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The Kohlrausch relaxation function (or the stretched exponential function) is compared in detail with a kinetic model for
isothermal temperature stimulated luminescent decay based on a Gaussian distribution of activation energies. In each case the
reactivity rate is assumed to follow an Arrhenius form (or the Randall-Wilkins form) s exp(— E/kT). Use of the Gaussian
distribution has been found to give a good accounting of observed experimental results. The present investigation is primarily
meant to determine the uniqueness of such fits to experimental data. As appropriate for this purpose, the controlling
parameters of the two relaxation functions are forced into equivalence by an imposed normalization. The normalization point
is selected for a critical time to best reveal the differences between the two time dependent relaxation functions. Although the
resulting two decay functions are not rendered completely identical, close numerical agreement over a wide range of relaxation
times and activation energy distribution widths is found. The similarity in the widths of the corresponding energy distributions
is found to be the main reason for this close agreement. Exact features of the activation energy distribution are important only
in the very short and very long time periods of the relaxation process. Recovering the activation energy distribution from

experimentally measured data is discussed in detail.

1. Introduction

The ubiquitous stretched exponential relaxation
decay law introduced by R. Kohlrausch (1854) [1]
and F. Kohlrausch (1863) [2] has by now been
found to fit a vast number of relaxation problems
[3]. A number of investigators have considered a
variety of physical models that would lead to the
stretched exponential law or closely related ran-
dom walk relationships [4-7]. The strong sugges-
tion exists that the stretched exponential law may
operate in the case of isothermal temperature
stimulated luminescence (TSL or simply TL) re-
laxation.

TL relaxation processes often involve multiple
decay mechanisms operating simultaneously. In
order to narrow possibilities to a single process
only materials that involve trap sites that are
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stable at room temperature and have been allowed
to complete any low temperature fading that might
be present by long term storage are considered
[8,9]. The isothermal relaxation of such materials
at an elevated temperature is expected to proceed
with de-trapping through the conduction band. In
addition the clearest conclusions would be derived
for materials showing a single isolated glow curve
peak upon heating at an increasingly elevated
temperature.

Very few TL phosphor materials of the above
type have been studied in isothermal relaxation.
TLD 400 (CaF,: Mn) ribbon phosphor material
shows a single well isolated temperature—wave-
length peak in a 3D-spectrophotometric display
[10]. The paucity of data on such phosphor
materials precludes a thorough experimental test
of the stretched exponential decay law in TL.
However, a closed form theoretical expression has
been derived that very successfully fits observed
data and gives consistent physical parameters for
both glow curve data and isothermal decay for
TLD 400 [11]. This suggests the strategy of com-
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paring this theoretical model relaxation function
with the stretched exponential law. Such a com-
parison will have bearing on the possible unique-
ness of the derived activation energy distributions
derived from the data.

2. TL relaxation functions

To account for relaxation phenomena some
donor species is invoked that undergoes decay so
that the concentration of donors decreases with
elapsed time. The stretched exponential function
relates to the probability that, at time ¢, a donor
has not yet undergone decay. In the case of the
thermoluminescence process undergoing isother-
mal decay the donors may properly be identified
as the electrons occupying trap sites in the
material. It is primarily their reduction in number
with increasing time that produces the observed
thermoluminescent light output. Thus the stretched
exponential function takes the form:

n=n, exp—(t/'ro){, (1)
where n and n, refers to the number of trapped
electrons per cm’ at time ¢ and time ¢ = 0, respec-
tively.

For the suggested comparison, a simple first
order kinetic model with a Gaussian activation
energy distribution at t=0 is used. Electrons
trapped at a single type of site are elevated to the
conduction band from which they rapidly react
with holes at recombination sites, emitting the
observed TL light. No re-trapping is allowed. A
distribution of activation energies p(E) for the
electron trap sites is assumed to be the Gaussian:

p(E)=N\/§ exp — a( E — E, ). )

The trapped electron distribution as a function of
energy and time is written:

n(E, 1)=f(E, t)p(E) (3)
by introducing the electron occupation number

f(E, t). The total number of trapped electrons at
time ¢ is:

n=n(1)= ["f(E. 1)(E) dE. (4)

CONDUCTION BAND

m pE):N

VALENCE BAND

Fig. 1. A simple kinetic model for TL showing an electron trap

activation energy distribution p(E) and an electron occupa-

tion density n( E). The density of holes at the recombination
site is labelled m.

