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An algorithm is given for the conditional p-center problem, namely, the optimal
location of one or more additional facilities in a region with given demand points
and one or more preexisting facilities. The solution dealt with here involves the
minimax criterion and Euclidean distances in two-dimensional space. The method
used is a generalization to the present conditional case of a relaxation method
previously developed for the unconditional p-center problems. Interestingly, its
worst-case complexity is identical to that of the unconditional version, and in
practice, the conditional algorithm is more efficient. Some test problems with up
to 200 demand points have been solved. © 1993 John Wiley & Sons, Inc.

Location-allocation problems are those in which a number of service facilities,
usually (as here) assumed identical, are to be optimally located to serve a number
of given demand points. Our concern here is with the case in which the underlying
universe for location and travel is the two-dimensional Euclidean space. The
two major versions of the problem studied so far are the minisum problem in
which the minimand is the sum of weighted distances of the demand points to
their closest service facilities, and the minimax problem in which one wishes to
minimize the maximum distance from any demand point to its closest center.
The minisum problem was first suggested and treated by Cooper [6], and later
dealt with by several investigators [3, 11, 18, 21]. The subject of this article, on
the other hand, is related to the minimax problem, known also as the p-center
problem. Common applications for this model include emergency services and
communication centers. It has been discussed by a number of authors in recent
years [3, 8, 9, 15, 22, 23]. In a previous work by the present authors [4], a
relaxation method for the minimax problem has been found to work well for
fairly large problems.

The location problems mentioned above deal with the simultaneous optimal
location of a number of identical (uncapacitated) service centers, and the allo-
cation of each of the demand points to its closest center. A problem which may
be of no less practical significance is the conditional location problem where a
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number of facilities are to be optimally located, given a set of existing facilities.
This kind of problem is of practical importance since it is quite likely that a
decision maker, while considering addition of new service facilities to a number
of existing centers, may not wish to consider altering the locations of the given
ones due to the high cost involved.

To the best of our knowledge, the first reference to this ‘“new center” problem
was by Lin [14] (see also [13, pp. 156 and 208]), although a previous paper by
Poulton and Kanafani [19] had dealt with the related subject of the location of
off-airport terminals. The term “conditional” for this type of problem was coined
by Minieka [16]. Lin and Minieka deal with graph problems and with just one
additional center. Drezner [10] discussed the solution of the conditional p-center
problem (with any metric or on a network), and showed that it can be solved
by solving O (log n) unconditional p-center problems.

Here we propose an algorithm for the conditional minimax problem in two-
dimensional Euclidean space (E?). This problem has been addressed by Chen
[5], who gave a solution method based on applying nonlinear programming to
a differentiable approximation to the objective function. This yields good though
not necessarily optimal results. In the present work we describe an algorithm
yielding optimal solutions. The complexity of this algorithm is identical to that
of its predecssor [4] for the unconditional problem, and in practice, it is usually
more efficient, a distinct advantage over the method suggested in [10]. Before
proceeding with the description of the algorithm, we present mathematical for-
mulations of the unconditional and conditional p-center problems.

The conditional problem in E? is that of determining the set of p centers
X, and the p radius r; given by

ry = mm2 max { m1n wil(a; — x)* + (b; — y)’]V3, (©)
X,CE® i=1,..,n j=1,.., +m
where (a;, b;), i = 1, ..., n are the given demand points, X, = {(x;, y)}’_,

are the service centers to be optlmally located, and there exist m ﬁxed centers
denoted by {(x;, y)}72",. The w;’s are the positive weights associated with the
demand and supply pairs, the distinctive characteristics of which might require
dispatch of different types of vehicles incurring different costs. However, we
shall follow the usual practice of minimax problems of accepting equal weights
(unity) as realistic. The meaning of (C) is that min; selects for each demand
point a closest service facility, max; takes the largest (weighted) distance of the
demand points to the service centers, and miny -2 minimizes the maximum
distance on xy, yy, - . ., X,, y,. This formulation generahzes the unconditional
case in which m = 0

1. THE RELAXATION METHOD FOR THE
UNCONDITIONAL PROBLEM

The method reported in this article for conditional location is an extension of
a previous work by the same authors for the unconditional problem [4]. This,
in turn, is an adaptation of a relaxtion method given by Handler and Mirchandani
[13] for the analogous problem in networks. Let us first define a critical circle
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(boundary plus interior) as one which either has three (or more) demand points
on its circumference, or has a pair of demand points at the ends of a diameter,
or is a degenerate circle consisting of a single demand point. A cornerstone in
the development of the algorithm by Chen and Handler [4] is the following well-
known theorem. Among all the optimal solutions to the p-center problem there
is at least one in which all the demand points are covered by critical circles, the
largest of which has a radius ; which constitutes the value of the solution. Using
this theorem, one can reduce the search for an optimum location set from an
infinite number of possibilities to the finite number of centers of critical circles.
The number of critical circles to be considered is (§) + (§) + n. Each of these
circles is a candidate circle which may possibly be included in feasible and optimal
solutions.

