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The Kohlrauschrelaxationfunction(or thestretchedexponentialfunction) is comparedin detailwith a kinetic model for
isothermaltemperaturestimulatedluminescentdecaybasedon a Gaussiandistributionof activationenergies.In eachcasethe
reactivity rate is assumedto follow an Arrheniusform (or the Randall Wilkins form) s exp(— E/kT). Use of theGaussian
distributionhasbeenfoundto give a good accountingof observedexperimentalresults.The presentinvestigationis primarily
meant to determinethe uniquenessof such fits to experimentaldata. As appropriatefor this purpose,the controlling
parametersof thetwo relaxationfunctionsareforcedinto equivalenceby an imposednormalization.Thenormalizationpoint
is selectedfor a critical time to bestreveal thedifferencesbetweenthetwo time dependentrelaxationfunctions.Althoughthe
resultingtwo decayfunctionsarenot renderedcompletelyidentical,closenumericalagreementover a widerangeof relaxation
timesandactivationenergydistributionwidths is found.Thesimilarity in thewidthsof thecorrespondingenergydistributions
is foundto be themain reasonfor thiscloseagreement.Exact featuresof theactivationenergydistributionareimportantonly
in the very short and very long time periodsof the relaxationprocess.Recoveringtheactivation energydistribution from
experimentallymeasureddata is discussedin detail.

1. Introduction stableat room temperatureandhavebeenallowed
to completeany low temperaturefadingthat might

The ubiquitousstretchedexponentialrelaxation be presentby long term storageare considered
decaylaw introducedby R. Kohlrausch(1854) [1] [8,9]. The isothermalrelaxationof such materials
and F. Kohlrausch (1863) [2] has by now been at an elevatedtemperatureis expectedto proceed
found to fit a vast numberof relaxationproblems with de-trappingthroughtheconductionband.In
[3]. A numberof investigatorshaveconsidereda additionthe clearestconclusionswould bederived
variety of physical modelsthat would lead to the for materialsshowinga singleisolatedglow curve
stretchedexponentiallaw or closely related ran- peak upon heating at an increasingly elevated
domwalk relationships[4—7].The strongsugges- temperature.
tion existsthat the stretchedexponentiallaw may Very few TL phosphormaterialsof the above
operate in the case of isothermal temperature type have beenstudied in isothermal relaxation.
stimulatedluminescence(TSL or simply TL) re- TLD 400 (CaF2:Mn) ribbon phosphormaterial
laxation. shows a single well isolated temperature—wave-

TL relaxationprocessesoften involve multiple length peak in a 3D-spectrophotometricdisplay
decay mechanismsoperatingsimultaneously. In [10]. The paucity of data on such phosphor
order to narrow possibilities to a single process materialsprecludesa thorough experimentaltest
only materials that involve trap sites that are of the stretched exponential decay law in TL.

However, a closedform theoreticalexpressionhas
beenderivedthat very successfullyfits observed

* . dataand gives consistentphysical parametersforPermanent address: School of Physics and Astronomy,
Raymandand Beverly Sackler Faculty of Exact Sciences, both glow curve data and isothermal decay for
Tel Aviv University,Tel Aviv 69978, Israel. TLD 400 [11]. This suggeststhe strategyof corn-
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paring this theoretical model relaxationfunction CONDUCTION BAND
with the stretchedexponentiallaw. Such a corn- ///////~c //////////////

nessof the derivedactivationenergydistributions ~dE J_parisonwill havebearingon the possibleunique- a(E) I
derivedfrom the data.

