
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 132.66.11.211

This content was downloaded on 14/07/2015 at 13:29

Please note that terms and conditions apply.

Thermally stimulated current curves with non-constant recombination lifetime

View the table of contents for this issue, or go to the journal homepage for more

1969 J. Phys. D: Appl. Phys. 2 371

(http://iopscience.iop.org/0022-3727/2/3/309)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3727/2/3
http://iopscience.iop.org/0022-3727
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


BRIT. J. APPL. PHYS. (J. PHYS. D), 1969, SER. 2, VOL. 2. PRINTED IN GREAT BRITAIN 

Thermally stimulated current curves with non- 
constant recombination lifetime 

R. CHEN 

Department of Physics, Polytechnic Institute of Brooklyn, New York, U S A .  

MS. received 30th September 1968, in revised form 31st October 1968 

Abstract. Thermally stimulated current peaks, corresponding to second-order thermo- 
luminescence when the recombination lifetime is a rapid function of temperature, 
are investigated. By numerical calculation, values of the maximum and the half 
intensity temperatures are calculated. A method for calculating the activation energy 
by use of the maximum and half intensity temperatures is found empirically in analogy 
with similar first- and second-order methods. 

The initial-rise method for calculating the activation energy is also shown to hold 
true in this case. The value of the parameter ps characterizing the geometrical shape 
of the peak is found to be around 0.8 for various values of the activation energy and 
the frequency factor. This, in comparison with the value of about 0.4 for first-order 
and 0.5 for second-order peaks, indicates very slow decay of this phenomenon at high 
temperatures. 

1. Introduction 
I t  was usually considered true that thermally stimulated current (TSC) peaks behave in 

the same way as thermoluminescence (TL) peaks (Nicholas and Woods 1964, Wright and 
Allen 1966). Thus, the theories for first-order kinetics TL peaks (Randall and Wilkins 
1945) and of second-order TL peaks (Garlick and Gibson 1948) were applied to TSC peaks. 

According to Keating (1961) we have 

U = - ep?(dh/dt) (1) 

u = ep?I ( 1 4  
or 

where U is the conductivity, p the mobility, e the electronic charge, h the number of carriers 
in the centres, .T the average lifetime of carriers in the band, I the TL intensity and t the time. 
The similarity between the TL peak and the corresponding TSC one results from the 
assumption that the lifetime is constant during the heating process. 

Garlick and Gibson investigated the case in which the number of free carriers is much 
smaller than the number of filled centres, the initial number of carriers in a trap is equal to 
the initial number of opposite charge carriers in the recombination centres and the pro- 
babilities for recombination and retrapping are equal. The differential equation governing 
this case (the second-order process) is 

I= - dh/dt = ( v / H )  h2 exp (- E/kT) (2) 
where H is the total number of traps having the activation energy E (out of which h are 
occupied), T i s  the temperature, v the frequency factor and k the Boltzmann constant. By 
assuming a linear heating rate /3 and introducing a new frequency factor v‘ = Izov/H, where 
ho is the initial concentration of carriers, the solution of equation (2) is 

T 
I (  T )  = v’lm exp ( - E/kT)  { 1 -t- (v’ /P)  exp ( - E/kT’) dT’}-* (3) 

TO 

where TO is the initial temperature. v usually has values of lOQ to 1013 s-l or smaller. 
v’ will have the same values for cases of saturation (H=ho) and smaller ones for other cases. 
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By use of equation (3) an expression for U( T )  is found by multiplying by ep?. By assuming 
that d is constant, the curve for the TSC peak seems to have the same shape as the correspond- 
ing TL one. 

Saunders (1967) has shown that the assumptions of Garlick and Gibson (1948) imply that 
d is inversely proportional to lz. By multiplying the expression in (3) by ep-7 and inserting 
N/hv instead of 7, where h is the solution of (2), we have 

1’ 

o( T )  = (v’ /v)  peN exp [ - E/kT)  exp ( - E/kT’) dT’ (4) 

where N is the density of states in the conduction band. 
For these assumptions Saunders (1967) shows that, for given trap parameters, the maxi- 

mum of the function in (3) has to appear at a lower temperature than the maximum in (4). 
This may account for the shifts between TSC and TL peaks, which result apparently from 
the same trap (Broser and Broser-Warminsky 1955). 