For problems with anything but very small n, the number of candidate solutions
(i.e., p sets of critical circles) is very large; a number of ways have been utilized
to reduce this number to a manageable size. These are described in the previous
paper [4], and are briefly repeated here, followed by a formal presentation of
the algorithm now given for the first time.

1. While considering the set of three points as candidate to form a critical
circle, a set forming an obtuse triangle should be discarded.

2. If all the demand points in a problem are covered by a given set of critical
circles, the set of centers of these circles is said to be a feasible solution to the
problem with value equal to the radius of the largest critical circle. If we have
a feasible solution to the problem with p service centers and we are looking for
a better one, we need not (and will not) consider critical circles with radii equal
to or larger than the value of the current feasible solution. This can reduce very
substantially the number of subsets to be considered. If we have, for example,
an optimal solution for the p-1-center problem, its value can serve as an upper
bound on the value of 7, and the number of candidate subsets is thus diminished.
We can therefore solve the problems with 1, 2, 3, ... , p service facilities
sequentially. Results of this way of solving the problems are shown in Tables 1-
5. Alternatively, we can start with a known local minimum (see [3]) and proceed
by checking whether it is optimal or improve upon it. This method is demon-
strated in Table 6.

3. The essence of the method is the use of relaxations. To start off we assume
given an upper bound 7, on the optimal value of the p radius r, , together with
a corresponding feasible location set which we denote X, »- We choose a “‘relaxed”
subset R of k demand points, k < n (we found the initial choice k = max{3, p}
to be useful) and identify all critical circles generated by these k demand points
and having radii less than r,. (The number of these circles is initially (§) +
(%) + k, but can immediately be reduced using the criteria given earlier.) Next
we search for a p cover of R from these candidate circles by working on a
minimum-cardinality set-covering problem (see [4]). It is to be noted that we
do not have to solve the relaxation problem to optimality; any feasible solution
(one with cardinality <p) suffices. We shall refer to this process as feasibility-
solving the covering problem for R; it terminates either with a feasible solution,
or with an optimal solution of cardinality > p. In the latter case, the procedure
terminates and the incumbent quantities 7,, X, are the value and location for
the full-size problem. Suppose now that a p cover of R is found. [Note that the
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set-covering algorithm may yield a z cover where z < p. By adding (p — z2)
points arbitrarily, we can convert this to a p cover.] Denote the set of centers
of this set of critical circles by X

We now check whether this solution to the relaxed problem constitutes an
improved solution to the full-size problem. To do this we compute the quantity
I(X,) = d(y°, X)) = max,ey d(y, X,), where d(y, X,) = min,cg d(y, x), N is
the set of n demand points defined in (1), y is any element of N, ‘and d(y, x) is
the straight-line distance between y and x in E2. Thus, l()g,) is the distance from
the set Xp to the farthest demand point y°. If I(X ) = r, then X isnot an 1mproved
solution to the full-size problem. In this case we add to R the demand point y°,
enlarge the set of candldate circles to include the critical circles of radius < r,
passing through y°, and again search for a p cover of R continuing as before
If, on the other hand, I(X ) < r, then an improved solution to the full-size
problem is at hand. We can thus update the incumbent solution by setting r, =
l(X )and X, = )q, We are now ready to repeat the whole procedure of searching
for an 1mproved solution by choosing again an arbitrary set R and continuing
as before. Note that an alternative is to retain the current set R but eliminate
from the current set of candidate circles those with radii greater than or equal
to r,, and again search for a p cover of R.

For the sake of clarity we summarize the basic steps of the procedure in a
formal algorithm. In addition to the symbols defined above, we define the cov-
ering set problem CP(R:r,) composed of candidate circles generated by points
in R, with radii less than r,, denote by z the cardinality of the (optimal or
fea51ble) solution found for CP(R;r,), and by X, the corresponding z set of
locations (centers of candidate circles) We note again that it suffices to find a
feasible solution to the CP.

