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Abstract—Nonlinearities often occur in the dose dependence of thermoluminescence (TL). These include
sublinearity, usually when there is an approach to saturation in the dose dependence, as well as
supralinearity, also termed superlinearity in the literature. Different researchers in the field have viewed
the effect of supralinearity/superlinearity from two somewhat different points of view. One point of view
has to do with the rate of change with dose of the dose dependence function. The other approach is relaied
more to the applications of TL in dosimetry and archaeological and geological dating, and basically has
to do with the correction to be made in extrapolation in cases where supra(super)linearity occurs following
an initial linear dose range, or prior to such a linear range. In the present work we propose quantitative

methods to characterize these nonlinearities. We suggest the use of two different nonlmeanty indices,

depending upon how one wishes to describe the nonlinearity We propose use of the term “supralinearity
index”, f(n\ in cases where the feature of interest is the deviation from linearity, namely, when the

....... \&), 10 cases wihcre thc lcaturc ol inlerest 1s 1hC deviation lrom Hncanty, namely nen e

correcuon in extrapolation is the main issue. We propose the term “superlinearity index” g(D) in dose

ranges where the growth is “more than linear”

1. INTRODUCTION

PerHAPS the most significant feature of thermolu-
minescence (TL) when applied to radiation dosimetry
and to dating of archaeological or geological samples,
is the dose dependence. For these applications, the
desired behavior of the material is a linear dose
dependence over as broad a dose range as possible.
At higher doses, the common behavior is that of an

annroach to caturatian
approacn ¢ saturatuon,
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as a sublinear dose dependence. In many materials,
however, ranges of supralinearity, also termed super-
linearity, occur. Beside the linguistic ambiguity, no
unique definition of supralinearity, or superlinearity,
is accepted in the literature beyond the general feeling
that in such a range the TL intensity (measured either
as maximum peak intensity or total area) grows
“more than linearly” with the dose.

Nonlinear growth of TL as a function of absorbed
dose has been discussed in some detail in a book by
Cameron et al. (1968). The discussion was based on
studies published by Cameron’s group: Wagner and

4 < th 1 d
Cameron (1966) and Suntharalingam and Cameron

(1967). In fact, a previous paper by Cameron et al.
(1964) shows a slight ‘“more-than-linear” growth
(their Fig. 4) in the dose dependence of LiF pow-
der; however, neither of the terms “supralinearity”
or “‘superlinearity” were used at that time. Initial
work was concentrated on the main TL dosimeter

and when extrapolation is not the main issue. We
mathematically define each of these indices and give examples of their use for different dose dependencies.

in use during that period, namely the TLD-100
(LiF :Mg,Ti). Several other researchers (e.g. Zimmer-
man, 1971) reported that the nonlinear range follows
an initial linear region. Zimmerman (1972) reported
similar results in CaF,. The characteristic of this type
of dose havior (for § or y irradiation) is that linearity
is observed up to a certain absorbed dose (for TLD-
100 this is ~ 100 Gy) and this is then followed by a
range of nonlinearity (i.e. increasing slope) which in
turn is followed by a transition to a sublinear range
and an approach to saturation (see Fig. 1). Gorbics
et al. (1973) plotted the TL light sum response per
roentgen, normalized to 1.00 at 1000 R. This plot
showed the nonlinear part by having the relative
response per roentgen larﬂer than unity above
1000 R. Slmllar plots to those obtained by Gorbics
et al. were given more recently by Mische and
McKeever (1989) for a variety of LiF sampies, doped
with different amounts of Mg, and some examples are
shown in Fig. 2.

A first theoretical account of this type of behav-
ior, termed ‘“‘supralinearity” by many authors (e.g.

Oiarhing 22 A1 1072 darauat> 1004, 1004L  10QN0.
JOT0ICS €1 G, 1710, N10IOWILZ, 170%4, 17090, 177V,

McKeever, 1985; Mische and McKeever, 1989) was
given by Cameron and Zimmerman (1965). They
proposed a model in which additional traps were
created by the radiation causing the TL response to
grow more rapidly than linear. A further theoretical

work, with better agreement with the experimental
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Fi1G. 1. Supralinearity and superlinearity in the TLD-100 (after Zimmerman, 1971). In the low dose, linear

region g(D)=f(D) =1 (see text for definitions); in the nonlinear, high dose region, both g (D) and f (D)

start off greater than 1. At the highest doses, however, g (D) becomes <1, but still f(D)> 1. Thus, a
dose response may be supralinear, but not superlinear, over certain dose ranges.

results, was given by Zimmerman and Cameron
(1968). These authors presented a model which had
to do with filling existing traps only (i.. no trap
creation), in the presence of a nonradiative competi-
tor which is active during the excitation. Further
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FiG. 2. Plot of f(D) vs D for various samples of LiF:Mg

(after Mische and McKeever, 1989). f(D) is termed the

“dose response” here, but was defined by Mische and

McKeever according to equation (8). The samples used for

these data were TLD-700 and LiF:Mg, doped with either
50 or 450 ppm Mg.

calculations along the same lines were later given by
Chen and Bowman (1978).

