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The rare-earth tellurates are a new class of inorganic
phosphors with interesting luminescent properties.
When activated by trivalent europium, they exhibit
characteristics which are consistent with the observa-
tions made by numerous researchers in the field. The
exact assignment of transitions is not possible pending
the clarification and resolution of the crystal structure.
The significant conclusion of the research with uranium
activated tellurates is the indication that the identity of
the molecular ion uranyl species is preserved in a solid
crystalline matrix as demonstrated by its fluorescent
properties. Further analysis is required to define more
closely the luminescence mechanisms in uranium acti-
vated compounds.
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Glow Curves with General Order Kinetics
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ABSTRACT

Thermoluminescence and thermally stimulated current curves obeying
general order kinetics laws are being investigated. For these cases, whose
order is not necessarily first or second but rather may have some noninteger
value, an effective method of calculating the activation energy is given. This
method is based on measuring the temperature at the maximum of the glow
peak and the half intensity temperatures. Numerical calculations for orders
between 0.7 and 2.5, activation energies between 0.1 and 1.6 eV and frequency
factors between 105 and 10!3 sec—! have been done using an I.B.M. 360 com-
puter. The results reveal the general characteristics of these peaks and their
dependence on the parameters. The new method for calculating the activation

energy is also checked numerically,

The measuring of glow curves was found to be one
of the most convenient ways to determine the activation
energies of trapping levels in crystals. This includes
the phenomena of thermoluminescence (TL) (1), ther-
mally stimulated current (TSC) (2), thermally stimu-
lated electron emission (TSEE) (3), and thermally
stimulated capacitor discharge (TSCD) (4). The glow
curves were analyzed usually by assuming first or sec-
ond order kinetics. The first order case was investigated
first by Randall and Wilkins (5) who assumed that the
glow intensity I may be given by

I =—dn/dt = sn exp (— E/kT) [1]
where n is the concentration of trapped carriers
(cm~3), t the time, s the frequency factor (sec—1),
sometimes referred to as “the preexponential factor,”
E is the activation energy (ev), k is Boltzmann’s con-
stant, and T the absolute temperature. By solving this
differential equation and assuming a linear heating rate
of g °’K/sec, one has for the intensity

I = sn, exp(— E/kT)
T
exp [ — (s/8) j; exp(— E/kT’) dT’ ] (21

Key words: glow curves, thermoluminescence, thermally stimu-
lated current, activation energy, kinetics order, frequency factor.

where n, is the initial concentration of carriers and T,
the initial temperature. The condition for the maximum
of the peak is found by differentiating Eq. [2] and
equating the derivative to zero. Thus

BE/ (kT.2) =s exp (— E/kT.) [3]

where T, is the temperature at the maximum. Garlick
and Gibson (6) introduced the possibility of second
order glow peaks, obeying the equation

I = — dn/dt = s'n? exp (— E/kT) [4]

where s’ is a “preexponential constant” (cm3 sec—1).
The solution of the equation gives

I = s'n,2 exp (— E/kT)
T -2
[ 14 (s'no/B) J; exp (— E/kT’) dT’ ] [5]1
[s]
and the condition for the maximum is

Tm
1+ (sno/8) j; exp (— E/kT)dT

2kT,.2 s
=_~__";Es"° exp (— E/kTw)  [6]
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Many methods for calculating the activation energies
of glow curves have been given (2). Only one of these,
the “initial rise” method (6) is expected to be useful
for all the possible orders of the process. However, in
many cases, the use of this method is limited because
of experimental (7) and theoretical (8, 9) reasons.

A useful method of calculating the activation energy
by using the temperature maximum T, and the falloff
half of the peak & = Ty — T, where Ty is the higher of
the two half intensity temperatures, was given by
Lushchik (10) for first and second order kinetics. An-
other method using the low temperature half width
t = Tm — T1 was developed by Halperin and Braner
(11). These two methods were slightly modified by
Chen (12) and are now more accurate and more easily
usable. Chen also gave another method in which the
total width w = Ty — T is used, and showed that in
certain cases this method is preferable. The three meth-
ods were summed up (12) as

Ea = Cq (kTmz/a) —_ ba (2kTm) [7]

where « is 9, 1, or w. The values of ¢, and by for the
three methods and for first and second order processes
are given in Table I. The equations [7] are slightly
changed in cases where the preexponential factor de-
pends on temperature as a power function s = s” Te¢
where usually —2 = g = 2 (11-13) (see below).

