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Abstract-Nonlinearities often occur in the dose dependence of thermoluminescence (TL). These include 
sublinearity, usually when there is an approach to saturation in the dose dependence, as well as 
supralinearity, also termed superlinearity in the literature. Different researchers in the field have viewed 
the effect of supralinearity/superlinearity from two somewhat different points of view. One point of view 
has to do with the rate of change with dose of the dose dependence function. The other approach is related 
more to the applications of TL in dosimetry and archaeological and geological dating, and basically has 
to do with the correction to be made in extrapolation in cases where supra(super)linearity occurs following 
an initial linear dose range, or prior to such a linear range. In the present work we propose quantitative 
methods to characterize these nonlinearities. We suggest the use of two different nonlinearity indices, 
depending upon how one wishes to describe the nonlinearity. We propose use of the term “supralinearity 
index”, f (D ), in cases where the feature of interest is the deviation from linearity, namely, when the 
correction in extrapolation is the main issue. We propose the term “superlinearity index”, g (D ), in dose 
ranges where the growth is “more than linear” and when extrapolation is not the main issue. We 
mathematically define each of these indices and give examples of their use for different dose dependencies. 

1. INTRODUCTION 

PERHAPS the most significant feature of thermolu- 
minescence (TL) when applied to radiation dosimetry 
and to dating of archaeological or geological samples, 
is the dose dependence. For these applications, the 
desired behavior of the material is a linear dose 
dependence over as broad a dose range as possible. 
At higher doses, the common behavior is that of an 
approach to saturation, which is usually referred to 
as a sublinear dose dependence. In many materials, 
however, ranges of supralinearity, also termed super- 
linearity, occur. Beside the linguistic ambiguity, no 
unique definition of supralinearity, or superlinearity, 
is accepted in the literature beyond the general feeling 
that in such a range the TL intensity (measured either 
as maximum peak intensity or total area) grows 
“more than linearly” with the dose. 

Nonlinear growth of TL as a function of absorbed 
dose has been discussed in some detail in a book by 
Cameron et al. (1968). The discussion was based on 
studies published by Cameron’s group: Wagner and 
Cameron (1966) and Suntharalingam and Cameron 
(1967). In fact, a previous paper by Cameron et al. 
(1964) shows a slight “more-than-linear” growth 
(their Fig. 4) in the dose dependence of LiF pow- 
der; however, neither of the terms “supralinearity” 
or “superlinearity” were used at that time. Initial 
work was concentrated on the main TL dosimeter 

in use during that period, namely the TLD-100 
(LiF : Mg,Ti). Several other researchers (e.g. Zimmer- 
man, 1971) reported that the nonlinear range follows 
an initial linear region. Zimmerman (1972) reported 
similar results in CaF,. The characteristic of this type 
of dose havior (for /3 or y irradiation) is that linearity 
is observed up to a certain absorbed dose (for TLD- 
100 this is N 100 Gy) and this is then followed by a 
range of nonlinearity (i.e. increasing slope) which in 
turn is followed by a transition to a sublinear range 
and an approach to saturation (see Fig. 1). Gorbics 
et al. (1973) plotted the TL light sum response per 
roentgen, normalized to 1.00 at 1000 R. This plot 
showed the nonlinear part by having the relative 
response per roentgen larger than unity above 
1000 R. Similar plots to those obtained by Gorbics 
et al. were given more recently by Mische and 
McKeever (1989) for a variety of LiF samples, doped 
with different amounts of Mg, and some examples are 
shown in Fig. 2. 

A first theoretical account of this type of behav- 
ior, termed “supralinearity” by many authors (e.g. 
Gorbics et al., 1973; Horowitz, 1984a, 1984b, 1990; 
McKeever, 1985; Mische and McKeever, 1989) was 
given by Cameron and Zimmerman (1965). They 
proposed a model in which additional traps were 
created by the radiation causing the TL response to 
grow more rapidly than linear. A further theoretical 
work, with better agreement with the experimental 
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FIG. 1. Supralinearity and superlinearity in the TLD-100 (after Zimmerman, 1971). In the low dose, linear 
region g(D) =f(D) = 1 (see text for definitions); in the nonlinear, high dose region, both g (D) andf(D ) 
start off greater than 1. At the highest doses, however, g (D ) becomes Q 1, but still f(o ) > 1. Thus, a 

dose response may be supralinear, but not superlinear, over certain dose ranges. 

results, was given by Zimmerman and Cameron 
(1968). These authors presented a model which had 
to do with filling existing traps only (i.e. no trap 
creation), in the presence of a nonradiative competi- 
tor which is active during the excitation. Further 
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FIG. 2. Plot of f(D) vs D for various samples of LiF: Mg 
(after Mische and McKeever, 1989). f(o ) is termed the 
“dose response” here, but was defined by Mische and 
McKeever according to equation (8). The samples used for 
these data were TLD-700 and LiF:Mg, doped with either 

50 or 450ppm Mg. 

calculations along the same lines were later given by 
Chen and Bowman (1978). 