The density of holes at the single recombination
type centers is m. Electrons in a narrow energy
band dE at energy E are elevated into the con-
duction band at a rate:

a=sexp(—E/kT), (5)
where s is the frequency factor, k is the Boltz-
mann constant, and 7T the isothermal absolute
temperature. Figure 1 shows the kinetic model
described.

At t = 0 the electron distribution is taken to be
directly proportional to p(E) or n(E, 0) = fyp(E).
This assumption of proportionality is expected to
be valid if the trapped electrons resulted from a
laboratory irradiation using beta or gamma rays,
as is commonly the case in TL studies. This as-
sumption is also not implausible even if the excit-
ing irradiation makes use of low energy photons
provided the irradiation is of short enough dura-
tion to prevent an excessive population of deeper
trap sites through the ongoing competition in the
photo-excitation—de-excitation process [12].

The intensity of the emitted TL light is propor-
tional to dm/d¢, the rate of decrease in the hole
concentration at the recombination centers. If the
usual assumptions are made concerning the con-
centration of electrons 7, in the conduction band,
that n_ and dn_/dt are both negligibly small, it
follows that m=n and dm/dt=dn/dt. These
assumptions are also implied by writing n instead
of m in eq. (1). These same assumptions for the
model under discussion yields:

ﬂ _ ghy

T ‘/‘r_r yG(x, y) = —aonoH(x’ )’), (6)
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where a, is a of eq. (5) with E = E;, x = ayt, and
y*=ak?T? with a the constant appearing in eq.
(2). The function G(x, y) is the so-called “after
effect function” introduced by Wagner [13] and
tabulated in Jahnke and Emde [14]. Equation (6)
is derived in ref. [11].

The Gaussian distribution given by eq. (2) is an
ad hoc assumption. Stochastic processes might be
imagined to play a significant role both in the
formation of the trap sites as well as in the subse-
quent trapping of electrons in the initial irradia-
tion phase [15]. Conditions may therefore be pre-
sent leading to an initial electron population dis-
tribution possibly better described by the stretched
exponential law.

For the stretched exponential function of eq.
(1) the time derivative provides the analog to eq.

(6):

d !
T (5] ew- (/) )

In order to compare the Gaussian distribution
model to that based on the stretched exponential
model it is necessary to establish a correspondence
between eqs. (6) and (7). The limiting cases for
large and small values of the parameters y in eq.
(6) and ¢ in eq. (7) are examined for this purpose.

In view of the definition of y andeq. (2) y <1
corresponds to a very broad distribution p(E)
while y > 1 corresponds to a very narrow distri-
bution. It is easy to show that

lim G(x, y)=1/x, (8)
y—0

whence for y < 1

dn _ Mo o -1

a7 = ‘/'r—ryt = —constant - ¢~ . (9)

Such an inverse time dependence is frequently
observed experimentally.
On the other hand it is also easy to show that

. yG —agt
lim | —=(x, =e %0 10
iim [ (x| (10)
whence

dn/dt= —agny, e" %' = — I, e™*, (11)

the appropriate exponential decay for a very nar-
row distribution p(E). This type of decay ex-

plicitly exhibits simple first order kinetics with a
constant decay rate since dn/dt = —aqn.

For the stretched exponential function of eq.
(2), when { <1 and t¢/7, is not exactly zero
(t/7,)¢ =1, hence

ne§ 4 -1
dn/dt= —~—=-1""= —constant - 1™, (12)
leading again to an inverse time dependence. To
achieve the ¢~! dependence { need not be very
small. Indeed for { = 0.1 a very close ¢! behavior
results for an entire range 0.01 < /7, < 25.

On the other hand, when { =1 eq. (7) reduces
to

dn n - T - T
E=—‘;OQC'/°=—IOCV°. (13)

To obtain an exponential behavior obeying eq.
(13) from ¢ =0 to beyond t/7, = 10 requires { >
0.99. For example, if { = 0.95 the actual behavior
in this range of ¢/7, begins to deviate appreciably
from the exponential law given by eq. (13).