Halperin and Braner (11) showed that an easy way
to determine the order of a peak is by checking the
values of ug = /N, where n,, is the concentration of
carriers at the maximum. Values of g, of about
(14 A)/e where A = 2kT,/E, should indicate first
order kinetics, whereas values around (1 4 A)/2 in-
dicate second order. As an aproximation to x4 the value
of uy = d/w was taken. Chen (12) found that a
characteristic value of o’ for first order peaks is 0.42
and for second order 0.52.

Although the conventional way for analyzing glow
curves is assuming either first or second order kinetics,
this by no means covers the general case even if only
a single activation energy is involved. Halperin and
Braner (11) wrote three simultaneous differential
equations relating the variables n = the concentration
of trapped electrons, m = the concentration of holes in
centers, and n, = the concentration of free electrons.
However, Halperin and Braner solved the problem
only for those conditions leading to reduction of the
three equations to the first or second order cases.

A better approximation for the general case may be
given by the equation given by May and Partridge
(14)

I = —dn/dt = s'ntexp(—E/kT) [8]

where 1 is not necessarily 1 or 2. The general case of
l s« 1 is essentially limited to samples in which the
concentration of trapped carriers involved in the glow
peak is equal to that of the empty centers. May and
Partridge (14) proved that for simultaneous activa-
tion of two electrons, the value of I should be 1.5. This
same value was found by them experimentally for TL
peaks in KCL samples. Partridge and May (15) re-
port the same order of 1.5 for NaCl samples after a
certain heat treatment, whereas other peaks in NaCl
yield values of 0.7 = 0.1.

In the present paper, this problem of general order
kinetics is further investigated. Some of the prop-
erties of the peaks are found by numerical calcula-
tions of the peaks’ parameters by the use of an I.B.M.
360 computer. Several interpolation methods for cal-

Table 1. Coefficients appearing in Eq. [7] for the various methods
of calculating activation energies

Firstaorder Second order
d

Ca L
be 1

o én
[--]

1 8.976 2.52 1.81 171 3.54
1
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culating the activation energies based on the methods
of Lushchik, Halperin and Braner, and Chen for first
and second order are introduced and checked. The
method based on the measurement of t is found to be
the most accurate.

Theoretical Approach and Numerical Calculation
The solution of Eq. [8] givesfor I 1

(l_ l)s'no(l—‘l) fT

I = s'ngl —E/kT [
Mol exp ( ) 5 7,

~la-1)
exp(—E/kT")dT" + 1 ] (9]

A special case of this equation for | = 2 is Eq. [5].
s$'nol—1 has the units of sec—! and in this sense it is
similar to s in the first order case. If one writes s
instead of s'n,'—1, one has

(l—ﬂl)s J’;

I = sn, exp (—E/kT) [

-ya-1
exp(—E/KT")dT" + 1 ] [10]

Although Eq. [10] is not valid for the case I = 1, it
can easily be shown that it reduces to Eq. [2] in the
limit when ! —» 1. It is in this sense that Eq. [10] is a
general formula applicable for all possible values of 1.

The condition for maximum is found by equating the
derivative of [10] to zero

Tm
[(1—1) s/8] fT exp(—E/kT)dT + 1

slkTp2
=—— exp(—E/kTn) [11]
gE

Again, a special case for I = 2 would be Eq. [6]. It
should also be noted that Eq. [11] reduces to Eq. [3]
for 1 = 1 which might be expected from the fact that
Eq. [9] and [10] are valid for the first order case in
the sense of the limit for I —» 1.

In a way similar to what has been done previously
(12) for first and second order peaks, Eq. [11] can be
solved numerically for given values of I, s, E, and 8
(and assuming that T,, is sufficiently larger than T,)
to give the value of Ty,. This is done by approximating
the integral of the left hand side of Eq. [11] by a cer-
tain number of terms of the asymptotic series (7)

T
fT exp(—E/KkT")dT’ = T exp(—E/kT)

2 (_M; )n (—=1)n—1n! [12]
E

n=1

and solving the equation by the iterative Newton-
Raphson method (12).