~

2. TL relaxationfunctions pIE). N

VALENCE BAND
To account for relaxation phenomenasome

Fig. 1. A simplekinetic model for TL showinganelectrontrap
donor speciesis invoked that undergoesdecayso activation energy distribution p(E) and an electron occupa-

that the concentrationof donorsdecreaseswith tion density ~(E). The densityof holesat the recombination

elapsedtime. The stretchedexponentialfunction site is labelled
relatesto the probability that, at time t, a donor
has not yet undergonedecay. In the caseof the The densityof holes at the single recombination
thermoluminescenceprocessundergoingisother- type centersis m. Electrons in a narrow energy
mal decay the donorsmay properlybe identified band dE at energyE are elevatedinto the con-
as the electrons occupying trap sites in the duction band at arate:
material.It is primarily their reductionin number a = s exp(—E/kT), (5)
with increasing time that producesthe observed where s is the frequencyfactor, k is the Boltz-
thermoluminescentlight output.Thusthestretched mann constant,and T the isothermal absolute
exponentialfunction takesthe form:

temperature.Figure 1 shows the kinetic model
n = n0 exp — (t/’r0)~, (1) described.

At t = 0 the electrondistributionis takento be
where n and n0 refers to the numberof trapped
electronsper cm

3 at time t and time t = o, respec- directly proportionalto p (E) or ij (E, 0) = f
0p(E).

tively This assumptionof proportionality is expectedtobe valid if the trappedelectronsresultedfrom a
For the suggestedcomparison,a simple first

order kinetic model with a Gaussianactivation laboratoryirradiation using betaor gammarays,as is commonly the casein TL studies.This as-
energy distribution at t = 0 is used. Electrons
trappedat a singletype of siteare elevatedto the sumptionis also not implausibleevenif the excit-ing irradiation makesuse of low energyphotons
conduction band from which they rapidly react provided the irradiation is of short enoughdura-
with holes at recombinationsites, emitting the
observedTL light. No re-trapping is allowed. A tion to preventan excessivepopulationof deepertrap sites through the ongoingcompetitionin the
distribution of activation energies p(E) for the photo-excitation—de-excitationprocess[12].
electrontrap sitesis assumedto be the Gaussian:

The intensityof the emittedTL light is propor-
p(E) = ~ exp — a(E — E0)

2. (2) tional to dm/dt, the rateof decreasein the hole
concentrationat the recombinationcenters.If the

The trappedelectrondistributionas a function of usual assumptionsare madeconcerningthe con-
energyand time is written: centrationof electronsn~in the conductionband,
~q(E, t) =f(E, t)p(E) (3) that n~anddn~/dlareboth negligibly small, it

follows that m = n and dm/dt = dn/dt. These
by introducing the electron occupationnumber assumptionsare also implied by writing n instead
f( E, t). The total numberof trappedelectronsat of m in eq. (1). Thesesameassumptionsfor the
time t is: model underdiscussionyields:

dn a
0n0

n = n(t) = f f(E, t)p(E) dE. (4) -~-~- = —7=—yG(x, y) —a0n0H(x,y), (6)
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wherea0 is a of eq.(5) with E = E0, x = a0!, and plicitly exhibits simple first order kinetics with a
= ak

2T2 with a the constantappearingin eq. constantdecayratesincedn/dt = — a
0n.

(2). The function G(x, y) is the so-called “after For the stretchedexponentialfunction of eq.
effect function” introducedby Wagner[13] and (2), when ~‘ ~ 1 and t/T0 is not exactly zero
tabulatedin JahnkeandEmde [14]. Equation (6) (t/lb)t = 1, hence
is derivedin ref. [11].

The Gaussiandistribution givenby eq.(2) is an dn/dt = — . t = —constantS~ ~, (12)e
ad hoc assumption.Stochasticprocessesmight be
imagined to play a significant role both in the leading again to an inverse time dependence.To
formationof the trapsitesas well as in the subse- achievethe t

1 dependence~ neednot be very
quent trappingof electrons in the initial irradia- small.Indeedfor s’ = 0.1 a very closet1 behavior
tion phase[15]. Conditionsmay thereforebe pre- resultsfor an entirerange0.01 <t/T

0 < 25.
On the otherhand,when ~= 1 eq. (7) reduces

sent leadingto an initial electronpopulationdis-
tribution possiblybetterdescribedby thestretched to
exponentiallaw. dn — — n0 e = ~‘o et//T0. (13)

For the stretchedexponentialfunction of eq. dt —

(1) the time derivativeprovides the analogto eq. To obtain an exponentialbehavior obeying eq.
(6):

(13) from t = 0 to beyond
t/~b= 10 requires ~>

dn — n~f t ~ 0.99. For example,if ~= 0.95 the actualbehavior
I — exp — (t/r~) ~. (7) in this rangeof t/Th beginsto deviateappreciably

‘ro ~mj
from the exponentiallaw given by eq.(13).