Another kind of nonlinear growth was reported by
Halperin and Chen (1966). These authors used the
term ‘“‘superlinearity” to describe the dose depen-
dence of TL in semiconducting diamonds irradiated
by UV light. In this case, for a range of wavelengths
between 300 and 400 nm, the dose dependence was
strongly nonlinear as of the lowest measurable doses
D of UV irradiation without any linear region being
observed, and could be described as being pro-
portional to D*. The index k was found to be between
2 and 3 (depending on the excitation wavelength) up
to a point where saturation effects occurred. The
authors plotted their results on a log—log scale and
superlinearity was revealed by having, in a certain
dose range, a straight line with a slope larger than
unity (Fig. 3). The authors explained their results to
be due to a multistage transition of charge carriers
during the excitation period.

Further results of the same nature were later found
by Rodine and Land (1971) who reported a dose
dependence of ~ D ?in one peak out of a series of TL
peaks in UV-irradiated ThO,. They suggested a
model which was related to the occurrence of compe-
tition during the heating phase. This model was later
developed by Kristianpoller ez al. (1974) and the same
theory was later utilized by Chen er al. (1988) to
explain their findings of strong superlinearity (up to
D?) in the 110°C peak in synthetic quartz under 8
irradiation (see also Chen and Fogel (1993)). Contin-
uing this line of discussion, Mische and McKeever
(1989) demonstrated that the previously discussed
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Fi1G. 3. Superlinearity of the 260 K peak in two samples of

semiconducting diamond (redrawn from Halperin and Chen

(1966)). I, is the height of the 260 K peak and the dotted

line shows the line of linearity. There is no obvious linear

region for the curves and therefore g(D)> 1, but f(D)

cannot be defined. Thus, a dose response may be superlin-
ear, but not supralinear.

nonlinear dose dependence of the LiF TLD-100 (see
Fig. 1) was also due to competition during the heating

ctage with the linear region nrecaedine the nonlinear
Stage, Wil wlC inkar ICEIon ProCCillg il Noninear

range being the result of spatial correlation between
the relevant traps and centers (see also McKeever,
1990a). The principle of competition during heating
is also central to the development of track interaction
theory as a means of understanding the nonlinearities
in the dose response of materials irradiated with
heavy charged particles (Moscovitch and Horowitz,
1988; Horowitz, 1990; Horowiiz and
Rosenkrantz, 1990).

Yet another kind of nonlinearity was reported for
the first time by Tite (1966) (see also the book by
Aitken (1974)) in pottery samples, consisting mainly
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dependence was nonlinear and this behavior was
followed by a broad range of linear dependence on
the absorbed § or y dose. The amount of supralinear-
ity was defined by the measured parameter A (see
Fig. 4) which represents the so-called “‘supralinearity
correction’, i.e. the intercept of the linear portion
of the curve with the dose axis.

it is clear from the above discussion that noniinear-
ities in TL growth curves manifest themselves in a
variety of ways. However, there appears to be no
agreed-upon, formalized procedure for describing
these nonlinearities. Attempts to quantify the effects

oheervad include calculatiane of T1 /unit dase (e o
Coserved mciude ca:cuialions of ii./unil Gose (&.g.

Gorbics et al., 1973), taking the slope of a log TL
versus log D plot (e.g. Halperin and Chen, 1966;
Rodine and Land, 1971), calculations of the factor by
which the TL is enhanced at high dose compared to
what one would get from an extrapolation of the low
dose behavior (e.g. Mische and McKeever, 1989), and
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FiG. 4. Supralinearity and superlinearity from pottery
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observed at low doses (in contrast to Fig. 1). Using the new
definition for f(D) (equation (9)) values of f(D) may be
determined. Thus, both f(D) and g (D) are greater than |

in the low dose region, but g(D) f(D) =1in the high
dose region.

estimating the intercept on the dose axis from a

oau(wa.rub cxtrdpumuuu Ul l.llC um:ar UUbC ICglUll
(Tite, 1966). Clearly, the field would benefit from a
degree of uniformity in the definitions used to de-
scribe the nonlinear behavior.