This has been done for values of I between 0.7 and
2.5, values of s between 105 sec—! and 1013 sec—! and
values of E between 0.1 and 1.6 eV. These ranges
seem to cover practically all the parameters’ values
found experimentally. 8 was taken to be 0.5°K/sec and
this parameter has not been varied since we can con-
sider s/8 as one parameter in Eq. [11] and s was
varied by several orders of magnitude. As a first ap-
proximation for the iterative process, it was found
useful to take T, = 500 x E. These calculated values of
Tn are seen in column 4 of Table I for given values of
E, s, and ! shown in columns 1, 2, and 3, respectively.
Only the cases with 1 < 1 <« 2 are given in some detail,
whereas only examples for | = 2.5 and | = 0.7 are
shown. The calculations were done, however, for the
whole mentioned range and the conclusions are based
on all of these results. It is to be noted that the com-
puted values of T, for fixed values of E and s depend
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very slightly on the value of 1. This can be under-
stood by examining Eq. [11]. By taking only the first
two terms in the series [12] which is a good approxi-
mation for most of the cases (11), Eq. [11] yields

BE/(kTn?) = sexp(—E/kTm) [1 4+ (1—1)a] [13]

where A = 2kT,/E. This again, reduces to the simple
equation [3] for the first order case (I = 1). Since A
is usually of the order of magnitude of 0.1, the term
in brackets changes by 20% at most for extreme 1
values, which may cause changes of only around 1% in
T because of the appearance of Tr, in the exponential.
Thus we may expect T, to depend only very slightly
on ! for the same values of E and s, which is clearly
seen in column 4.

Once the value of T, is found, the intensity at the
maximum I, can be found by inserting T, into Eq.
[9] and using again the asymptotic series as a good
approximation for the integral.

Now the values of Ty and Tj, the low and high tem-
peratures of half intensity, can be calculated by solv-
ing numerically the equation I(T) = I,,/2, when I(T)
is given by Eq. [9]. Again, the series approximating
the integral is used throughout the iteration process.
As a convenient first approximation we take 0.95 T, for
T, and 1.05 T, for Ts. A similar process with somewhat
more details was given previously by Chen (12) for
the case of | = 1 and ! = 2. By using the T4, Ty, and
T, values, the parameters § = Ty — T,, (the high tem-
perature half width), v = T,, — T1 (the low tempera-
ture half width and w = Ty — T; (the total half
width) are easily found, and shown in columns 5, 6,
and 7 of Table I, respectively. The geometrical factor
rg = 8/w is found and shown in column 8. Figure 1
gives calculated values of u, as a function of the given
l values. The upper and lower curves give the limits of
variations of ugs’ values when E and s are varied,
whereas the center curve shows the average values.
This curve may be used for estimating the value of 1
by the measured p,'s. The possible error is seen not to
exceed +7%. The curve gives more information than
column 8 in Table II since the given average values
and possible deviations (for various E and s values)
are based on many sets of calculations not included
in the table. Another factor characterizing the geo-
metrical shape of a peak, namely, v = 8/t (13) can
be directly found, this is shown in column 12.

Methods for Calculating E and s

In order to find the activation energies by one of
the half width methods, it is suggested to interpolate
(and to some extent extrapolate) the constants ap-
pearing in the first and second order equations [T7].
The interpolation could be done according to the
values of l. However, this magnitude is not found
directly by the experimental results. A much more
convenient interpolation parameter seems to be u4
which is found directly and easily from the geo-
metrical shape of the peak. p,” depends almost only on
1, with only minor dependence on E and s (Fig. 1).
Thus, interpolation with respect to the argument ug’
is in a way interpolation with respect to . We tried
first, naturally, the simplest way of interpolation,
namely, the linear interpolation. We have to write the
general equations so that they would give the first
order case for py’ = 0.42 and the second order one for
ug = 0.52 (12). With the coefficients given in Table I,
the factors in Eq. [7] for the interpolated-extrapolated
7 method would be

¢r = 1.51 4 3.0 (ug’ — 0.42); b; = 1.58 +- 4.2 (' — 0.42)
[

14]

For the equation using the § value one has

¢, = 0.976 + 7.3 (py — 0.42); b, =0 [15]
and for the w method we find

Cyp = 2.52 4 10.2 (ug’ — 0.42); by =1 [16]
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Table !I. Calculated parameters for given energies,
frequency factors, and orders of kinetics