The aim of the present work is to investigate further the properties of such a TSC peak 
(equation (4)). This is done by calculating several parameters of these peaks (with an 
IBM 360 computer) for various activation energies E and frequency factors v‘. The method 
is similar to the one given by Chen (1969) for first- and second-order peaks. A method for 
calculating the activation energy by use of the temperatures at the maximum and at half 
intensity is given and tested for these peaks. 

2. Calculational procedure and results 
In order to deal with expressions as given in (4), it is necessary to calculate 

7 exp (- E/kT‘) dT‘ 
il‘, 

numerically. This can be done easily and to a very good approximation by taking a certain 
number of terms in the following asymptotic expansion (Haake 1957): 

J 

n= l  
f exp (- E/kT’) dT‘= T exp (- E/kT)  (kT/E)” (- l)”-ln! ( 5 )  
1’0 

For most real cases it was found (see below) that kT/E< 0.08 and for these cases it was 
found useful to take J =  14 terms in the expansion. The possible error in these cases did not 
exceed 0.05 % of the value of the integral. The figure gives (on an arbitrary unit scale for U) 

a typical peak of the form given in (4) calculated by the use of (5) with the IBM 360 

Saunders-type TSC peak for the parameters E=0.4 ev, v’= 1O1O s-l and j3=0.5 degK s-l. 
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computer. The parameters for this peak are V I =  1OIo  s-l,  p=0*5 degrc and E=0*4 ev. 
The striking difference between this peak and first- and second-order ones with correspond- 
ing parameters (apart from the shift in the maximum of the peak mentioned by Saunders) is 
the very slow fall off of the intensity at temperatures higher than the maximum. While the 
first half of the peak is quite similar to the low-temperature half peaks of first- and second- 
order kinetics (which are quite similar to one another; see figure 1 of Nicholas and Woods 
1964), the second halves differ substantially. In this case the high-temperature half width 
6 = T2 - Tm (where Tm is the temperature at the maximum and TZ the higher temperature of 
half intensity) is much larger than the low-temperature half width T = Tnl -TI (where Ti is 
the lower temperature of half intensity). Halperin and Braner (1960) gave a simple 
geometrical criterion for distinguishing between first- and second-order peaks by introduc- 
ing the factor ,up= S/w where w =Tz -TI. Values of pg around 0.43 indicate first-order 
kinetics, whereas values around 0.52 are typical of second order. The value of pg in the 
case shown in the figure is 0.826, a value which will be shown to be typical of these TSC 
peaks. 

In order to find the general properties of peaks of the form (4), TI ,  Tm, T2 and other 
parameters have been found for values of the parameters E and v‘ varying in broad ranges 
(i.e. for values of E between 0.1 and 1.6 ev and values of v‘ between 105 and 1013 s-l). 
This has been done in a way similar to what had been done for the first- and second-order 
cases (Chen 1969). By differentiation of equation (4), and equating the derivative to zero, 
a condition for the maximum is given by 

Tm 

1 + ( d i p )  J exp ( - E / k T )  dT=(v’kTm2//3E) exp (-E/kTm). ( 6 )  
TI0 

This is very similar to the equation for the maximum of a second-order peak, except for a 
factor of 2 which is now missing on the right-hand side. For given values of v’, E and p 
this can be solved for Tm by reducing numerically (by use of the Newton-Raphson method) 
the value of the function 

Ym 

f( Tm) = 1 + (v ’ /p)  J exp (- E/kT)  dT- ( v’kTm2/PE) exp (- E/kTm) ( 6 4  
2 0  

down to the point in which the correction in the temperature is smaller than 10-3 degrc. 
As a first approximation it was found useful to take Tm = 800 x E. The approximation (5) for 
the value of the integral was used throughout the iterations (14 terms in the series). Once 
the value of Tm is known, the value of U( Tm), the intensity at the maximum, is easily found 
by inserting Tm into the expression in (4). Now the values TI  and Tz ,  the temperatures at 
half intensity, are to be found by finding T in g(T)=$a(Tm).  This again is done by 
reducing iteratively the value o f f (  T )  = U( T )  - $U( Tm) where the expression for U( T )  is 
given by (4). As a first approximation for TI we take 0.9Tm. For TZ we take as a first 
approximation 1.6Tm, because of the expected occurrence of a very broad fall-off part of 
the peak. 