In order to compare the Gaussiandistribution Comparisonof eq. (12) to eq. (9) and eq. (13)
model to that basedon the stretchedexponential to eq. (11) carries the suggestionthat the two
modelit is necessaryto establisha correspondence functions:
betweeneqs. (6) and (7). The limiting casesfor
large andsmall valuesof the parametersy in eq. H( .~ = yG (x, j’) and
(6) and ~ in eq.(7) are examinedfor this purpose. ‘ (14)

In view of the definitionof y andeq.(2) y ~ 1 F(t/T
0, ~)= ~(t/T0)~ exp —

correspondsto a very broad distribution p(E)
while y>> 1 correspondsto a very narrow distri- might be closely related if x = a0! is takenequal
bution. It is easyto show that to x = t/lb. An identification often adoptedin

lim G(x, ~)= 1/x, (8) usingthe stretchedexponentialis in fact
1b 1=sexp(—E

0/kT)=a0.
whencefor y ~ 1

It remainsto establishthe relationshipbetweeny
dn

= — 7=yt = —constantS~ (9) and ~, and to testthe extent of the equivalenceas
a functionof x.

Such an inverse time dependenceis frequently To relatey and ~ the two functionsin eq.(14)
observedexperimentally, areequatedfor some most revealingchoice of x,

On the otherhandit is also easyto show that finding for selectedvaluesof ~ the corresponding

IyG valueof y. The two functionsof eq. (14) show the
lim I —(x, ~)]= e “°‘, (10) greatestvariation with y or ~‘ when x 1, there-

Y ~ I. ~ fore x = 1 is selectedfor the normaliLation of the

whence two functions.This normalizationshouldproduce
the most stringent test for the equivalenceof

dn/dt —a0n0e aol = ‘o e 0 (11) H(x, y) and F(x, ~),additional significancefor

the appropriateexponentialdecayfor a very nar- this choice of normalizationwill be given later.
row distribution p(E). This type of decay ex- The resultsare given in table 1 underthe column
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Table 1 with c = 0.589. A comparison set of values y’
Relationshipbetweentheparameters~ and y calculatedfrom eq. (15) is also shownin table1. It

y y’ FWHM (eV) ~) is to benoted that the exactvaluesof y obtained

0 0 0 0 from a numericalfit and y’ obtainedfrom eq.(15)
0.05 0.033 0.030 2.18 agreefairly well in the range0.10<~ < 0.90. A
0.10 0.067 0.062 1.09 value of c — ~/~/e = 0.652 obtained by directly
0.20 0.134 0.131 0.538 comparing eq. (9) and eq. (12) gives a better
0.30 0.21 0.21 0.34 accountingfor both ~<0.10 and ~> 0.90.
0.40 0.30 0.30 0.24
0.50 0.40 0.41 0.18 For the theoryleading to eq.(6) the “full width
0.60 0.54 0.54 0.13 at half maximum” (FWHM) for the Gaussian
0.70 0.70 0.71 0.103 distribution is relatedto y by:
0.80 0.95 0.95 0.076

2kT0.90 1.47 1.36 0.053 FWHM = —V0.693 . (16)
0.95 2.15 1.76 0.041 y
0.99 2.71 0.027 Values of the width FWHM are also shown in
I cc cc 0

table 1 for anassumedtypical isothermaltempera-
~ At T 230°C 503 K, basedon y’ values. ture of 230°C —503 K.

