problem as well, but was found to be relatively
inefficient for that case.

Step 1

Find an upper bound 7,. This can be achieved by geometrical considerations or,
alternatively, the optimal solution for p — | centers can be used as F,. Also, choose a set
R of m points (a;, b), i = 1, ..., m to be in the initial relaxation problem.

Step 2

As explained by Chen and Handler (1987), one should consider all (3) circles with any
3 points (out of the finite relaxation set) on the circumference, (3) circles with any 2 points
at the ends of a diamétér, and m degenerate circles of zero radius located at the m demand
points of the relaxation problem. Exclude circles built on triplets of points forming an
obtuse triangle [ e.g. see p. 110 in Rademacher and Toeplitz (1957) or p. 118 in Love et
al. (1988)] as well as circles with a radius in excess of the current 7.
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Step 3

For any of the circles remaining in Step 2 with a radius ¢; <7, we form a (0, 1) vector
q with m components (m is the number of points of the current R). If we denote by g; the
ith component of the vector q, we define g, =0ifry>cjand g, =1 if ry < c;, where r; is
the distance from the ith demand point to the center of the jth circle. The set of all the
vectors q makes up the matrix B. We now define a decision vector z composed of binary
decision variables z;, where z; =0 implies that the center of the jth circle is a candidate
center in the current solution. We now have to solve the Covering Problem (CP)

h = min 'z ' (&)
st..Bz>e . V

z; € {0, 1}

e=(1,..., 1)

The optimal value h is then the minimal number of centers required to cover all demand
points in R within a ‘maximal distance less than 7,. If h > p, there is no solution to the
present relaxation problem which indicates that the last existing solution to the full-size
problem is optimal. Otherwise, we have a better coverage to the relaxation problem. At
this point we have to distinguish between the finite and infinite problems. In many of the
methods used for solving the set covering problems, including the one utilized in the present
work (see below), the set covering solution is reached by going through some feasible
solutions. As long as the finite problem was concerned, it was found possible, and in fact,
very useful, to stop the set covering procedure once a feasible solution was reached and
check whether this was a feasible solution to the full-size problem and proceed from there.
As mentioned above, this may not result in a convergence to the optimum in the infinite
problem. A proof has been given for the parallel problem on networks in Handler and
Rozman (1985) where if each relaxation problem is solved to optimality, the process does
converge to an optimum of the full-size problem. This proof is translated to the present
case of Euclidean space in the Appendix. In the computation,_this can be performed in
one of the following ways. We repeat Step 3 as given for the finite problem several times,
where at each stage, once we get a coverage accompanied by F, =maX;;¢; where
J = {jlz; = 1}), we delete from the matrix B all the columns related to circles with radii
greater than or equal to 7, and continue until no cover for R can be found. A very attractive
alternative, which was employed here, is to deal with the relaxation problem R < E in
hand as any finite p-center problem, and solve it to optimality using a second relaxation
R, = R. The double relaxation problem with the demand set R, is solved at each stage
only to the point of finding a feasible solution. This double relaxation approach was found
to perform very successfully. :

Step 4

In the solution of the problem with a finite number of demand points, we check in this
step to see whether the h centers found in Step 3 cover the full-size problem with radius
7,. This means that for all i, we check if max, min, r;; < ¥, and return to Step 3. If not, we
choose an uncovered point from the original demand points to add to R, updatem = m + 1
and return to Step 2.
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Fig. 1. The area of Israel, optimally covered by two centers.

Step 4 is changed in the present infinite algorithm in such a way that we, by inspecting
the screen, check whether or not the optimal solution of Step 3 of the relaxed problem R
is feasible to the full-size problem. If so, this is the optimal solution sought. If, however,
the optimal solution to the first relaxation problem is not feasible to the full-size infinite
problem, the user adds an uncovered demand point judged to be far from its closest center,
and the algorithm returns to Step 2.

 IMPLEMENTATION

The set-covering algorithm utilized here was that devised by Bellmore and Ratliff, as
reported by Garfinrkel and Nemhauser (1972). Although the results reported here are rather
encouraging, it is possible that the use of more modern set covering methods (Balas and
Ng, 1989; Sassano, 1989) would expedite the solution process, and enable the handling of
larger problems. An IBM PC computer with 640K memory has been used. The program
has been written in Turbo-Pascal Version 5, and included graphical software.