Algorithm for Unconditional p Center

Given initial feasible solution X, with value 7,.

Choose R C N.

2. Set up and feasibility-solve CP(R:r,) — z, X,. If z > p then Xy =X,,ry =r1,is
an optimal solution.

3. If l(X) = d(y°, X,) > r,, and y° to R and go to 2. Otherwise, let X, = X., r, =

I(X,) and go to 1. If two or more points tie for the role y° of “worst uncovered,”

choose one arbitrarily.

- O

The arbitrariness in Step 1’s choice, here and in the conditional case algorithm
below, may be surprising. But these choices only initialize (or reinitialize) R at
a relatively small size; that choice is augmented (in Step 3) in a systematic and
heuristically efficient way, so that when the critical stages of the procedure are
reached, the relaxed problems are very far from being arbitrary.

2. THE RELAXATION METHOD FOR THE
CONDITIONAL PROBLEM

The procedure of solving the conditional problem is a modified version of the
previous algorithm. Indeed the new algorithm comprises the same four steps,
with two modifications which may be viewed as generalizing the unconditional
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algorithm. We shall discuss these modifications and then present the generalized
algorithm.

Let F denote the set of m fixed facilities. Consider first a passage through
Step 1, in which we choose a new set of demand points R. In the conditional
problem we must select, for R, demand points that are not within a distance r,
(the value of the incumbent solution) from the set F of fixed points, for, a
demand point initially covered by F will not properly guide the improvement of
the current solution. Of course, as the procedure unfolds, the value of r, de-
creases and the set of demand points from which to select R will grow.

The second modification occurs in step 3, where the quantity /(X,) must be
revised to read I(X,/F) defined as I(X, U F) = max,cy d(y, X, U F). In this
manner we can determine the demand point farthest from the set of fixed and
variable centers. We are now ready to formulate the procedure.

Algorithm for Conditional p Center

0. Given initial feasible solution X,, with value of r,.

Choose R C {y € N: d(y, F) > r,}. )

2. Set up and feasibility-solve CP(R:r,) = z, X;. If z > p then X; = X,,, rj = r, is
an optimal solution.

3. IfIXJ|F) = d(y°, X. U F) > r,, add y° to R and go to 2. Otherwise, let X, = X,,
r, = I(X,|F) and go to 1. If two or more points tie for the role y° of “worst uncovered,”
choose one arbitrarily.

—

It is evident from the foregoing discussion that computational complexity of
the conditional algorithm is, at worst, identical to that for the unconditional
case, while in practice, we may expect the algorithm to be increasingly efficient
as fixed facilities are added. This is borne out by our computational experience
described in the next section (Table 3).

3. COMPUTATIONAL RESULTS

Problems with 30, 40, 50, 100, and 200 demand points distributed at random
over different regions have been solved. The regions include a 100 x 100 square
with three fixed service centers located at (10, 10), (10, 90), (90, 10) as well as
various rectangles and ellipses with different eccentricities. In the latter cases,
the number of fixed service centers varied between 3 and 10, and their locations
over the given region were determined by the same random number generator
utilized to determine the locations of the demand points. It may be stated at
the outset that no significant variation has been found in the performance of
the method under different positions of the demand points (with a possible
exception noted in the discussion below.)

Table 1 gives the results for problems on the above-mentioned square. The
runs reported in this table were performed on the Cyber 180-990 /DO CDC
computer under the NOS/VE operating system at Tel-Aviv University. The
demand points were chosen in such a way that the 30 points are a subset of the
40 demand points, which in turn are a subset of the 50 demand points, and so
on. This choice has been made since it will aid us in demonstrating a way for
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Table 1. r; values (and CPU times in secs) of representative problems with demand
points distributed on a 100 x 100 square. Three fixed centers are at (10, 10), (10, 90),
(90, 10).