Using eq. (15) to relate ~ and y, and taking
labelled y and plotted in fig. 2. An empirical x — a0!= a comparisonwas made between
relationshipbetweeny and ~ wasfound to be: the two functionsof eq. (14) for variousvaluesof

= 1 — e~~~’e~-~y= c ln(1 fl ~, (15) y (and therefore~)and x. Generallygood agree-ment was found for x in the range 0.1 <x < 10
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dashedline curvesare for the normalizedstretchedexponent
Fig. 2. Theequivalentvalueof y as a functionof ~ to achieve law F(x — I/To, ~) The equivalentparametricvaluesare ~=

normalizationof H(x, y) and F(x, fl at x—1. The smooth and y — 0.239 for the setlabelled (a) and ~— and y —0.40
curveis for eq. (15) and thepointsarefor theexactnumerical for the set labelled (b). The normalizationin eachcaseis for

correspondence. x —1.
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for all values of y. Figure 3 shows the results I I I I I I I I I

obtained: (a) for ~‘ = ~ (the dashedcurve), corre- 0 Sb

spondingto y = 0.239 (the solid curve); and (b)

y = 0.40(the solid curve).Forthesevaluesof ~ th Ze
isothermal decay curve shapeis in very strong >- 0.15

ponentialshapeandhenceoffers agood check on 0 0afor ~ = ~ (the dashedcurve) correspondingto 020transition from the t
4 shapeto the simple ex-

‘Sthe possible equivalence. There would be very
005 - --little point in comparingthe two relaxationfunc- I I

tions for either~ verycloseto zero orverycloseto 000 - - - -

unity since equivalencefor suchvalues is already 025 -020 -0.15 -010 -005 000 .0.05 *010 +0 15 .020
~5E(eV)

evident.Figure 3 showsthat the agreementfor a
Fig. 4. The activation energydistributions for the equivalent

wide rangeof valuesof x is quite good.Failureof pair ~ = ~, y — 0.40 (a)and(b) respectivelyand thepair~ =

agreementoververysmall andvery largevaluesof y — 0.239(c) and (d). Thevalue of kT usedin 0.0433 eV (i.e.

x will be discussedin the next section. for 230°C).Thesecurvesare independentof anyparticularE
0

The universalnatureof the timevariablein fig. thatmight beassumed.

3 should be noted. Only the quantity x = a0! is
varied; any combinationof s and E0 is allowed.
Oncea0 is determineda particularvalueof x will
correspondto a particularrelaxationtime. The Gaussiandistribution of activation en-

ergiesgiven by eq. (2) is also only a function of
AE = E — E0, making the comparisonof the two

3. Activation energydistributions distribution functions particularly convenient.
Figure 4 shows the distributions o~(,AE)and

A reactivity distribution function 1(T) follows p(A E) for (a) ~‘ = ~, (b) y = 0.40, the equivalent
from the Laplacetransform of the stretchedex- y; (c) ~ = ~ and (d) y = 0.239, the equivalenty.
ponential function of eq. (1). If a generalized Theseare the samevaluesused to generatethe
Arrhemusrate equation curvesshownin fig. 3.

Themainsimilarity of the two pairs of distribu-
1 = s exp(— E/kT) (17) tion functionsis in thecorrespondinghalf widths,

is adopteda specific activationenergydistribution (a) with (b) and (c) with (d). In fine detail, curves
~( E) emergesfor eachvalueof ~‘. Obtainingthese (a) and(b) in particularseemquite disparate.Why
energy distributions requires numerical calcula- then the close agreementin the relaxation func-
tions; only for ~ = and ~ = are closed form tions shownin fig. 3(b) basedon thesetwo distn-
expressionsavailable [3]. butions?