7 8 9 10 11 12
w I'74 Es E Ew 1%

1.6 103 25 554.1 33.9 281 62.0 0548 1486 1.583 1.535 1.210
0.1 105 2.5 821 114 88 202 0.566 0.104 0.098 0.101 1.302
1.6 108 1.9 554.6 274 26.4 53.8 0.509 1.575 1.599 1.595 1.038
04 108 1.9 1443 7.4 7.1 145 0.510 0.395 0.400 0.399 1.041
0.1 10 1.9 376 20 19 39 0.511 0.099 0100 0.100 1.043
1.6 10° 1.9 746.3 49.2 46.5 957 0514 1.623 1.597 1.618 1.060
0.4 10° 1.9 196.7 13.7 12.8 26.5 0.516 0.408 0.399 0.408 1.064
0.1 10° 1.9 520 38 36 7.4 0517 0.103 0100 0.102 1.069
1.6 105 1.9 1124.3 110.3 100.2 210.5 0.524 1.713 1.589 1.659 1.100
0.4 105 1.9 303.6 32.1 289 61.0 0526 0.434 0.397 0.417 1.110
0.1 105 1.9 825 94 8.4 17.8 0529 0.110 0.099 0.105 1.121
1.6 1018 15 554.9 22.7 250 47.7 0.476 1.616 1.606 1.623 0.907
0.4 1013 15 1444 6.1 6.7 12.9 0476 0.406 0.402 0406 0.910
01 108 15 376 1.7 1.8 3.5 0.477 0.102 0.100 0.102 0.912
1.6 10° 1.5 747.1 409 442 851 0.481 1.668 1.605 1.645 0.926
04 10° 15 1969 11.4 122 23.6 0.482 0.420 0.401 0.412 0.930
0.1 10° 15 520 32 3.4 6.6 0483 0.106 0.100 0.103 0.934
1.6 105 1.5 1126.6 92.3 95.9 188.2 0.490 1.765 1.598 1.687 0.962
04 105 1.5 304.3 26.9 27.7 54.6 0.492 0.447 0.399 0.424¢ 0.970
0.1 105 1.5 827 7.9 81 16.0 0.495 0.113 0.100 0.107 0.980
1.6 101 1.1 5552 16.7 23.3 40.9 0.431 1.591 1.605 1.613 0.757
0.4 101 1.1 1445 4.8 6.3 11.1 0.431 0.399 0.401 0.404 0.759
0.1 10® 11 376 13 1.7 3.0 0.432 0.100 0.100 0.101 0.761
16 10° 1.1 7478 31.9 413 73.2 0.436 1.647 1.604 1.635 0.772
0.4 10° 1.1 1971 87 11.4 20.3 0.437 0.414 0.400 0.409 0.775
0.1 10° 11 521 25 32 57 0438 0.104 0.100 0.103 0.778
1.6 105 1.1 1129.1 724 90.4 162.7 0.445 1.755 1.598 1.676 0.801
04 105 1.1 305.1 21.1 26.1 47.3 0.447 0.445 0.399 0.421 0.808
0.1 105 1.1 829 62 7.6 13.9 0.449 0.113 0.100 0.106 0.816
1.6 105 0.7 1131.6 49.7 82.6 132.2 0.376 1.449 1.568 1.530 0.602
0.1 105 0.7 576 2.1 35 5.6 0372 0.086 0.098 0.094 0.591

The results found by [14], [15], and [16] calculated
by the computed p4" values are given in columns 9, 10,
and 11 of Table II, respectively. These results may be
compared to the known energies in order to evaluate
the accuracy of each method separately. It is seen very
clearly that the methods using the values of 8§ or w
give poor evaluations for the activation energy,
whereas Eq. [14] gives results which are always within
2% or better of the correct E value. This is true not
only for the examples given in Table II but also for
all the checked possibilities (see the ranges of the
parameters above). Thus we cover most of the ex-
perimentally possible cases.

Once the activation energy is known, an estimate on
the frequency factors can be found by the use of Eq.
[13]. A reasonable value of s is found even when the
factor (I — 1)A is neglected. A better evaluation can
be calculated by estimating the value of 1 according
to the measured g4 and using Fig. 1. It is self evident

0.58

0.56|

0.54

0.62

0.50

0.48

0486

0.44

GEOMETRICAL FACTOR ( pg')

0.42

040

0.38

0.36 1 1t A ) I !

0T 0.9 1.1 1.3 1.5 1.7 [£:] 2. 2.3 2.5

KINETICS ORDER ({£)

Fig 1. Calculated geometrical factor (vg’) as a function of the
given kinetics order (1). Central line gives the average values, upper
and lower lines give the largest possible variations (for various
E’'s and s's) for the given I's,
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that the better the approximation in finding E, the
better the corresponding calculated factor s. In order
to find the constant s’'(s = s'n,'~1), we have to have
some additional information about n,.