No. of 30 demand 40 demand 50 demand 100 demand 200 demand
new centers points points points points points

1 35.36(0.015)  36.46(0.02)  36.46(0.025)  39.12(0.10)  41.23(0.25)
2 29.84(0.20)  29.84(0.21)  29.84(0.42)  31.55(0.85)  33.47(1.37)
3 23.02(0.28)  23.02(0.28) 25.49(2.24)  30.15(2.88)  30.15(2.75)
4 19.24(0.34)  22.36(0.41)  22.69(*) 26.30(6.53)  26.31(2.32)
5 19.23(0.13)  19.70(1.37) 20.88(*) 24.04(23.2)
6 17.31(1.56)  19.24(7.39) 23.17(*)

*Indicates that the solution has not been proven to be optimal.

evaluating lower and upper bounds to the solution of a problem which cannot
be sovled to optimality.

In the problems with 50 demand points and up, the solution procedure was
terminated when the set-covering program utilized reached 200 “cuts.” To solve
the set-covering problem we used the algorithm due to Bellmore and Ratliff as
reported by Garfinkel and Nemhauser [12]. The program solves this integer
programming problem by producing “‘cuts,” the number of which is usually very
small (0 or 1 in most cases). However, rather capriciously, the number of cuts
needed may sometimes be very large (say, over 200), which consumes a lot of
computer time and memory, prompting termination of the process. (A possible
improvement upon this point is discussed below.) Thus, all the last entries in
the 50-, 100-, and 200-point problems are merely feasible solutions which are
not necessarily optimal. (As observed by Chen and Handler [4], the same dif-
ficulty occurs also in the unconditional problem.)

Let us, however, consider the feasible solution with r, = 22.69 attained for
50 demand points and four variable centers. This feasible solution certainly pro-
vides an upper bound to the value of the solution. On the other hand, the
optimal solution for the subproblem with 40 demand points yields a lower bound
(r4 = 22.36) to the 50-point problem, since the 40 demand points are a subset
of the 50 points, as indicated above. Therefore, although we could not solve
the 50-demand-point problem to the end in this way, we know that its solution
has 22.36 = rj = 22.69 and therefore that the feasible solution with r, = 22.69
is certain to be at most 1.5% from the optimum. The conclusion is that in cases
where one has a feasible solution in hand, but optimality cannot be reached, a
possible strategy may be to solve to optimality a problem with a subset of the
demand points and thus have both upper and lower bounds to the solution.

An interesting idea has been suggested* to deal with this situation not so
common but troublesome, of having very many cuts. Due to the somewhat
unpredictable nature of the set-covering subroutines, it may very well happen
that at a given stage of the process, we get very many cuts and therefore cannot
reach a solution in reasonable time. It is possible, however, that if we keep the
incumbent 7, and choose an entirely different initial relaxation R, the difficulty
may be overcome. We have therefore introduced a new parameter M such that

*We would like to thank the anonymous referee who suggested this improvement of the
method.
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Table 2. Run times for a problem with 50
demand points, three fixed centers, and
different values of the cutoff parameter M.

M New centers CPU time (secs)
40 4 >213
50 10 549 19
60 10 61.3 = 2.7
80 10 83.3 = 16.4
100 10 949 +21.9
300 10 196.0 = 87.0

if the number of cuts at a certain stage exceeds M, the procedure is restarted
with a different relaxation. For choosing this relaxation problem, different ran-
dom numbers were used for the serial numbers of the initial demand points.
The results of such a series of runs is shown in Table 2. In this case, the 50
demand points are still distributed over a square with the three fixed demand
points as before. While setting M = 40, the solution process reached optimal
results only for three centers, and a feasible solution for the four-center case,
all in over 200 CPU seconds.

This was repeated with any initial choice of k = 3 points as R in the initial
relaxation problem. With M = 50 we were able to go all the way to 10 new
centers in just over 50 seconds. From this point on, each reported problem was
solved five times, starting from different sets R in the initial relaxation problem
chosen at random. The run times are given as averages + standard deviation.
With the larger values of M, Table 2 shows that the computation time increases,
demonstrating the advantage of choosing the “appropriate” value of M (see
discussion below).

An interesting point to note is that for a given number of demand points, the
problem is easier to solve with a larger number of fixed centers. This can be
understood intuitively, since, for a given value of r,, some demand points are
covered by the fixed centers. Therefore, the more fixed centers, the fewer un-
covered demand points, so the remaining problem to be solved at each stage is
smaller. Table 3 sums up the results for problems with 50 demand points ran-
domly distributed over the 100 x 100 square with a variable number, between
3 and 10, of fixed centers and 10 new service centers. The cutoff parameter was
kept at M = 50. The run times are seen to decrease dramatically, from an
average of 328 seconds with three fixed centers to 12 seconds for 10 fixed points.
For the sake of comparison, the unconditional problem with the same demand
points was run with M = 50. In 557 CPU seconds, only seven centers were
located optimally and a feasible solution was reached for the eight center
problem.