As pointed out before by Chen and Handler (1987, 1993), and as is rather typical of
integer programming methods, the performance of the algorithm has been rather unpredict-
able. Contrary to what might be expected, no clear difference has been found between the
behavior in the case of simple geometrical shapes such as a square and triangle on the one
hand, and a “difficult” geometrical shape such as the map of Israel shown in Figs 1-3, and
for the same number of service centers p. Upon further reflection, this may not be considered
so strange since the map of Israel can be described as long and narrow. Such a shape may
be a relatively easy case for the algorithm because the choice of centers to which a demand
point can be assigned is limited to two neighbouring centers.! In further numerical
experiments, a problem with a circular demand area turned out to be difficult to solve for
p > 2. In any case, we depict here, for demonstration, the calculated results for the case of
the map of Israel.

In the following examples, four points were chosen in the initial relaxation. The optimal
solution found for thé Z-center problem, shown in Fig. 1, was found with 16 points in the

'We would like to thank the anonymous referee who made this point.
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Fig. 2. The area of Israel, optimally covered by three centers.

final relaxation problem R. The centers are located at the points (12.77, 2.29) and (4.53,
3.96), and the value of the solution is r, = 4.63. The total number of CP problems solved
to reach the optimal solution was 161; the largest matrix had the size of 16 x 90. The total
computation time was 8 min on the aforementioned PC computer.

Figure 2 shows the solution of the 3-center problem. The final relaxation problem R
here included 26 points. The optimal locations of the centers were at (3.05, 3.64), (8.63,
3.62) and (13.98, 1.42), and the value of the solution is r, = 3.19. The total number of CP
problems solved here was 829; the largest matrix was of 43 x 245. The total computation
time was 36 min. :

The problem with four centers was optimally solved using 28 points in the final relaxation
problem R. The optimal solution is depicted in Fig. 3. The optimal locations are now at
(14.95,2.01),(2.48,3.74), (10.5, 2.37) and (7.19, 3.70), and the value of the solutionisr, = 2.63.
The total number of CP problems solved here was 1108; the largest matrix was of 200 x 139.
The total computation time was about 60 min.

It is to be mentioned that the set-covering program utilized in Garfinkel and Nemhauser
(1971) produced all-integer cuts while looking for the solution. The number of cuts was

_1|LI>|||!|I|I|I|I|
[o] 2 a4 6 8

Fig. 3. The area of Israel, optimally covered by four centers.
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usually very small (typically 0-2); however, at some unpredictable instances, very many
cuts were produced before a solution could be found, which consumed too much of the
computer resources. In the present program we define 100 cuts as “too many”. In earlier
versions, we stopped the run when this occurred. A very simple way was found which could
overcome this difﬁculty in many cases. If the “too many cuts” situation occurs, a message
to this effect is given to the user. The user retains the current upper bound 7 F,, and chooses
another relaxation which is subsequently solved. This happened while solvmg the 4-center
problem, and has been overcome by choosing a different relaxation problem R. It appears
that the good chances for by-passing the “too many cuts” situation by choosing a different
relaxation are related to the rare occurrence of this undesirable situation.

In “difficult” problems of this kind, for example when a large number p of service centers
are to be located and the optimal solution may be hard to find, one may be willing to
accept a non-optimal solution. The acceptability of such a solution can be characterized
by finding lower and upper bounds on the optimal solution. The optimal solution of a
relaxation problem is, obviously, a lower bound 7, on the optimal solution of the full-size
(continuous in the present case) problem with the same number p of covering circles. Any
coverage of the full-size problem is an upper bound on the optimal solution. At each stage,
while checking for coverage, the program identifies the maximum distance r_,, from a
chosen set of demand points each to its closest center. With the incumbent centers, a set
of p circles with a maximum radius r,, is viewed on the screen, and the user judges whether
the whole area is covered. If so, r,, is the current upper bound. If not, r,,_is increased
until the p centers cover the whole demand area, and the new r,, is an upper bound.
Once the upper and lower bounds are thus defined, the decision-maker may specify an
acceptable error (say, 5%), and the program would calculate at each stage
100 X (rmax — F,)/7,, and stop if this is smaller than the allowed percentage error. In the
examples above, however, the problems were solved to optimality.

