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Abstract—By analysing the isothermal decay of phosphorescence at various temperatures, the activation
energy and pre-exponential factor of the relevant trap, as well as the kinetic order of the process, can be
evaluated. Methods of analysis have been suggested, in which ¢ x I(¢) is plotted as function of In(¢), where
t is the time and I the intensity of the phosphorescence. For a single trap this is a peak-shaped curve,
which resembles the corresponding thermoluminescence (TL) curve. Previous methods used some features
of this peak, such as the maximum and the half intensity points. In practice, however, it might be difficult
to evaluate these points accurately. An improved method is suggested, which seeks the best fit of the whole
curve to the theoretical expression. This method is applied to the blue phosphorescence of X-irradiated

albite.

1. INTRODUCTION

BY ANALYSING at various temperatures the phos-
phorescence (namely the isothermal long-time decay
of luminescence) emitted by solids, the kinetic
parameters of the relevant traps can be evaluated.
If only one trap is involved, and if the depletion
of this trap is a first order process, the intensity
of the phosphorescence obeys the differential
equation:

I=—dn/dt =s-n-exp(—E/kT) m

where n (m~3) is the concentration of trapped
charge carriers, s (s) is called the frequency factor,
E (eV) is the activation energy, k (eV K~') is
the Boltzmann constant and T is the absolute
temperature. ‘

Equation (1) can be solved to give the following
explicit expression for the intensity of the phosphor-
escence at a given temperature (T'):

I(2) = (ny/v)exp(—t/7) @
where n, is the initial value of n and
7 =5"'exp(E/kT). 3)

It was found experimentally that in many cases the
decay of phosphorescence could be described by the
“general order kinetics” equation:

I=—dn/dt =s'nbexp(—E/kT) ()]

where b is the kinetic order (often 1<b <2) and
the pre-exponential factor s’ has the dimensions of
m*¢-" s-1, This includes the familiar case of second
order kinetics (b = 2) where the dimensions of s’ are

m? s~. If one defines a frequency factor s = s'nf~!
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having the units of s~!, the intensity of the phosphor-
escence as a function of time is given by:

1) = (n/D[1 + B = D(/O)CD, b#1 (5)

where 7 is defined by equation (3) above. Equation (5)
is obviously not valid for b =1, but it reduces to
equation (2) when b—1.

In this work, we demonstrate a method for evalu-
ating the parameters E, b and s by analysing the
phosphorescence. The method is applied to the room
temperature phosphorescence of natural albite.

2. THEORY

In order to find the parameters E and s, one should
determine t© for several temperatures (in principle,
two values of © would suffice) and plot In(r) as a
function of 1/T. It should yield a straight line. The
values of E and s can than be deduced from the slope
of this line and from its intersection with the y-axis,
respectively.

A simple method to evaluate 7 is to plot In(/) vs
the time ¢ and find out whether it is a straight line.
If this is the case, the kinetic is of first order and 7 can
be evaluated from the slope. Otherwise, one should
plot I vs t on a log-log scale. If equation (5) is valid
then for ¢ > 7, the curve should turn into a straight
line of a slope —b/(b — 1). A plot of (I/I,))"¢~"* vs
t then yields a straight line of a slope (b — 1)/, from
which 7 can be evaluated. This method might be quite
cumbersome. Moreover, it is unreliable when several
traps are active in the relevant temperature range so
that the phosphorescence is the sum of several indi-
vidual decays. Randall and Wilkins (1945) suggested
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the application of the kinetic analysis to a plot of
t x I(t) as a function of In(¢). Their method was
further developed by Visocekas (1978). For a single
trap one gets a peak-shaped curve, and for the first
order, as well as for the general order, kinetics the
maximum of that peak occurs at In(¢) = In(z). The
activation energy E can be computed by measuring
the shift of the peak, D, between two temperatures T,
and T), using the relation E = DkT\T,/(T, — T;).