Another kind of nonlinear growth was reported by 
Halperin and Chen (1966). These authors used the 
term “superlinearity” to describe the dose depen- 
dence of TL in semiconducting diamonds irradiated 
by UV light. In this case, for a range of wavelengths 
between 300 and 400 nm, the dose dependence was 
strongly nonlinear as of the lowest measurable doses 
D of UV irradiation without any linear region being 
observed, and could be described as being pro- 
portional to Dk. The index k was found to be between 
2 and 3 (depending on the excitation wavelength) up 
to a point where saturation effects occurred. The 
authors plotted their results on a log-log scale and 
superlinearity was revealed by having, in a certain 
dose range, a straight line with a slope larger than 
unity (Fig. 3). The authors explained their results to 
be due to a multistage transition of charge carriers 
during the excitation period. 

Further results of the same nature were later found 
by Rodine and Land (1971) who reported a dose 
dependence of ND * in one peak out of a series of TL 
peaks in UV-irradiated ThOz. They suggested a 
model which was related to the occurrence of compe- 
tition during the heating phase. This model was later 
developed by Kristianpoller et al. (1974) and the same 
theory was later utilized by Chen et al. (1988) to 
explain their findings of strong superlinearity (up to 
D’) in the 110°C peak in synthetic quartz under j 
irradiation (see also Chen and Fogel (1993)). Contin- 
uing this line of discussion, Mische and McKeever 
(1989) demonstrated that the previously discussed 
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FIG. 3. Superlinearity of the 260 K peak in two samples of 
semiconducting diamond (redrawn from Halperin and Chen 
(1966)). Lx is the height of the 260 K peak and the dotted 
line shows the line of linearity. There is no obvious linear 
region for the curves and therefore g (D ) > 1, but f(D ) 
cannot be defined. Thus, a dose response may be superlin- 

ear, but not supralinear. 

nonlinear dose dependence of the LiF TLD-100 (see 
Fig. 1) was also due to competition during the heating 
stage, with the linear region preceding the nonlinear 
range being the result of spatial correlation between 
the relevant traps and centers (see also McKeever, 
1990a). The principle of competition during heating 
is also central to the development of track interaction 
theory as a means of understanding the nonlinearities 
in the dose response of materials irradiated with 
heavy charged particles (Moscovitch and Horowitz, 
1988; Horowitz, 1981, 1990; Horowitz and 
Rosenkrantz, 1990). 

Yet another kind of nonlinearity was reported for 
the first time by Tite (1966) (see also the book by 
Aitken (1974)) in pottery samples, consisting mainly 
of quartz. Here, in the range of up to _ 2 Gy, the dose 
dependence was nonlinear and this behavior was 
followed by a broad range of linear dependence on 
the absorbed fi or y dose. The amount of supralinear- 
ity was defined by the measured parameter A (see 
Fig. 4) which represents the so-called “supralinearity 
correction”, i.e. the intercept of the linear portion 
of the curve with the dose axis. 

It is clear from the above discussion that nonlinear- 
ities in TL growth curves manifest themselves in a 
variety of ways. However, there appears to be no 
agreed-upon, formalized procedure for describing 
these nonlinearities. Attempts to quantify the effects 
observed include calculations of TL/unit dose (e.g. 
Gorbics et al., 1973), taking the slope of a 1ogTL 
versus log D plot (e.g. Halperin and Chen, 1966; 
Rodine and Land, 1971), calculations of the factor by 
which the TL is enhanced at high dose compared to 
what one would get from an extrapolation of the low 
dose behavior (e.g. Mische and McKeever, 1989), and 
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FIG. 4. Supralinearity and superlinearity from pottery 
quartz (after Aitken (1974)). Here the nonlinear region is 
observed at low doses (in contrast to Fig. 1). Using the new 
definition for f(D ) (equation (9)) values of f(D) may be 
determined. Thus, bothf(D ) and g (D ) are greater than 1 
in the low dose region, but g(D) =f(D) = 1 in the high 

dose region. 

estimating the intercept on the dose axis from a 
backwards extrapolation of the linear dose region 
(Tite, 1966). Clearly, the field would benefit from a 
degree of uniformity in the definitions used to de- 
scribe the nonlinear behavior. 