In the present work we would like to discuss the

“more than linear” erowth

characteristics of the
more than lnear growin

vilalialiwinsuls U1 e

described above in its different forms, and to suggest
a distinction in the way that these nonlinearities are
described which would indicate different features of
the nonlinear property. We further propose universal
“indices” to mathematically describe all forms of
nonlinearity. Specifically, we suggest the use of a
“superlinearity index” g (D) to give an indication of
change in the siope of the dose response (in all cases),
and a “supralinearity index” f(D) (previously used
by others) to signify the size of the correction term
required during extrapolation of the linear dose
region (in cases when such a region is present). We

axvnand on the nee af thace tarme in the cectiang to
€Xpandg on ne ust oI tnese erms in e secuons o

follow.

2. SUPERLINEARITY

As discussed by Chen and Bowman (1978), we
suggest that the term “superlinearity” be reserved to
refer to the increase in the derivative of the dose
dependence function. Let us denote by S the
measured TL signal—i.e. the maximum intensity, or
the total area of a peak—and D the absorbed dose.
The derivative of this function at a point D is dS/dD
(i.e. S’(D)), and an increase of the derivative at a

cartain maint ic avnraccad by atating that A2/ 4N 27
vwiwaill PUllll. 1D VApPIVIOVUL Uy otauus wiatu U/UU \l C

S(D)) is positive. Thus, d2S/dD?> 0 is defined as
representing ranges of superlinearity; d*:S/dD%<0
characterizes ranges of sublinearity; and, of course,
d’S/dD? = 0 means a range of linearity. The difficulty
with this definition is that it is merely qualitative since

it has to do with the sign of the second derivative
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only. We would like to propose here a normalized
quantity that would not only describe the qualitative
feature of being super- or sub-linear, but which would
also be a quantitative measure of this property
Murcover, one of lnC ways to Qetec‘l supemncaruy lb
by plotting the results on a log-log scale. In this
presentation of a function that has the form S o« D*,
the slope is found on this scale to be k and is a direct

measure of the degree of superlinearity (or of sublin-
aarityl We think that if ane definec a

carily;. we ning tnat i one Ganes a t 1agnitude

Hiagriituav

which evaluates numerically the amount of superlin-
earity, it would be of great help if this magnitude is
indeed k in the special case in which S oc D

We propose here the function:

g(D>=L———DS”(D)J+1

S(D)
calied the “‘superlinearity index”. As long as we are
dealing with a range of an increasing dose depen-
dence, i.e. S(D)>0, it is obvious that g(D)>1
indicates superlinearity (since S”(D)> 0). Further-
more, g(D)=1 means a range of linearity, and

N oy e I

g \D} < l blgillllcb buUllilCdlily ll. <an lUd.Llll)’ UC SCCIn
that DS”(D)/S(D) is a dimensionless number,
which makes g(D) a dimensionless function, and
makes legal the addition of unity. It is quite obvious
that taking S(D)= aD* results in g(D) =k, as in-

|nq"v reauested. In fact, even for S Q(n\ — aD* + R we

itiall .“,uwtw I 1 fo = oD
get g(D) =

In order to understand better the significance of
this new quantity g(D), let us consider some particu-
lar cases.

(1) While plotting log S vs log D, ranges of slopes
larger than unity occur (see Halperin and Chen,
1966; Chen et al., 1988) in which the slope varies
Wllﬂ me GOSC 11’1 a CCl’ldlIl range, say, II'UIl’l 203 3. Let
us consider the function:

M

~N2 1 an3
Ao+ po°.

—
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S{D)=
One readily gets:
g(D)= (2aD + 68D*)/(2aD + 3pD?) + 1. ?3)

This yields g(D) =2 for low doses and g(D) =3 for
high doses, and, of course, a transition from 2 to 3
in between.

(N Annthar intare

{2) Another interesting p
ranges in which there is an approach to saturation.
One example of such behavior is the function:

S = S,(1 —e D), 4
for y > 0. Using equation (1), one gets
gD)=1-yD ®)

which may be approximately unity, positive but less
than unity, zero or negative, depending on the dose
D. Of course, g(D) < 1 always indicates sublinearity.

(3) Let us consider the hypothetical case of strong
superlinearity, i.e.