Comparison of eq. (12) to eq. (9) and eq. (13)
to eq. (11) carries the suggestion that the two
functions:

H(x, y)= ﬂ‘/%’—ﬂ and

F(t/7,$) =§(’/”0){_1 €xp — (t/”'o)g,

might be closely related if x = oyt is taken equal
to x=1t/7. An identification often adopted in
using the stretched exponential is in fact

75 ' =s exp(— Eo/kT) = a,.

(14)

It remains to establish the relationship between y
and ¢, and to test the extent of the equivalence as
a function of x.

To relate y and ¢ the two functions in eq. (14)
are equated for some most revealing choice of x,
finding for selected values of { the corresponding
value of y. The two functions of eq. (14) show the
greatest variation with y or { when x = 1, there-
fore x =1 is selected for the normalization of the
two functions. This normalization should produce
the most stringent test for the equivalence of
H(x, y) and F(x, {), additional significance for
this choice of normalization will be given later.
The results are given in table 1 under the column
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Table 1

Relationship between the parameters { and y
¢ y y’ FWHM (eV) @
0 0 0 0

0.05 0.033 0.030 2.18
0.10 0.067 0.062 1.09
0.20 0.134 0.131 0.538
0.30 0.21 0.21 0.34
0.40 0.30 0.30 0.24
0.50 0.40 041 0.18
0.60 0.54 0.54 0.13
0.70 0.70 0.7 0.103
0.80 0.95 0.95 0.076
0.90 147 1.36 0.053
0.95 215 1.76 0.041
0.99 - 27N 0.027
1 %) 00 0

2 At T=1230°C =503 K, based on y’ values.

labelled y and plotted in fig. 2. An empirical
relationship between y and ¢ was found to be:

{=1-e" oy=cln(1-¢)"", (15)

2.0

0.5

00—°/|/1 TR S B S

00 05 1.0

Fig. 2. The equivalent value of y as a function of { to achieve

normalization of H(x, y) and F(x, {) at x=1. The smooth

curve is for eq. (15) and the points are for the exact numerical
correspondence.

with ¢=0.589. A comparison set of values y’
calculated from eq. (15) is also shown in table 1. It
is to be noted that the exact values of y obtained
from a numerical fit and y’ obtained from eq. (15)
agree fairly well in the range 0.10 <{ < 0.90. A
value of ¢=+vm /e=0.652 obtained by directly
comparing eq. (9) and eq. (12) gives a better
accounting for both { < 0.10 and { > 0.90.

For the theory leading to eq. (6) the “full width
at half maximum” (FWHM) for the Gaussian
distribution is related to y by:

FWHM = ¥¢0.693 . (16)

Values of the width FWHM are also shown in
table 1 for an assumed typical isothermal tempera-
ture of 230°C = 503 K.

Using eq. (15) to relate { and y, and taking

=ayt =1/7, a comparison was made between
the two functions of eq. (14) for various values of
y (and therefore {) and x. Generally good agree-
ment was found for x in the range 0.1 < x <10
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Fig. 3. Comparison of the two decay functions of eq. (14). The
solid line curves are for the simple model H(x, y) and the
dashed line curves are for the normalized stretched exponent
law F(x =t/m, {) The equivalent parametric values are { =3
and y =0.239 for the set labelled (a) and { =3 and y =0.40
for the set labelled (b). The normalization in each case is for
x=1.
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for all values of y. Figure 3 shows the results
obtained: (a) for { = } (the dashed curve), corre-
sponding to y = 0.239 (the solid curve); and (b)
for { =1 (the dashed curve) corresponding to
y = 0.40 (the solid curve). For these values of { the
isothermal decay curve shape is in very strong
transition from the ¢! shape to the simple ex-
ponential shape and hence offers a good check on
the possible equivalence. There would be very
little point in comparing the two relaxation func-
tions for either ¢ very close to zero or very close to
unity since equivalence for such values is already
evident. Figure 3 shows that the agreement for a
wide range of values of x is quite good. Failure of
agreement over very small and very large values of
x will be discussed in the next section.

The universal nature of the time variable in fig.
3 should be noted. Only the quantity x = agyt? is
varied; any combination of s and E; is allowed.
Once a, is determined a particular value of x will
correspond to a particular relaxation time.