DISCUSSION

‘It has. been demonstrated that the infinite demand points problem can be solved for
relatively “difficult” problems. Using the double relaxation technique and, where necessary,
the change of relaxation when “too many cuts” occur, problems of covering the area of
Israel by two, three and four centers were optimally solved. It was found that, usually, the
difficulty in solving the problems did not depend on the complexity of the geometrical
shape to be covered. Both in the cases of complex geometry and in “simpler” ones, it was
found that the critical circles in the solution had approxnmately the same radii. This means
that the p circles obtained had very similar radii r,. This is in contrast to the case with a
finite number of demand points where, typically, in an optimal solution, r,, only the largest
circle is “critical” whereas the other p — 1 circles could be shrunk wnthout changing the -
optimality or the value of the solution. However, if the area to be covered consists of two
or more disjoint continuous regions, the critical circles in the solution may not have the
same radii. [ .

A question may rise concerning the capability of the user to determine precisely whether
a set of circles fully covers the given area. This problem has only a theoretical interest
since, with the quite fine graphics used, the accuracy obtained has been adequate for all
practical purposes.
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It is quite obvious that the results discussed above are merely a demonstration of the
applicability of the method. Much larger problems can be solved by using more modern
CP covering methods, see for example, Balas and Ng (1989) and Rademacher and Toeplitz
(1957), and, of course, more powerful computers. When a very large problem is to be solved,
however, such that the optimal solution cannot be reached, the upper and lower bounds
mentioned can yield a reasonably good solution. )

An obvious further work that one can think of along the same lines is that of Chen and
Handler (1993): the «conditional” location of p centers in which one optimally locates p
centers to cover a given continuous region, when a number of existing centers are already
distributed over the same area.
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APPENDIX

TueoreM. The modified relaxation algorithm, in which each relaxation problem is solved to optimality, converges
to an optimal solution for the infinite p-center problem in Euclidean space.

Let us denote by 7, the optimal solution of the full-size problem, and by ry the optimal solutidn of the relaxation
problem where the relaxation set includes n demand points.
In order to prove the theorem, we will start with a set of lemmas.

LemMMa 1 1, < r:"Vn. While solving the CP (covering problem), we find an optimal solution for covering R.
Obviously, adding a point to R may not decrease the solution. This lemma may not be true while using the
previous algorithm, used for problems with finite number of demand points, in which at each stage, only a feasible
solution of the relaxation problem is sought.

LemMA 2 {3}, is a bounded sequence. In Step 1 of the algorithm we start with an upper bound F,. While

looking for a solution, we do not take into consideration circles with radii > F,. Thus forall n, ry <7,
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Lemma 3. {r}} is a convergent sequence. By lemmas 1 and 2, {r}}=., is a nondecreasing and bounded from
above seq Therefore, the seq| is convergent. Let us denote by X, the vector of p centers. Let us define
I(X,) = max, min, r;; where (a;, b)e E?j=1...p. Let us define IX,) = (X,) where R includes n points.

LemMMmad. 7, <r, <I'X,). (a) #, € r,. It is obvious that the optimal solution for a relaxation problem (n points)
is less than or equal to the optimal solution of the full-size problem.

() r, < M(X,). (X)) is a feasible solution to the full-size problem. Therefore, it is larger than or equal to the
optimal solution of the full-size problem.

LEMMA 5. lim,_ ,("(X,) — r}) = 0. Suppose, on the contrary, that lim, .. ,("(X,) — r}) = & > 0, that is, we have
a circle with a radius & which is not covered by the circles found in the solution of the relaxation problem. Let
us show that the number of times such an area can be left uncovered is finite. Let us denote the center of one
of the uncovered circles with radius é by pte. During the iterations, we add pte to R, and it will be covered in
all the future iterations. In the next iteration, since pte is covered, part of the circle, the center of which is pte,
is also covered, and therefore, according to the assumption above, there is another circle with radius 6 which is
not covered. By the assumption, at each iteration, at least one circle with radius § remains uncovered. We thus
have an infinite number of & circles, as opposed to the original assumption that the area is bounded. The
contradiction implies that the number of times 8 > 0 occurs is only finite, so that the original supposition cannot
hold, and the lemma is established. We are now ready to complete the proof:

THeoREM. The modified relaxation algorithm converges to the optimal solution.

Bylemma S, lim,_ ,(I"(X,)) = lim, ., 7. By lemma 4, #, <1, < I"(X,), and therefore, lim, _ ¥, =r,. This completes
the proof of the theorem.
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