S(D) = Sye'l. 6

R. CHEN and S. W. S. McKEEVER

This yields:

g(D)=yD +1. )]
The main feature of this is that the superlinearity
starts as being ~ 1 at low doses, which represents a
nearly linear behavior at low doses, where
e’? =1+ yD. At higher doses, the amount of super-

linearity g(D) grows steadily as more terms of higher
order are to be included in the series expansion of

plD In other words. the denendence of (D) (linearly)
.21 OlNer WOrgGs, ne gepenaence C1 gl ) umneany)

on D demonstrates the very rapid increase of
S(D) = S,e’” and its derivatives.

3. SUPRALINEARITY

As pointed out in the Introduction, a number of
materials have the characteristic property depicted in
Fig. i, namely, an initiai linear range which is foi-
lowed by a nonlinear (i.e. superlinear) region before
saturation effects set in. Along with previous authors
we describe this property as “supralinearity” and, as
shown above in Fig. 2, past authors have presented
the amount of supralinearity as response per unit of
dose, normalized to a dose in the initial linear range.
Some authors (e.g. Horowitz, 1981; Mische and
McKeever, 1989) utilized explicitly the dimensionless
function f(D):

J(D)=[S(D)/DYIS(D)/D\] ®)

termed by these authors as either the “supralinearity
index”, or the “dose response function”. Here D, is
the normalization dose in the linear range and graphi-
cal examples of the function f(D) are shown in
Fig. 2. (In Fig. 2, f(D) is called the “dose response
function” but is defined according to equation 8).)

.................... PO . s e
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f(D), namely:

o [S@-ST][[s@-5T
S )—L D J/L D, J )
where Q,\ is the intercent on the TL axis of the

extrapolation of the linear region. Note that f(D)
cannot be defined at D =0.

For cases such as those shown in Fig. 1, it is clear
that S, = 0, and thus the new, more general definition
of f(D) is identical numerically to the older definition
of equation (8). However, the advantage of the new
definition is that it can be applied to cases such as that
illustrated in Fig. 4 in which the superlinear region
precedes the linear region. In this case it is impossible
to define f(D) according to equation (8); however,
equation (9) may be used by noting that for a dose
response of this type we have S; < 0. A negative value
for S, is valid since it has no physical meaning, but
now we see that f(D) > 1 in the low dose region (i.e.
that part of the dose dependence in which the TL
intensity is greater than that inferred from a back-
wards extrapolation of the linear region).

With this new definition of /(D) we see that as long
as the function S (D) is proportional to the dose then
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obviously f(D)=1 and in this case we see that
g(D)=1and f(D)=1 mean the same thma (How-

5\ PAUU AL T 2 TRAI AT alN AR ATARW
ever, as we will see below, for other cases g(D) =1
does not necessarily mean (D) =1, and vice-versa.)
Values of S (D) above the extrapolated linear portion
(e.g. in either Fig. 1 or Fig. 4) cause f(D) to be larger
than 1. It is obvious that in those dose ranges where
the function S (D) “takes off” above linearity, the
dose dependence is both superlinear and supralinear
U‘y our definitions. At mgucx doses, however, when
saturation effects start to occur, it may very well
happen that the curve is not superlinear any more
(d*S/dD?*<0, or g(D)< 1) but is still above the
extrapolated range and therefore f(D) > 1, i.c. supra-

Of course. f(D) monitors qur-ﬂ\/

COUrse, jJ 47, monliors cxacli

||nﬂar|f\r occurs
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the property it is supposed to monitor, namely the
amount of deviation from linearity, that is, the
amount to be considered for extrapolation purposes.

In cases (1) and (3) of the previous section, f(D)
cannot be defined since there is no linear region. In
case (2), (D) = 1 at low doses, and becomes less than
1 as saturation is approached.

Figure 5 depicts a hypothetical dose dependence
curve consisting of two straight segments intersecting
at the point D* (79 dose units in the example shown).
Obviously, no superlinearity occurs (excluding the
point at D = D* at which S(D) is not differentiable).

The value of the function in eguation (Y hawavar
4aC Va:ud O e uncuon in equatiln (7), nOwever,

depends upon the choice of “linear” region. If region
I is chosen as the linear part, then S,=0 and
f(D)=1upto D*, and is larger than | for D > D*.
However, if region II is chosen as the linear region,
then S, < 0 (in this example S, = — 158 TL units) and
thus f(D)> 1 for D < D* and f(D)=1for D = D*.
In either case, supralinearity is established in a curve
consisting of two linear ranges, for each of which
g(D)=1. How one would calculate /(D) in a case
like this is really a matter of choice, depending upon
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whether one wishes to infer TL values at high doses
by extrapolation of the low dose region, or vice versa.