Discussion

Glow curves obeying a general kinetic law of the
form given by Eq. [8] have been investigated. A
method for calculating activation energies by the use
of the maximum temperature and the low temperature
half width was found by linear interpolation between
the known formulas of first and second order kinetics.
Similar methods using the high temperature half
width and the total half width have failed. It is pos-
sible that by the use of nonlinear interpolation, better
formulas could be found for the energy. However, this
would make the equations more complicated. The
results found by Eq. [14] are accurate to about 2%,
which is comparable to the precision of the original
first and second order formulas. This seems to be satis-
factory for practically all the cases, especially since the
possible experimental errors may contribute higher
inaccuracies. Moreover, it has been shown (11, 12) that
methods using the low temperatures half width are
better in the sense that this portion of the peak can
be “cleaned” by thermal bleaching in order to get rid
of possible satellites, which would result in better
calculated energy values.

It should be mentioned that the success of interpo-
lating the equations using the low temperatures half
width seems to be due to the fact that the value of
v does not depend strongly on 1. The error done by
using the first order 1 equation for a second order
peak, for example, would not exceed usually 20%. The
reduction of the possible error to less than 2% by
interpolation seems, however, to be essential.

Interpolation with respect to the other geometrical
factor v (7) in the same way yielded results about as
good as the mentioned ones when the v method was
used, and about as bad for the 8 and w methods. An-
other method employing the value of v for finding
the activation energy was given by Grosswiener (16)
as follows

Eg = a:kT{Tn/t [17]

where a; = 141 for first order and a: = 1.68 for
second order (12). By interpolation between these two
coefficients according to the g, values, results good to
about 2% were found again.

The present method for estimating the value of 1 by
the use of Fig. 1 seems to be quite reliable and appre-
ciably simpler than the method mentioned by May
and Partridge (14). An important point to be em-
phasized is that the present investigation gives a better
insight to the relation between the various order
kinetics. Equations [8], [9], [10], [11], and [13] are ap-
plicable for all values of ! including 1 and 2 (Eq. [9]
and [10] in the sense of the limit for I - 1). Although
the present treatment does not cover the problem of
general glow peak associated with one activation en-
ergy, this approach seems to give much more reliable
results for the calculated parameters than just using
first or second order assumptions, which is the con-
ventional approach.

Finally, it has to be noted that we dealt here only
with the case of frequency factors independent of tem-
perature. It has been mentioned above that in some
cases § depends on temperature as some power func-
tion, s = s” T® where s” is a constant and —2 = a = 2.
For this case, it has been shown (12) for first and
second order kinetics that a better approximation
can be found by subtracting akTy, from the value cal-
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culated by any of the usable methods. It can be shown
that this correction is applicable for the presently dis-
cussed more general case, and thus, when “e” is known
by some other measurements, it may be used. This
correction seems to be significant, since in some cases
it may change the calculated energy value by up to
10%.

Symbols
E activation energy, eV
s frequency factor, sec—1
s preexponential factor, sec—! cm3¢—1

l kinetics order

T, T temperatures, °K

T, initial temperatures, °K

Twm temperature at the maximum, °K

Ty, To half intensity temperatures, °K
heating rate, °K/sec

t time, sec

k Boltzmann constant, eV/°K

I glow intensity

Im maximal glow intensity

n concentration of trapped electrons, cm—3

To initigl concentration of trapped electrons,
cm~

N concentration of trapped electrons at the
maximum, cm—3

m concentration of holes in centers, cm—3

e concentration of free electrons, ecm—3

T low temperature half width, ° X

o high temperature half width, ° K

w total half width, °K

ELEELE, activation energies calculated by various
methods, eV

0,00, C,07,C, s Cups bui O . . . .
constants appearing in various equations
for finding activation energies

A correction factor (=2kT,,/E)
ug characteristie factor (=n,/n,)
g geometrical factor (=8/w)

Ix geometrical factor (=3/v)

Manuscript submitted March 4, 1969; revised manu-
script received May 21, 1969. The research was sup-
ported by the National Science Foundation Grant
SDP-GU-15657.

Any discussion of this paper will appear in a
Discussion Section to be published in the June 1970
JOURNAL.
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