A universalrepresentationof the activationen- The isothermal relaxation rate may be ex-
ergydistributionsis possiblein termsof the varia- pressedin the form:
ble T/’r0 = (E — E0)/kT: dn j a(E) e a(E)(~(E 0) dE, (19)
f(.r/’r0)—o4(exp[(E—E0)/kT}). (18) dt

The distribution function of eq.(18) is thus only a where a(E) = s exp(— E/kT). This result follows
function of AE = E — E0,with the value ‘r/m = 1 from eq.(4) with f(E, t) =f~ea~t appropriate
correspondingto E = E0. Theseenergyfunctions in the absenceof retrapping,andtime differentia-
are quite asymmetricand possessa long low en- tion underthe integralsign. This equationis valid
ergy tail. Only in the limit ~ = 1 does thepeakof for whatevershapeis assumedfor ~j(E, 0), the
the distribution correspondto LiE = 0, the true activation energydistribution of the trappedelec-
position of E0. trons at t = 0.
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As the isothermal decay processproceedsin tributions in fig. 5. Applying eq. (22) yieldsvalues
time, a window function of x = 0.1 and x = 10 for LiE = ±0.10 eV. For

timescorrespondingto E less than (E0 0.10)eV
w(E, t) = a(E) e (20) the distribution (a) is significantly higher than for
sweepsthrough the distribution ~( E, 0); at each (b), thus giving a larger relaxation rate for short
instant of time the relaxation rate is the overlap timesin agreementwith fig. 3(b). For timescorre-
integral of the window function and the initial spondingto E greater than (E0 + 0.10) eV the
distribution of activation energies.The window oppositeis true, with curve (b) significantly higher
function hasits peakvalueoccur at than (a) againproducingresultsin agreementwith

Em~= kT in St (21) fig. 3(b). The sameconsiderationsapplied to the
case = ~ and y = 0.239 clearly suggestsclose

and has a width FWHM = 2.48kT(independent correspondencefor the two relaxation functions
of t). It shouldbenotedthat the selectionof x = 1 for a significantly larger rangeof A E. Again this
leading to eq. (15) correspondsto placing the is evidentin fig. 3(a).
window function peak at E0. The relationship As pointedout by W. Pnmak[16], in the event
betweenthe position of the window function peak that i~(E, 0) is sufficiently broader than several
at anenergyE0 + LiE in fig. 4 andthe correspond- kT, eq. (19) may be used to directly determine
ing valueof x in fig. 3 is: s~(E,0) from the observedrelaxation rate. With

x(E0 + LiE) = ~ (22) 71(E,0) sufficiently broader than the window
function, ij ( E, 0) may be taken outside the in-Figure 5 showsthe samedistribution functions tegralof eq. (19) giving

(a) and (b) of fig. 4 for ~ = ~ and y = 0.40. For
thelatter distribution of FWHM — 4.l6kT. In ad- dn
dition the window function w(E, 1) is also shown dt = 31(E,0)f~a(E)e °~

tdE. (23)0

labelled (c). In the region 0.10 <LiE < + 0.10 The integral in eq. (23) is readily evaluatedgiving
eV, the window function apparentlyis sufficiently

t dn
(24)broad to blur the distinction between the two ~(E, 0) —distributions, and the equality of the two func-

tions shownby curve (b) in fig. 3 mostly reflects The averageenergyE correspondingto the time t

the nearlyequalwidth for the correspondingdis- is:

cc /oo
E=J Eae aidE/f ae °‘dE

_____________________ 0 /0
I I I I I — kT[ln(st) + 0.5772] when st>> 1. (25)

025

• from the observed relaxation rate directly, the
H
2

0 I • distributionof activationenergieswith FWHM =
‘S 020 Y isothermaldecaycurve generatedfor the Gaussian

T~1\,

To illustrate this procedurefor obtaining ~( E, 0)7.OkT shown in fig. 3(a) (the solid curve) wasH 0 I 0 unfoldedusingeq. (24). Figure6 showsthe results,a the curve labelled I is the input distribution and005 - - - curve 0 is theunfolded outputdistribution.