3. Activation energy distributions

A reactivity distribution function f(r) follows
from the Laplace transform of the stretched ex-
ponential function of eq. (1). If a generalized
Arrhenius rate equation

r '=5exp(—E/kT) 17)

is adopted a specific activation energy distribution
¢( E) emerges for each value of {. Obtaining these
energy distributions requires numerical calcula-
tions; only for { =3 and { =1 are closed form
expressions available [3].

A universal representation of the activation en-
ergy distributions is possible in terms of the varia-

ble 7/7,=(E — E,)/kT:

f(7/7%) = ¢(exp[(E - Eo)/kT]). (18)
The distribution function of eq. (18) is thus only a
function of AE = E ~ E,, with the value 7/7,=1
corresponding to E = E,. These energy functions
are quite asymmetric and possess a long low en-
ergy tail. Only in the limit { =1 does the peak of
the distribution correspond to AE =0, the true
position of E,.

0.20

ARBITRARY UNITS

0.10

0.05}-

e £ \ <

0.00_i__. J i ] 1 I Lo\ )
-0.25 -0.20 -015 -0.10 -0.05 000 +0.05 +0.10 +0.15 +0.20

AE {(eV)
Fig. 4. The activation energy distributions for the equivalent
pair { =3, y = 0.40 (a) and (b) respectively and the pair { =3,
y=0.239 (c) and (d). The value of &7 used in 0.0433 eV (i.e.
for 230 ° C). These curves are independent of any particular E,

that might be assumed.

The Gaussian distribution of activation en-
ergies given by eq. (2) is also only a function of
AE = E - E,, making the comparison of the two
distribution functions particularly convenient.
Figure 4 shows the distributions ¢(AE) and
p(AE) for (a) { =3, (b) y=0.40, the equivalent
y; (©) ¢ =1 and (d) y=0.239, the equivalent y.
These are the same values used to generate the
curves shown in fig. 3.

The main similarity of the two pairs of distribu-
tion functions is in the corresponding half widths,
(a) with (b) and (c) with (d). In fine detail, curves
(a) and (b) in particular seem quite disparate. Why
then the close agreement in the relaxation func-
tions shown in fig. 3(b) based on these two distri-
butions?

The isothermal relaxation rate may be ex-
pressed in the form:

o0
& - [a(E) e Prn(£. 0) 4, (19)
where a( E) = s exp(— E/kT). This result follows
from eq. (4) with f(E, t) = f, e"“E) appropriate
in the absence of retrapping, and time differentia-
tion under the integral sign. This equation is valid
for whatever shape is assumed for y(E, 0), the
activation energy distribution of the trapped elec-
trons at ¢ = 0.
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As the isothermal decay process proceeds in
time, a window function

w(E, t)=a(E) e &) (20)

sweeps through the distribution 9(E, 0); at each
instant of time the relaxation rate is the overlap
integral of the window function and the initial
distribution of activation energies. The window
function has its peak value occur at

E .x=kT In st (21)

and has a width FWHM = 2.48kT (independent
of ¢). It should be noted that the selection of x =1
leading to eq. (15) corresponds to placing the
window function peak at E,. The relationship
between the position of the window function peak
at an energy E, + AFE in fig. 4 and the correspond-
ing value of x in fig. 3 is:

x(Ey+ AE) = e2E/kT, (22)

Figure 5 shows the same distribution functions
(a) and (b) of fig. 4 for { =1 and y =0.40. For
the latter distribution of FWHM = 4.16kT. In ad-
dition the window function w(E, t) is also shown
labelled (c). In the region —0.10 <AFE < +0.10
eV, the window function apparently is sufficiently
broad to blur the distinction between the two
distributions, and the equality of the two func-
tions shown by curve (b) in fig. 3 mostly reflects
the nearly equal width for the corresponding dis-

0.251 <{

0.20-

ARBITRARY UNITS

0.00 1 1 L I L 1 \\1
40 -0.05 0.00 +0.05 +0.I0 +0I5 +0.20

AE (eV}
Fig. 5. The same pair of activation energy distributions shown
in fig. 4 (a) and (b) and in addition the window function ae™*
at the time x =1 when its peak is at the energy E,. The value
of kT is 0.0433 eV.