Column 1 shows 
the given energy values changing from 0.1 to 1.6 ev. Column 2 gives the values of v’ 
varying from 1013 down to 105 s-l. Column 3 gives the calculated Tm values and columns 
4, 5 and 6 give the values of T, 6 and w respectively, calculated by the aid of the computed 
TI  and T2 values. It is important to remember 
that the accuracy of the numerical method depends on the smallness of the value of A, where 
the relative error in the calculated value of the integral is about ($A)n-ln! 

Some useful method for calculating activation energies for first- and second-order glow 
peaks were summarized (Chen 1969) in the form 

The table gives results of these calculations for various given parameters. 

Column 7 gives the value of A=2kTm/E. 

E= AkTm‘/a - B (2kTm) (7) 
where 01 represents either T, 6 or w and A and B are constants depending on whether 01 is 
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Calculated parameters of non-constant recombination lifetime TSC peaks for given E and Y values 

1 2 
E v' 

(ev) (s-9 
0.1 1013 
0 .2  1013 
0.4 1013 
0 . 8  1013 
1 .6  1013 
0 .1  1011 
0 .2  1011 
0 . 4  1011 
0.8 1011 
1 .6  10l1 
0.1 109 
0 . 2  109 
0.4 109 
0 . 8  109 
1.6 109 
0.1 107 

0 .4  107 

0.1 105 

0.8  105 
1.6  105 

0 . 2  107 

0.8 lo7 
1 . 6  lo7 

0.2 105 
0 . 4  lo5 

3 
T, 

(OK) 

41.1 
80.4 

157.3 
308.0 
603.3 
48.1 
93.9 

183.1 
357.4 
698.1 
57.9 

112.4 
218.4 
424.6 
826.0 
72.2 

139.3 
269.1 
520.2 

1006.7 
94.8 

181.3 
347.2 
665.8 

1278.5 

4 
T 

(OK) 

3 .9  
7.5 

14.5 
27.9 
53.9 
5.1 
9 .7  

18.6 
35.7 
68.7 
6 .8  

13.0 
24.9 
47.5 
90.7 

9 .8  
18.5 
35.0 
66.2 

125.5 
15.2 
28-3  
52.8 
98.7 

184.9 

5 
6 

("IC) 

19.9 
38.7 
75.6 

147.6 
288.3 
23.8 
46.3 
90.0 

175.0 
340.5 
29.6 
57.2 

l l 0 .S  
213.7 
413.8 

38.8 
74.1 

141.9 
272.3 
523 - 2  
56.4 

104.8 
196.6 
371 * 1 
703.5 

6 7 
w A 

23.7 0.071 
46.2 0.069 
90.0 0.068 

175.5 0.066 
342.2 0.065 
28.9 0.083 
56.0 0.081 

108.6 0.079 
210.7 0.077 
409.2 0,075 

36.5 0.100 
70.2 0.097 

135.3 0.094 
261.2 0.092 
504.5 0.089 
48.6 0.125 
92.6 0,120 

176.9 0.116 
338.5 0 . i12  
648.6 0.108 
71.6 0.163 

133.1 0.156 
249.4 0.149 
469-8 0,143 
888.4 0.138 

(OK) 

8 
PP 

0.836 
0.838 
0.840 
0.841 
0.843 
0.825 
0.827 
0.829 
0.830 
0.832 
0.812 
0.814 
0.816 
0.818 
0.820 
0.798 
0.800 
0.802 
0,804 
0.807 
0,788 
0.787 
0.788 
0.790 
0.792 

9 
XT 

2.673 
2.692 
2,712 
2.731 
2,750 
2.532 
2.554 
2.576 
2.597 
2.618 
2.370 
2.396 
2.421 
2.446 
2.470 
2,184 
2.214 
2.243 
2.272 
2.299 
1,952 
1.998 
2.033 
2,070 
2.096 

10 
XT' 

3.808 
3.811 
3.815 
3.818 
3.822 
3.792 
3.793 
3.795 
3.797 
3.800 
3.790 
3.789 
3.788 
3.788 
3.788 
3.815 
3.808 
3.803 
3.799 
3,795 
3.884 
3.870 
3.857 
3.846 
3.836 