The behavior of £(D) in the case illustrated is shown
in Fig. 6.

4. FURTHER DISCUSSION

Our purpose in this paper has been to devise
methods by which the extent and type of nonlinearity
in a TL growth curve can be quantitatively defined
and can be applied to all possible cases of non-linear
growth. It is not our purpose to discuss the relative
merits of the various models forwarded to explain the

origin of growth curve nonlinearities—a discussion
which is hpvnnd the scope of the present work. and

in any case, has been dealt with in many previous
publications (e.g. books by Chen and Kirsch, 1981;
McKeever, 1985; Horowitz, 1984a; and articles by
Horowitz, 1984b; McKeever, 1990a, b). Instead we
wish merely to propose a universal procedure for
quantifying the nonlinearity that is observed which,
we feel, is more exact than a qualitative—and
vague—description of the growth curve as being
simply ‘“‘superlinear” or “‘supralinear”.

There are several situations where one may wish to
have a universally agreed-upon method to describe
growth curve nonlinearities. For example, in TL

dagimeatry defining £fID\ and/ar o (D) allawe naten-
GOSUMETY, GOUNINEG j 4/, anG/Or g4/ aubWs poilhh

tial users of TLD materials to assess the degree of
difficulty that will be posed by the nonlinear property
in the particular application being considered. Thus,
f(D) and/or g(D), as defined in this paper, may be
quantified and used as a TLD parameter in much the
same way that ‘‘sensitivity”, or “lowest level of
detection™, are quantified and used now. For
exampie, one might describe /(D) at the dose D, at
which the maximum value of this function occurs.

Thus, by reference to Fig. 2 and to equation (9), one

TL intensity (arbitrary units)

D*

0 60

80 100 120 140 160

Absorbed dose (arbitrary dose units)

F1G. 5. Hypothetical dose dependence curve consisting of two. linear segments (I and 1I) with different
slones. D* (see text) is 79 arbitrary dose units. S. for region I is 0. while S. for region IT _1€0 l~adl
SiOPpes. A\SCC 18XL; 15 /7 aroirary GOSC umils. Sy (OF TCEIoH 1 18 U, Wili® 5 107 TCEion 11 is 106, 00Ul

in arbitrary TL units.
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FIG. 6. f(D) vs D as determined from the hypothetical case depicted in Fig. 5. Two calculations are shown,

depending upon the choice of linear region. If region I from Fig. 5 is chosen as the linear part (i.e. S, = 0)

then curve I (right-hand axis) is calculated from equation (9), using a value of D, of 40 arbitrary dose

units. If region II from Fig. 5 is chosen, then S; = — 158 arbitrary TL units and curve II (left-hand axis)
is calculated from equation (9), with D, = 110 arbitrary dose units.

would define f(D,,,) for the 50 ppm sample as 5.6
at 10°Gy, with S,=0". The complete function
f(D) would give the precise correction needed to
calculate the dose, assuming the dosimeter has been
normalized in the linear dose region (as is normal
practice).

From the figures presented in this paper we see
examples in which a growth curve can be supralinear,
but not superlinear (for example, Fig. 1 near
~10° Gy); or superlinear, but not supralinear (for
example, Fig. 3 for all doses). For other doses of
Fig. 1 we see regions in which the growth curve is
both superlinear and supralinear, and regions in
which it is neither. The definitions of (D) and g (D)
presented herein allow precise quantitative descrip-
tions for all of these regions.

5. SUMMARY

In the present paper we have tried to sort and
categorize the different aspects of dose dependencies
which are “faster than linear”. We propose a some-
what new nomenclature to distinguish between the
different features in question, and attach more
specific terms to different situations. We have
suggested the use of the term ‘“‘superlinearity” for all
cases in which d*S/dD? > 0. We have defined a new,
dimensionless function, called the “superlinearity in-
dex”, g (D), which makes the property of superlinear-
ity a quantitative measure, and discussed its values in
different situations. We have also discussed the prop-
erties of the previously defined dimensionless func-
tion, the “supralinearity index”, f(D), and suggested
a modified definition. The new definition is a quanti-
tative measure of the departure from linearity over
particular dose ranges.

Examples have been given of dose dependence
functions which are superlinear but not supralinear
over given ranges, and vice versa. The advantages of
the new functions g (D) and f(D) is that they allow
one to quantity the extent of the nonlinearity, and, at
the same time, distinguish between the type of nonlin-
earity observed. Most experimentally observed non-
linearities can now be quantified using these standard
definitions.
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