-- o “~. Finally, a supplementaryprocedure to the
0001 I

025 020 0 5 010 005 0.00 .005 .010 .015 .020 Primak method for obtaining the activation en-
~E 1eV ergydistribution is possible.For verybroaddistri-

Fig. 5. The samepair of activationenergydistributions shown butionsit leadsto the sameresult,however,it may
in fig. 4 (a)and (b) andin addition thewindow functioncc

be usedto extendthe analysisinto the region of
at the time x 1 whenits peakis at theenergyE

0. Thevalue
of kT is0.0433eV. FWHM as small asa few kT.
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0.~ I I I I I I I I I experimentswith even larger values of p~and a

06 - wider rangeof valuesfor bt including bt < 1.
The function given in eq. (27) doesappearas

0.5 - oneof thetabulatedpair of Laplacefunctionsand

04 - yieldsa distribution:

03- / \e~0 • i~(a,0) = e a/b/kTbiLf(~) (28)

~ 02 whereF(!L) is the gammafunction of ,s. Equation
(5) relating a and E converts eq. (28) into an

0 I - energydistribution.

00 I I I I I I I In caseswherethe distributionwidth FWHM is
05 -0.4 03 -0.2 -0.1 00 *0.1 .0.2 .03 *04 *0.5 greaterthan several kT. the Primak approxima-

~E(eV) lion statedin eqs.(24) and (25) should also be

Fig. 6. Theunfolding of therelaxationcurve shownin fig. 3(a) valid. This approximationleadsto the result:
for the Gaussianactivationdistribution(solid line) using the
Primak approximationof eq. (24). The solidline curvelabelled i~(a, 0) = 10/akT(1+ b/a) I’~ (29)
I is the input distribution, thedashedline curve labelled 0 is

theunfoldedresultingoutput. Thetwo equations,eq.(28) and(29), are in fact
quitesimilar for b/a> 1 (hencea/b < 1) andfor
~unearly unity. Expanding eq. (28) in a power

By making useof eq. (5) a = se , eq. (19)
seriesof a/b yields:

may be written asafunction of a:

dn Io(a/b)M a a
2

= _kTf ‘q(a, 0) e alda (26) ~(a, 0~ akTF(js) ‘ 1 b + +

The upperlimit of the integral in eq. (26) may be (30)
replacedby infinity since the frequencyfactor S is while the expansionof eq. (29) gives closely the
usually very large (e.g. io~<S < iO~”S ~).With sameresult:
this substitution,the observedTL intensity is kT ~
timesthe Laplacetransformof ~(a, 0). It follows ~(a, 0) =

0~.a/.~
that ~(a, 0) is the inverse Laplacetransform of akT
—(1/kT).(dn/dt). >< 1—

Generatingthe inverse Laplacetransform di- ~ b 2 b
2

rectly from experimentaldatais a formidabletask. (31)
However, if the datacan first be fitted with an
analytic function the task is mathematically noteF (1.25)= 0.906.
manageable,particularlyif the function shouldbe Fora sumof closely spacedverynarrow activa-
one of those appearingin a table of Laplace tion energy levels generally giving only a single
“pairs” [17]. unresolvedglow peak the isothermal relaxation

It hadbeennotedby Medlin [18] that for broad rate:
activation energy distributions of the Gaussian j = an (0) e°” (32)
form, it is possibleto cast the TL relaxationrate ‘

into the form: relatesto the distribution:

1= —dn/dt=1
0(1+bt) p (27) q(a,0)=~n,(0) ô(a—a,), (33)

with p. and b constants.
When intendedto simply extendthe divergent where ô(a — a,) is the delta function locating the

— relaxationrate, p. is closeto unity and bt> 1 energyof the level designatedby the index i and

overmost of the observedrangeof bt. This form the correspondingtotal level occupancyis n,(0) at
for TL relaxationis observed to hold for some t = 0.
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4. Discussionand conclusions fling the energyregionnearE0. It shouldbe noted
that the CaF:Mn phosphorappearsto havesome