In the present work we would like to discuss the 
characteristics of the “more than linear” growth 
described above in its different forms, and to suggest 
a distinction in the way that these nonlinearities are 
described which would indicate different features of 
the nonlinear property. We further propose universal 
“indices” to mathematically describe all forms of 
nonlinearity. Specifically, we suggest the use of a 
“superlinearity index” g (D ) to give an indication of 
change in the slope of the dose response (in all cases), 
and a “supralinearity index” f(D ) (previously used 
by others) to signify the size of the correction term 
required during extrapolation of the linear dose 
region (in cases when such a region is present). We 
expand on the use of these terms in the sections to 
follow. 

2. SUPERLINEARITY 

As discussed by Chen and Bowman (1978), we 
suggest that the term “superlinearity” be reserved to 
refer to the increase in the derivative of the dose 
dependence function. Let us denote by S the 
measured TL signal-i.e. the maximum intensity, or 
the total area of a peak-and D the absorbed dose. 
The derivative of this function at a point D is dS/dD 
(i.e. S'(D)), and an increase of the derivative at a 
certain point is expressed by stating that d*S/dD * (i.e. 
S “(D )) is positive. Thus, d*S/dD * > 0 is defined as 
representing ranges of superlinearity; d2S/dD * c 0 
characterizes ranges of sublinearity; and, of course, 
d*S/dD * = 0 means a range of linearity. The difficulty 
with this definition is that it is merely qualitative since 
it has to do with the sign of the second derivative 
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only. We would like to propose here a normalized 
quantity that would not only describe the qualitative 
feature of being super- or sub-linear, but which would 
also be a quantitative measure of this property. 
Moreover, one of the ways to detect superlinearity is 
by plotting the results on a log-log scale. In this 
presentation of a function that has the form S cc Dk, 
the slope is found on this scale to be k and is a direct 
measure of the degree of superlinearity (or of sublin- 
earity). We think that if one defines a magnitude 
which evaluates numerically the amount of superlin- 
earity, it would be of great help if this magnitude is 
indeed k in the special case in which S cc Dk. 

We propose here the function: 

g(D)= ~ 
[ 1 DS”(D) + 1 

S’(D) 
(1) 

called the “superlinearity index”. As long as we are 
dealing with a range of an increasing dose depen- 
dence, i.e. S’(D) > 0, it is obvious that g(D) > 1 
indicates superlinearity (since S”(D) > 0). Further- 
more, g(D) = 1 means a range of linearity, and 
g (D) < 1 signifies sublinearity. It can readily be seen 
that DS”(D)/S’(D) is a dimensionless number, 
which makes g(D) a dimensionless function, and 
makes legal the addition of unity. It is quite obvious 
that taking S(D) = aDk results in g(D) = k, as in- 
itially requested. In fact, even for S(D) = aDk + /? we 
get g(D) = k. 

In order to understand better the significance of 
this new quantity g(D), let us consider some particu- 
lar cases. 

(1) While plotting log S vs log D, ranges of slopes 
larger than unity occur (see Halperin and Chen, 
1966; Chen et al., 1988) in which the slope varies 
with the dose in a certain range, say, from 2 to 3. Let 
us consider the function: 

S(D) = aD’ + PO’. 

One readily gets: 

(2) 

g(D) = (2aD + 6fiD2)/(2aD + 3pD*) + I. (3) 

This yields g(D) = 2 for low doses and g(D) = 3 for 
high doses, and, of course, a transition from 2 to 3 
in between. 

(2) Another interesting point relates to the dose 
ranges in which there is an approach to saturation. 
One example of such behavior is the function: 

S = .S,( 1 - em@), (4) 

for y > 0. Using equation (I), one gets: 

g(D)= I- yD (5) 

This yields: 

g(D)=yD + I. (7) 

The main feature of this is that the superlinearity 
starts as being _ 1 at low doses, which represents a 
nearly linear behavior at low doses, where 
erO = 1 + yD. At higher doses, the amount of super- 
linearity g(D) grows steadily as more terms of higher 
order are to be included in the series expansion of 
eyD. In other words, the dependence of g(D) (linearly) 
on D demonstrates the very rapid increase of 
S(D) = S,e@ and its derivatives. 