Table 3. Run times for problems with 50 demand points distributed on a square, ten
variable centers, and different number of fixed centers, M = 50.

Fixed centers 3 4 5 6 7 8 9 10

Average CPU time (sec) 328.4 1499 1354 1403 38.6 344 162 12.0
Standard deviation (sec)  10.6 4.7 4.8 8.0 39 64 78 43
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Table 4. Results for problems with demand points distributed on rectangles.

Demand points B Fixed points M New Cent. CPU time (sec)

30 0.1 3 35 10 4.6 + 0.4
30 0.25 3 35 10 119+ 26
30 0.5 3 35 10 83=0.8
30 1.0 3 35 10 6.3 *1.7
40 0.1 4 45 10 29.7 = 11.7
40 0.25 4 45 10 28.3 £33
40 0.5 4 45 7+ >165

40 1.0 4 45 10 64.1 + 3.6
40 2.0 4 45 10 30.6 £ 4.3

In order to check the possible dependence of the performance of the algorithm
on the shape of the region over which the demand points are distributed, rec-
tangular and elliptical regions were also considered. The fixed centers were again
located randomly within the chosen region.

Table 4 presents the results for such problems with 30 and 40 demand points,
and M = 35 and M = 45, respectively. The parameter B is the ratio between
the two dimensions of the rectangle. All the problems were solved in ‘“‘reason-
able” time, except for the one with 40 demand points, four fixed centers and
B = 0.5. Here, after 165 seconds, the optimal solution for seven variable centers
was reached, with but a feasible solution for eight variable centers. Using dif-
ferent initial points in the relaxation problem did not remedy this difficulty.
However, changing M to 60 yielded solutions to the 10 new centers problem in
39.6 = 4.2 seconds. Although variations are seen in the run times, up to a factor
of nearly 3 in the average run time for the 30-demand-points problems and over
5 in the 40-points case, no specific pattern could be recognized in the results.
Similar behavior is seen in Table 5 for a case of problems over elliptical regions.
Here, the parameter B is the ratio between the major and minor axes (the
eccentricity is defined as e = V1 — B?).

The procedure of solving for p centers by building up successively from p =
1 up is attractive for purposes of sensitivity analysis. However, when this is not
needed, one can bypass the tedious process of going through the optimal so-
lutions of 1, 2, . . ., p — 1 new centers by generating an intial estimate for 7,
and proceeding with the algorithm. One possibility is to guess an initial value
of r,. Of course r, may be too small, and in this case, the result of “no cover
for p centers” emerges. If, on the other hand, the chosen 7, is larger than the

Table 5. Results of different conditional problems with demand points distributed
in ellipses.

Demand points B Fixed Centers M New centers CPU Time (secs)
30 0.1 3 35 10 11.2 = 4.6
30 0.25 3 35 10 23.5 = 4.8
30 0.5 3 35 10 22.1 + 4.8
30 1.0 3 35 10 23.5+ 8.6
40 0.1 4 45 10 11.9 = 2.1
40 0.25 4 45 10 16.1 = 1.9
40 0.5 4 45 10 31.1 £ 9.0
40 1.0 4 45 10 19.6 = 4.6
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Table 6. Run times for a problem with 50 demand points, three fixed centers, and six
variable centers, M = 55.

Initial radius® 41.30 3550  27.61 23.92 2279 20,51 19.72

CPU time (sec) 7.97 7.69 7.47 7.26 6.94 4.60 2.67
Standard deviation (sec) 4.42 4.04 9.59 4.60 3.92 2.11 2.11

“Initial radius obtained as a local solution in the heuristic method [5].

optimal solution, it is quite obvious that the computation time will be shorter
if the initial value of r, is closer to the optimum.

Alternatively, one can use a nonoptimal method, such as that given in [5] to
generate an initial upper bound on r,. In order to demonstrate this alternative,
we have solved a problem with three fixed and six variable centers, 50 demand
points, and M = 55, starting with the radii from various nonoptimal solutions
found by the previous method. The value of the optimal solution of this problem
is r; = 18.67. The run times are given in Table 6, and are seen to decrease
gradually as the initial radius decreases.