Chen and Kristianpoller (1986) showed that by
using the two half-intensity points, in addition to the
maximum point, the parameter b can be evaluated. In
this work an improved method is presented, which
seeks the best fit of the whole curve to the theoretical
expression.

2.1. First order kinetics

Let us define x =In(r) and ¢ = exp(x). Equation
(2) can be re-written as:

I = Lyexp[—exp(x)/r] ©®

where I = ny/t. Multiplying both sides by ¢, and
using a new variable y = It one gets:

¥ = Iyexp(x )exp[ —exp(x)/7]. @)

For low values of x, exp[—exp(x)/t] is nearly
constant and y increases as exp(x). At higher
values of x the expression exp[—exp(x)/t], which
is a decreasing function of x, dominates. Thus y
goes to zero. The maximum of the peak-shaped curve
can be found by solving the equation dy/dx = 0. The
result is:

X, = In(t). ®

2.2. General order kinetics

Defining as above x = In(z) and y = It, equation
(5) reduces to

¥ =Lexp(x)[1 + (b — 1)(exp{x}/z)] %",
b#1 ©)

which is a peak-shaped curve as well. By setting
dy/dx = 0 the maximum condition is found again to
be x,, = In(t).

2.3. Methods of kinetic analysis

Since 7 = exp(x,,) regardless of the order of the
kinetics, one can evaluate t(T") directly from the
peak-shaped curve of 1 x ¢ vs In(¢). Thus, by record-
ing the phosphorescence at two temperatures or
more, E and s can be computed from the maxima of
the peaks, utilizing the relation.

Xn(T) = E[kT — In(s). (10)

As for the kinetic order, b, Chen and Kristianpoller
(1986) showed that it can be deduced by using the half
intensity points x; and x, which are defined by:
y(x)=y(x;)=y(x,)2 and x,<x,<x, It was

found that there is a monotonic one-to-one corre-
spondence between b and the shape parameter p,
which is defined by u = (x,— x,)/(x;—x,). For
example, if b=1, then u~04, and for b =2,
# = 0.5. Thus, in principle, by measuring three points
of the peak, and the maximum point of the same peak
measured at a different heating rate, the three kinetic
parameters E, s and b can be evaluated.

In practice, however, it might be difficult to evalu-
ate the three points accurately. Since the x-axis is
In(¢), a long time may be needed in order to reach
Xy, Or even x,, resulting in a poor signal-to-noise
ratio. For example, let us take the typical values
E=08eV,s=10"s"'and b = 2. At room tempera-
ture (T = 300K), t, =1 =2754s and ¢, = exp(x,) =
16,051 s. Thus one has to wait 45 min for x, and
about 4.5 h for x,. The light intensities would be 0.25
and 0.02 of I, respectively. At 350 K one has to wait
only 33 s and 3.2 min for reaching x,, and x, respect-
ively, but the decay is faster and the intensities at
these times would be 0.25 and 0.015 of I,.

2.4. The best fit computer program

A more reliable method is to use many points
along the experimental curve and to look for the
best fit of the data to equations (7) and (9). The best
fit program which we devised for this purpose is a
least square optimization procedure based on the
following steps.

(1) Check the intensity of the phosphorescence,
I(¢), at n points of time ¢[1), ¢[2], ... t[n].

(2) For i=1, ... n evaluate x[i]=In(¢[i]) and
Yexp[i] = I(2[i]) x 2[i].

(3) Find values of x,,, y,, and b which minimize the
function:

n

F(xms Yms b) = Z(yexp[i] _yth[l])z (ll)

i=1

where y,[i] is given by equation (7) or (8) with the
current values of x,, y,, and b (y, is the value of y
for x,,).

For the minimization, an iterative computer pro-
gram was written using the PC turbo-pascal
language, which starts from initial values of x,,, y,,
and b and proceeds along the following steps.

(1) Calculate F(x,,, y,, b).

(2) Define x,,=x,—Ax,, y,=y.—Ay, and
b’ =b — Ab (the procedure for calculating Ax,,, Ay,
and Ab is described below).