11 
E, 

(ev) 
0.101 
0,201 
0.401 
0.801 
1.599 
0.101 
0.202 
0.404 
0.807 
1.612 
0.101 
0.203 
0.405 
0.811 
1.621 
0~100 
0,201 
0.403 
0.807 
1.617 
0.097 
0.195 
0.393 
0.790 
1.588 

12 
c 

0.9732 
0'9733 
0,9735 
0,9736 
0,9737 
0.9725 
0.9726 
0 ' 9727 
0 9 9728 
0.9729 
0,9719 
0.9720 
0.9720 
0.9721 
0 9722 
0.9717 
0.9717 
0.9717 
0.9717 
0.9717 
0.9726 
0.9723 
0.9721 
0 ' 9720 
0.9718 

7 ,  6 or w and on the order (first or second) of the process. We have tried to find a similar 
equation which will be suitable for the peaks discussed here (by finding the corresponding 
A and B values). Equation (7) can be written in the forin 

(8) A = aE/kTm2 + 2B4Tm. 

Values of the first term on the right, where e is replaced by T ,  namely values of 

xT = TE/kam2 

are given in column 9 of the table. By trial and error, multiples of r/Tm were added so as to 
make the right-hand side of equation (8) as close to a constant value as possible. I t  was 
found that the best results are obtained for 2B= 12. The values of X,'= rE/kTm2+ 12~/T,, 
are given in column 10, having an average value of about 3.82. Thus equation (1) can be 
written for this case as 

E,= 3*82kTm2/r - 12kTm. (9) 
The calculated values of activation energies by (9) are given in column 11 of the table. 

The deviation from the given values of E does not exceed 3 %. It  is interesting to note that 
the methods for the first- and second-order peaks, represented here by the general form of 
equation (7), were proved by assuming a constant ratio between the areas of the first half, 
the second half and the total areas of the glow peak to triangles having the same height 
and the same half width (Lushchik 1955, Halperin and Braner 1960, Chen 1969). The fact 
that we could find (empirically) equation (9) seems to be connected to the fact that the ratio 
between these areas for the first half of the presently discussed peaks 

1" 

C= a m ~ / ( l l P )  1 4 T )  dT (10) 
TI0 



TSC curves with non-constant lifetime 375 

is a constant to very good accuracy (0,9727 i O * l % ;  see column 12 in the table). We 
cannot, however, prove this connection on purely theoretical grounds. A similar trial and 
error method for finding an equation for the activation energy by use of 6 or w has failed. 

3. Conclusions 
The case of TSC peaks, corresponding to second-order TL peaks when the lifetime is 

inversely proportional to the number of trapped carriers, introduced by Saunders (1967), is 
further investigated here. Values of the temperature of the maximum as well as the total 
half width and the low-temperature and high-temperature half width are calculated numeri- 
cally for values of activation energy and the frequency factor v’ varying in broad ranges. A 
method for finding the activation energy by use of the maximum temperature and the low- 
temperature half width is found empirically and checked. The accuracy in obtaining the 
activation energy in this way is shown to be better than 3 % for the entire investigated range 
of the parameters E and v’ (which seems to cover most of the experimentally possible cases). 
It should be noted here that the method of initial rise (Garlick and Gibson 1948), namely 
finding the activation energy from the slope of In a as a function of 1/T in the initial-rise 
portion, which is used both for first- and second-order TL peaks, should be useful here as 
well. In the initial-rise range 

(v’/P) fexp ( - E/kT‘) dT’ 

is much smaller than unity, and according to equation (4) we have acxexp (-E/kT). 
Thus, a plot of In U against I/T yields a straight line in this region, whose slope is -Elk. 
This enables us to calculate directly the value of E, which can be used for verification of 
results found by the previously mentioned method. 

The nature of the TSC peak investigated here can be characterized by the large magnitude 
of pg. First- and second-order peaks and these TSC peaks seem to be similar (for the same 
given parameters) to each other at the first half of the peak. On the other hand, the first- 
order peaks decrease very rapidly at temperatures higher than Tnl, which is characterized 
by pg 2: 0.42. Second-order peaks decrease more slowly, with characteristic pg values 
around 0.53. The present peaks, of the form given by equation (4), were shown to have pg 
values around 0.82 for all the broad range of E and v‘ values discussed here, showing the 
very slow decrease of the intensity. 
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