4. CONCLUSIONS

The conditional p-center problem in two-dimensional space has been dealt
with. A relaxation method previously suggested for the unconditional version
has been adapted to the conditional one. The computational experience, summed
up in Tables 1-6, indicates some of the strong points as well as the weaknesses
of the method. The particular set-covering procedure utilized, like many other
integer programming methods, is rather capricious. Thus, in the initial version
of the program in which the procedure was stopped when one of its set-covering
problems reached 200 cuts, it did not solve to optimality (cf. Table 1) a four-
center problem with 50 demand points and three fixed centers, although the
initial 0-1 matrix involved is merely of size 13 x 57. In the larger problem with
100 demand points, the four-variable-center problem was optimally solved and
the *‘too many cuts” situation occurred only with five variable centers when the
set-covering matrix was of size 129 x 344. Furthermore, in the still larger
problem with 200 demand points, the five new centers were optimally located.
A partial remedy for such “‘explosion of cuts’ has been offered above, involving
changing the choice of relaxation problem once the number of cuts exceeds M,
but keeping the current value of r,. As shown in Table 2 this may help signifi-
cantly, and, indeed, larger problems could be solved using this improvement.
However, even this medicine should be prescribed with caution. As shown,
taking too small a value for M may not allow the set-covering process to ter-
minate, restarting it prematurely with a new relaxation. On the other hand,
taking too large a value of M may permit excessive consumption of the computer
time in treating individual set-covering problems, which can impede the pro-
cedure from getting the optimal solution. The task of finding an optimal value
of M seems complicated, since it certainly depends on the numbers of demand
points and fixed and variable centers, as well as their locations. As a rule of
thumb, we found that for three fixed service centers, M ~ n is quite useful.
However, although changing the relaxation as described helps in solving larger
problems, the unpredictable nature of the performance still remains. It is to be
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noted that the same trick of changing the relaxation problem when too many
cuts occur, can be employed also in the unconditional problem (this has been
mentioned above in association with the unconditional problem with 10 new
points, M = 50 and the same demand points as in Table 3.

As pointed out above, no clear correlation has been found between the dis-
tribution of the demand points or the fixed service centers, and the computational
effort needed to solve the problem. A possible exception to this observation
may be the cases in which some fixed centers are clustered and can be viewed
approximately as a single center. Since, as shown in Table 3, the solution process
is less time consuming when more fixed centers exist, clustering is expected to
increase the computation time for the solution. As another general observation,
one can say that the introduction of a restricting value for the cutoff parameter
M reduces substantially the standard deviation of the run times needed for solving
the same problem with different initial choices of the relaxation problem.

The fact that larger conditional problems can be solved than the unconditional
ones with the same demand points deserves further discussion. The main reason
for this fact is that at each stage, a number of demand points are already covered
by F, so that the size of the remaining problem to be covered (by relaxations)
is smaller. Also, the existence of the fixed centers reduces, sometimes quite
substantially, the magnitude of r, at each stage. Therefore, more pairs and
triplets of demand points are excluded while setting up the relaxation problem,
further reducing (sometimes very appreciably) the size of the set-covering prob-
lem involved. Comparison with the computational experience in [4] for the
unconditional case shows that on the average, the size of the solvable problems
is indeed larger now. Comparing the present algorithm with that suggested by
Drezner [10], one should remember that in his case, in order to solve a condi-
tional p-center problem, the unconditional procedure should be repeated a num-
ber of times (O(log n)). The present method generally requires less computa-
tional effort than a single unconditional problem, and in the worst case has the
same complexity. This comparison is made between a p-center unconditional
problem and a conditional one with m fixed centers and the same values of p
and n.

Table-6 has demonstrated the potential for using a combined approach of
starting with a feasible solution generated by a nonoptimal solution method such
as that in [5], followed by the last stages of the present one. This approach has
not decreased the compuation time very dramatically, since in many cases, it is
the final stages which are time consuming. Still, it may be helpful for large-scale
problems.

We would like to point out that the set-covering algorithm employed here has
been superseded by more efficient algorithms [1, 2, 7, 17, 20]. Using a set-
covering program based on the modern theory of facets may well increase the
potential of the algorithm.

Finally, we believe that ideas in the present work may be generalized and
carried over to p-center problems with any metric or on a network, and to
various related methods. In particular, returning to the original definition of
ry given in (C), the algorithm extends with minor modifications to the weighted
case where w; = w;. However, for non uniform demand weights wj;, a different
concept is required to that of critical circles.
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