Q) If F(x,,, y» b") < F(x,, Y, b) define x,, = x7,,
Ym=Ymand b = b’ and go to (1). Otherwise, go to (4).

(4) Define x, =x,—0.5Ax,,, y, =y,—0.5Ay,,
b’ =b —0.5Ab and go to (3).

The program stops when [(0F/0x,,)* + (3F/0y,,)* +
(OF/0b)]'?, namely the size of the gradient, is suffi-
ciently small.



ANALYSIS OF BLUE PHOSPHORESCENCE IN ALBITE 39

We first tried to evaluate Ax,,, Ay, and Ab by a
revised steepest-descent technique (Cohen, 1981;
Chen, 1984) in which

_ ,0F[ox,, _ OF By,
Axm = A—A_’ Aym = 4 A

where A = 0*F/0x2 + O?F/0y2% + 0*F/0b? and 4 ~ 3.
The derivatives of the first and second order were
calculated numerically. By applying the method to
“synthetic” peaks , it was found that the convergence
in y,, is especially slow, to an extent which makes the
method impractical. The reason is that 0F/dy,, is
much smaller than the other two derivatives, making
Ay,, exceptionally small. As a second alternative we
tried the following definition:

, Ab = AaFA/ab (12)

A _BaF/ax,,, _ o OF/0y,
m= P Fexy T To Ry
oFjob
Ab = B 13)

For F which is a simple quadratic function of x,,, y,,
and b, the convergence to the global minimum is
achieved in one step for B =1. In our case it was
found that for B =0.6, F usually converges quite
rapidly to the minimum, as long as the initial values
of the parameters are not too far from the optimal
values. The best results were achieved by combining
the two methods, namely, using equation (13) as
long as F(x,,,y.,,b") < F(x,,y.,b) but resorting to
equation (12) (with 4 = 2.6) when the direction of the
inequality is reversed. For synthetic peaks, the mini-
mum was achieved after about 30-50 iterations. The
final size of the gradient (for y,, normalized to 10) was
less than 0.001, but even for gradient sizes of about
1, the values of the parameters differed from the
“true” values only by the fifth digit.

3. EXPERIMENTAL

Natural single crystals of the feldspar albite
(NaAlSi; O;) were used for our measurements. The
impurity content of the samples was given elsewhere
(Kirsh and Townsend, 1988). The samples were kept
in the vacuum and irradiated for 30 min by a tungsten
target X-ray tube, which was operated at 30 kVp,
15mA. The emitted light passed through a Bausch
and Lomb grating monochromator followed by an
EMI 9659QA photomultiplier. The monochromator
was set at a constant wavelength (A =450 nm) and
the bandpass was 30nm, in order to record the
intense blue band of albite which was found to extend
over the range 400-500 nm. The integrated signal was
recorded every 3 s at the beginning of the decay and
every 15 s later, and was stored by a microcomputer.
In order to improve the signal-to-noise ratio, a
further averaging was performed in the course of the
data analysis, over periods of 0.5 min, up to 10 min
before the end of the measurement. The average noise
was deducted from each reading.
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F1G. 1. The best fit of the experimental data to the theoreti-
cal equation. The dots represent I x ¢ vs In(¢), where ¢ is
time and 7 is the intensity of phosphorescence at 19 + 0.5°C
(a); 23 £0.5°C (b); and 28 +0.5°C (c). The lines depict
equation (9) with the parameters which appear in Table 1.
Only points beyond the arrow were taken into account.

4. RESULTS AND DISCUSSION

In Fig. 1, the best fit of the experimental data to the
theoretical equations is shown for three temperatures.
The dots represent I x ¢t vs In(z), where I is the
measured intensity of light and ¢ is the time. The line
depicts equation (9) with the parameters which ap-
pear in Table 1. Figure 1(a) describes the decay of the
phosphorescence at 19 + 0.5°C, for 3.2 h. Figure 1(b)
represents the same for the decay at 23 +0.5°C
for 2.5h, while Fig. 1(c) covers 1h of decay at
28 4+ 0.5°C. In all of these cases, the graph of In(/) vs
t showed a nearly linear descent after 5-8 min, and a
steeper slope for shorter times. Only points beyond
the knee-points (indicated by arrows in Fig. 1) were
used for the best fit program.