It is found possibleto normalizethe stretched retrappingpresentin its TL kinetics behavior[6].
exponentialrelaxationfunction to an appropriate In view of the abovedifficulties it is likely that
decay function basedon a Gaussianactivation TL isothermal relaxation rate experimentswill
energy distribution using first order kinetics. By mostly besensitiveto the activationenergydistri-
working at the normalizationpoint x = a0t = t/T0 bution width and will not be able to distinguish
= 1 it is possibleto associatea particularvalueof definitively betweenvarious possiblebell-shaped
y with each value of ~. Such paired relaxation energydistributionsin their entirety.
curvesare found to be nearlyindistinguishablein The most successfulexperimentalprogram for
the range 0.1 <x < 10. Comparisonof the two determiningthe importantTL characteristics:s,
activation energy distributions reveals that this E0, FWHM, and the retrapping factor /3N/an0
close congruencein relaxationratesover a range for a kineticsmodel of the type shownin fig. 1, is
of abouta factor 100 in time is due primarily to to obtain bothaTL glow curve andan isothermal
the similarity in valuesof the FWHM of the two relaxationmeasurement[6].The initial risemethod
distributionsresultingfrom the normalizationpro- applied to the glow curve yieldsvaluesfor s and
cedure. E0 and hencea0 = l/t~.The relaxationratedata

It is necessaryto have short-time relaxation in the time range0.1 <x = a0! < 10 shouldyield a
ratedata, t valuesas low as x = 0.01, in order to reasonablevaluefor the FWHM.
observethe presenceof the striking low energy tail If retrapping is not too severe the following
of the distribution correspondingto the stretched rulespertain in the range0.1 <x < 10 andpossi-
exponential,a tail which is not significantly pre- bly beyond:
sent in the Gaussiandistribution.Thesedatamay (i) for ~ < 0.2 (FWHM > 0.5 eV)* an inverse
bedifficult to obtainexperimentallyfor TL dueto time dependenceprevails for the relaxation
the finite time it takes to bring the phosphor rate;
sampleto the isothermalobservationtemperature (ii) for 0.2< <0.4 (0.5 eV> FWHM > 0.25 eV)
from room temperature. For example, in the a relaxationrateresultsobeyinga function of
CaF2: Mn isothermalTL experimentsat least25 s the type I~(1+ bt) ~ with p. near 1 and J~
were required to reach substantialthermal equi- the initial rateat t — 0;

librium in goingfrom roomtemperatureto230°C. (iii) for 0.4 < ~‘ < 0.99 (0.25 eV> FWHM > 0.02
This correspondsto x — 0.02. The needfor storage eV) only the transitionalbehaviorresults for
at a low temperatureafter irradiation to allow the relaxation rate, requiring tabulated or
fading to go to completion preventsirradiation at numericallycomputedunfolding;
the isothermalelevatedtemperaturewhich would (iv) For 0.99 < ~ < 1 (0.02 eV> FWHM > 0) an
be a meansfor reducingthis “heat up” time, exponentially decaying relaxation rate fol-

To observe the differencein the high energy lows.
region of the two activation energydistributions Relaxationrateexperimentsindicating time de-
requiresreachingvaluesof x> 10. In the analysis pendentbehavior of the types (i) or (ii) above
of TL data presentedhere it was assumedthat should yield a reasonablemeasureof the activa-
thereis no retrappingpresent.If retrappingwere tion energydistributionnearE0 using the Primak
presentit would be expectedto becomeincreas- analysiscontainedin eqs. (24) and (25). At the
ingly significantfor valuesof x> 1. This is dueto narrowerendof thedistribution rangegivenin (ii)
the fact that retrappingeffectively transferssome and in thosecaseswhere at least in the critical
electronsfrom trap siteshaving shalloweractiva- region 0.1 <x < 10, the relaxation rate is ade-
tion energiesto trap siteshaving deeperactivation
energies.Theseelectrons in turn are finally re-
leasedat timesgreaterthan that correspondingto * Correspondingvaluesof y may be found in table I or by

x — 1, a time when the window function is span- useof eq. (15).
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quately matchedby the function in eq. (27), the equationsare solvedsimultaneouslyto give all the
data for caseswith FWHM widths as small as relevantquantities(e.g. dm/dt, n,~,dn~/d,~