3. SUPRALINEARITY 

As pointed out in the Introduction, a number of 
materials have the characteristic property depicted in 
Fig. I, namely, an initial linear range which is fol- 
lowed by a nonlinear (i.e. superlinear) region before 
saturation effects set in. Along with previous authors 
we describe this property as “supralinearity” and, as 
shown above in Fig. 2, past authors have presented 
the amount of supralinearity as response per unit of 
dose, normalized to a dose in the initial linear range. 
Some authors (e.g. Horowitz, 1981; Mische and 
McKeever, 1989) utilized explicitly the dimensionless 
function f(D): 

f(D) = 1s (DYDIl[~WlD,l 03) 
termed by these authors as either the “supralinearity 
index”, or the “dose response function”. Here D, is 
the normalization dose in the linear range and graphi- 
cal examples of the function f(D) are shown in 
Fig. 2. (In Fig. 2, f(D) is called the “dose response 
function” but is defined according to equation (8).) 

However, we propose here a modified definition of 
f(D), namely: 

f(D) = [ S(D;- “‘]I[ ‘(o;j; “1 (9) 

where .S, is the intercept on the TL axis of the 
extrapolation of the linear region. Note that f(D) 
cannot be defined at D = 0. 

For cases such as those shown in Fig. I, it is clear 
that So = 0, and thus the new, more general definition 
off(D) is identical numerically to the older definition 
of equation (8). However, the advantage of the new 
definition is that i: can be applied to cases such as that 
illustrated in Fig. 4 in which the superlinear region 
precedes the linear region. In this case it is impossible 
to define f(D) according to equation (8); however, 
equation (9) may be used by noting that for a dose 
response of this type we have S, < 0. A negative value 

which may be approximately unity, positive but less 
for S, is valid since it has no physical meaning, but 

than unity, zero or negative, depending on the dose 
now we see that f(D) > 1 in the low dose region (i.e. 

D. Of course, g(D) < 1 always indicates sublinearity. 
that part of the dose dependence in which the TL 

(3) Let us consider the hypothetical case of strong 
intensity is greater than that inferred from a back- 

superlinearity, i.e. 
wards extrapolation of the linear region). 

With this new definition off(D) we see that as long 
S(D) = .S,,eyD. 

_ 
(6) as the function S(D) is proportional to the dose then 
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obviously f(D) = 1 and in this case we see that 
g (D) = I and f(D) = 1 mean the same thing. (How- 
ever, as we will see below, for other cases g(D) = 1 
does not necessarily meanf(D) = 1, and vice-versa.) 
Values of S (D) above the extrapolated linear portion 
(e.g. in either Fig. 1 or Fig. 4) causef(D) to be larger 
than 1. It is obvious that in those dose ranges where 
the function S(D) “takes off” above linearity, the 
dose dependence is both superlinear and supralinear 
by our definitions. At higher doses, however, when 
saturation effects start to occur, it may very well 
happen that the curve is not superlinear any more 
(d*S/dD* < 0, or g(D) < 1) but is still above the 
extrapolated range and thereforef(D) > 1, i.e. supra- 
linearity occurs. Of course, f(D) monitors exactly 
the property it is supposed to monitor, namely the 
amount of deviation from linearity, that is, the 
amount to be considered for extrapolation purposes. 

In cases (1) and (3) of the previous section, f(D) 
cannot be defined since there is no linear region. In 
case (2),f(D) = 1 at low doses, and becomes less than 
1 as saturation is approached. 

Figure 5 depicts a hypothetical dose dependence 
curve consisting of two straight segments intersecting 
at the point D* (79 dose units in the example shown). 
Obviously, no superlinearity occurs (excluding the 
point at D = D* at which S(D) is not differentiable). 
The value of the function in equation (9) however, 
depends upon the choice of “linear” region. If region 
I is chosen as the linear part, then S, = 0 and 
f(D) = 1 up to D*, and is larger than 1 for D > D*. 
However, if region II is chosen as the linear region, 
then S, < 0 (in this example S, = - 158 TL units) and 
thusf(D) > 1 for D <D* andf(D) = 1 for D > D*. 
In either case, supralinearity is established in a curve 
consisting of two linear ranges, for each of which 
g (D) = 1. How one would calculate f(D) in a case 
like this is really a matter of choice, depending upon 

whether one wishes to infer TL values at high doses 
by extrapolation of the low dose region, or vice versa. 
The behavior off(D) in the case illustrated is shown 
in Fig. 6. 