Due to the poor signal-to-noise ratio, which is
evidenced by the scattering of the points around
the theoretical curve, any attempt to obtain x,, and
the half-intensity points without using the best fit
program would involve large boundaries of errors.

In Fig. 2 the parameter In 7(=x,,) for each of the
three measurements is described against 1000/7, with

Table 1. The parameters evaluated by the best fit program
for the three peaks

Peak X Vm b T (°C)
a 7.696 12.908 1.167 19
b 7.507 9.643 1.037 23
c 6.987 7.573 1.254 28
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Fi1G. 2. In(r) (=x,,) against 1000/T for the three measure-

ments described in Fig. 1. The error boundaries stem from

the reading of the temperature (+0.5°C) and from the

uncertainty in the value of x,,. The resulting straight line is

described by t =s"lexp(E/kT) with E =0.597 eV and
s =8.5x10%s"1,

the error boundaries which stem from the reading of
the temperature (+0.5°C) and from the uncertainty
in the value of x,,. The resulting straight line corre-
sponds to the following E and s values:

E =0.597(+0.006) eV, s = 8.5 x 1065~

Due to the exponential dependence of s on x,,
[equation (10)], s is accurate only within an order of
magnitude. In a previous work (Kirsh et al., 1987),
the TL of the same sample was analysed, and for the
first TL peak the following kinetic parameters were
found: £E=0.60eV, s=1.1x10® and b=1. The
uncertainty in E was estimated to be + 5%, while s
was accurate up to one order of magnitude. Compar-
ing the results of the kinetic analysis of the TL with
phosphorescence, one can see that the E values are in
very good agreement, while the s values are within the
limits of error.

On the face of it, the analysis of the phosphor-
escence seems to yield more accurate results than the
kinetic analysis of TL. It has to be taken into account,

however, that our analysis here was based on the
assumption that there was no overlapping. The fact
that the low temperature part of the peak involves a
separate decay process is not obvious in that presen-
tation and is shown clearly only on a In(Z) vs 1/T
curve. In non-first order cases, it may be more
difficult to distinguish between overlapping peaks,
especially when the noise is high.

To conclude, we demonstrated the efficiency of the
program for synthetic peaks as well as ‘pure’ exper-
imental ones. However, since the results may be
distorted by overlapping, it is recommended that this
method be used in addition to the analysis of TL, not
independently.

Acknowledgements—We are grateful to Prof. P. D.
Townsend from the University of Sussex for his help in
performing the experiment, and to Dr S. Shoval from the
Open University of Israel for supplying the samples.

REFERENCES

Chen R. (1984) Solution of location problems with radial
cost functions. Comp. Math. Appl. 10, 87-94.

Chen R. and Kristianpoller N. (1986) Investigation of
phosphorescence decay using TL-like presentation.
Radiat. Prot. Dosim. 17, 443-446.

Cohen A. I. (1981) Stepsize analysis for descent methods.
J. Optim. Theory Appl. 33, 187-205.

Kirsh Y., Shoval S. and Townsend P. D. (1987) Kinetics
and emission spectra of thermoluminescence in the
feldspars albite and microcline. Phys. Stat. Sol. (a) 101,
253-262.

Kirsh Y. and Townsend P. D. (1988) Speculations on
the blue and red bands in the TL emission spectra of
albite and microcline. Nucl. Tracks Radiat. Meas. 14,
43-49.

Randall J. T. and Wilkins M. H. F. (1945) Phosphorescence
and electron traps II. The interpretation of long period
phosphorescence. Proc. R. Soc. (London) A 184,
390-407.

Visocekas R. (1978) La luminescence de la calcite aprés
irradiation cathodique: TL et luminescence par effet
tunnel. Thése doctorat Université Pierre et Marie
Curie, Paris.