only a few kT may be sufficiently characterized as the kinetics parametersarevaried. At present
by thedistribution givenin eq.(28). At the broader only the programwith R = 5 is running.The more
endof therangegivenin (ii) the Primakmethodis desirableprogramwith R = 7 should be running
to be preferredsince it treats the observeddata soon. Additional experimentalwork is also con-
directly. templated.
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thetheoreticalaspectsof the developmentpursued
above.Even for the simplekinetic model of fig. 1 Acknowledgements
the treatmentof n~and dn~/dlis questionable.
For example,near t = 0 (albeitmaskedby experi-

This work was funded in part by the NSF:mentaldifficulties) d n~/d t is of the sameorder of
BNS8911758 and the Naval Surface Warfare

magnitudeas dn/dt and hencenot negligible as
Center:N6092189M4352.Weareindebtedto V.K.must be assumedfor the application of either
Mathur andJ. Silvermanfor many usefuldiscus-relaxationfunction of eq. (14) to theTL data.The
sionsduring the courseof this research.

TL observedis given by dm/dt not dn/dt. In
general dm/dt=dn/dt+dn~/dt and m=n+
n~.To properlydeterminedm/dt, no approxima-
tions concerningn,~should be made,rather the References
relevant differential equations should be solved
exactly. [11R. Kohlrausch,Pogg.Ann. 91(1854)179.

It should be noted that the use of differential [21F. Kohlrausch,Pogg.Ann. 119 (1863) 337.

equationsfor the time ratesof changeof n, m, [3] A. Plonka,Time-DependentReactivityof Speciesin Con-
densedMedia, Lecture Notesin Chemistry40 (Springer,

and n~obscureanystochasticprocessesthatmight New York, 1986).

be present.This is particularly true for the trans- [4] H.B. Rosenstock,Phys.Rev. 187 (1969) 1166.

port of the electrons(‘~~)in the conductionband [51J. Noolandi, Phys.Rev. B 16 (1977)4474.
as they move acrossthe sampleprior to arrivingat [61iT. Bendler and M.F. Shlesinger,Macro. Mol. 18 (1985)

a recombinationcenter.The usual treatmentfor 591.[7] J. Klafter and M.F. Shlesinger,Proc. NatI. Acad. Sci.
the luminescentcapture of the conduction elec- USA 83 (1986)848.

trons (n~) is to associatea capturecrosssection0 [8] R. Visocekas,M. Ouchene,and B. Gallois, NucI. Instr.

with each trappedhole m and use the average andMeth. 214 (1983)553.
velocity i3~ for the sea (gas)of conductionelec- [91P.A. Clark andR.H.Templer,Archaeometry30 (1988) 19.

trons to yield the bimolecularreactionrate: [10] W.F. Hornyakand A.D. Franklin, J. Lunun.42 (1988)89.
[11] W.F. Homyak andA.D. Franklin, Nuci. TracksRadiat.

dm/dt = —v~amn~= —‘fm?l~. Meas.14(1988)81.
[12] R. Chen,W.F. HornyakandW.K. Mathur,Phys.Rev. D,

The very likely presenceof retrappingshouldbe to be published.
addedto the model of fig. 1 [11]. [131 K.W. Wagner,Ann. Phys.40 (1913)817.

To address these questions, an extensive [14] E. Jahnkeand F. Emde,Table of Functions38 (Dover,

numerical programhas beenbegunto study the New York, 1943).

kinetic model of fig. 1 with retrappingadded.The [15] G.H. Weiss,Amer. Sci. 71(1983)65.
[16] W. Primak, J. Appl. Phys.31 (1960)1524.

activation energy distribution is divided into R [17] 1.S. Gradshteynand I.M. Ryzhik, Table of Integrals,
sectionswith adjustableelectron occupanciesat SeriesandProducts(Academic,New York, 1980).

I = 0. The R + 2 resulting coupled differential [181 W.L., Medlin, Phys.Rev. 123 (1961)502.