4. FURTHER DISCUSSION 

Our purpose in this paper has been to devise 
methods by which the extent and type of nonlinearity 
in a TL growth curve can be quantitatively defined 
and can be applied to all possible cases of non-linear 
growth. It is not our purpose to discuss the relative 
merits of the various models forwarded to explain the 
origin of growth curve nonlinearities-a discussion 
which is beyond the scope of the present work, and, 
in any case, has been dealt with in many previous 
publications (e.g. books by Chen and Kirsch, 1981; 
McKeever, 1985; Horowitz, 1984a; and articles by 
Horowitz, 1984b; McKeever, 1990a, b). Instead we 
wish merely to propose a universal procedure for 
quantifying the nonlinearity that is observed which, 
we feel, is more exact than a qualitative-and 
vague--description of the growth curve as being 
simply “superlinear” or “supralinear”. 

There are several situations where one may wish to 
have a universally agreed-upon method to describe 
growth curve nonlinearities. For example, in TL 
dosimetry, defining f(D) and/or g (D) allows poten- 
tial users of TLD materials to assess the degree of 
difficulty that will be posed by the nonlinear property 
in the particular application being considered. Thus, 
f(D) and/or g(D), as defined in this paper, may be 
quantified and used as a TLD parameter in much the 
same way that “sensitivity”, or “lowest level of 
detection”, are quantified and used now. For 
example, one might describef(D) at the dose D,,, at 
which the maximum value of this function occurs. 
Thus, by reference to Fig. 2 and to equation (9) one 

Absorbed dose (arbitrary dose units) 
0 

FIG. 5. Hypothetical dose dependence curve consisting of two linear segments (I and II) with different 
slopes. D* (see text) is 79 arbitrary dose units. S, for region I is 0, while .S, for region II is - 158, both 

in arbitrary TL units. 
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FIG. 6.f(D) vs D as determined from the hypothetical case depicted in Fig. 5. Two calculations are shown, 
depending upon the choice of linear region. If region I from Fig. 5 is chosen as the linear part (i.e. .S,, = 0) 
then curve I (right-hand axis) is calculated from equation (9), using a value of D, of 40 arbitrary dose 
units. If region II from Fig. 5 is chosen, then S, = - 158 arbitrary TL units and curve II (left-hand axis) 

is calculated from equation (9), with D, = 110 arbitrary dose units. 

would define f(D,,,) for the 50 ppm sample as “5.6 
at lO*Gy, with S, = 0”. The complete function 
f(D) would give the precise correction needed to 
calculate the dose, assuming the dosimeter has been 
normalized in the linear dose region (as is normal 
practice). 

From the figures presented in this paper we see 
examples in which a growth curve can be supralinear, 
but not superlinear (for example, Fig. 1 near 
- 10’Gy); or superlinear, but not supralinear (for 
example, Fig. 3 for all doses). For other doses of 
Fig. 1 we see regions in which the growth curve is 
both superlinear and supralinear, and regions in 
which it is neither. The definitions off(D) and g(D) 
presented herein allow precise quantitative descrip- 
tions for all of these regions. 

5. SUMMARY 

In the present paper we have tried to sort and 
categorize the different aspects of dose dependencies 
which are “faster than linear”. We propose a some- 
what new nomenclature to distinguish between the 
different features in question, and attach more 
specific terms to different situations. We have 
suggested the use of the term “superlinearity” for all 
cases in which d*S/dD 2 > 0. We have defined a new, 
dimensionless function, called the “superlinearity in- 
dex”, g (D), which makes the property of superiinear- 
ity a quantitative measure, and discussed its values in 
different situations. We have also discussed the prop- 
erties of the previously defined dimensionless func- 
tion, the “supralinearity index”,f(D), and suggested 
a modified definition. The new definition is a quanti- 
tative measure of the departure from linearity over 
particular dose ranges. 

Examples have been given of dose dependence 
functions which are superlinear but not supralinear 
over given ranges, and vice versa. The advantages of 
the new functions g(D) andf(D) is that they allow 
one to quantity the extent of the nonlinearity, and, at 
the same time, distinguish between the type of nonlin- 
earity observed. Most experimentally observed non- 
linearities can now be quantified using these standard 
definitions. 
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