tributions in fig. 5. Applying eq. (22) yields values
of x=0.1 and x=10 for AE= +0.10 eV. For
times corresponding to E less than (E, — 0.10) eV
the distribution (a) is significantly higher than for
(b), thus giving a larger relaxation rate for short
times in agreement with fig. 3(b). For times corre-
sponding to E greater than (E,+ 0.10) eV the
opposite is true, with curve (b) significantly higher
than (a) again producing results in agreement with
fig. 3(b). The same considerations applied to the
case {=7% and y=0239 clearly suggests close
correspondence for the two relaxation functions
for a significantly larger range of AE. Again this
is evident in fig. 3(a).

As pointed out by W. Primak [16], in the event
that n(E, 0) is sufficiently broader than several
kT, eq. (19) may be used to directly determine
n(E, 0) from the observed relaxation rate. With
1n(E, 0) sufficiently broader than the window
function, n(E, 0) may be taken outside the in-
tegral of eq. (19) giving

dn = ®

—=-—n(E,0 a(E) e BEMJE. 23

a = ~1(E.0) [ a(E) (23)

The integral in eq. (23) is readily evaluated giving
= t dn

n(E.0= %7 T (24)

The average energy E corresponding to the time ¢
is:

E= /:OEa e_""dE/fOooa ¢ dE

=kT[In(st) +0.5772] when st>> 1. (25)

To illustrate this procedure for obtaining n( E, 0)
from the observed relaxation rate directly, the
1sothermal decay curve generated for the Gaussian
distribution of activation energies with FWHM =
7.0kT shown in fig. 3(a) (the solid curve) was
unfolded using eq. (24). Figure 6 shows the results,
the curve labelled I is the input distribution and
curve 0 is the unfolded output distribution.

Finally, a supplementary procedure to the
Primak method for obtaining the activation en-
ergy distribution is possible. For very broad distri-
butions it leads to the same result, however, it may
be used to extend the analysis into the region of
FWHM as small as a few kT.
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Fig. 6. The unfolding of the relaxation curve shown in fig. 3(a)

for the Gaussian activation distribution (solid line) using the

Primak approximation of eq. (24). The solid line curve labelled

I is the input distribution, the dashed line curve labelled 0 is
the unfolded resulting output.

By making use of eq. (5) a=se” £*T eq. (19)

may be written as a function of a:
% = —kaOn(a, 0) e~ da. (26)
The upper limit of the integral in eq. (26) may be
replaced by infinity since the frequency factor s is
usually very large (e.g. 10° <5 <10™ s~!). With
this substitution, the observed TL intensity is &7
times the Laplace transform of n(a, 0). It follows
that n(a, 0) is the inverse Laplace transform of
—(1/kT)-(dn/dt).

Generating the inverse Laplace transform di-
rectly from experimental data is a formidable task.
However, if the data can first be fitted with an
analytic function the task is mathematically
manageable, particularly if the function should be
one of those appearing in a table of Laplace
“pairs” [17]).

It had been noted by Medlin [18] that for broad
activation energy distributions of the Gaussian
form, it is possible to cast the TL relaxation rate
into the form:

= —dn/dt=I,1 +bt) " (27)

with p and b constants.

When intended to simply extend the divergent
t~1 relaxation rate, u is close to unity and b7 > 1
over most of the observed range of br. This form
for TL relaxation is observed to hold for some

experiments with even larger values of p and a
wider range of values for bf including bt < 1.

The function given in eq. (27) does appear as

one of the tabulated pair of Laplace functions and
yields a distribution:
n(a, 0) = I,a* "' e /% /kTb*I'(p), (28)
where I'(n) is the gamma function of u. Equation
(5) relating o and E converts eq. (28) into an
energy distribution.

In cases where the distribution width FWHM is
greater than several k7, the Primak approxima-

tion stated in eqgs. (24) and (25) should also be
valid. This approximation leads to the result:

7(a, 0) = I,/akT(1 + b/a)". (29)

The two equations, eq. (28) and (29), are in fact
quite similar for b/« > 1 (hence a/b <1) and for
p nearly unity. Expanding eq. (28) in a power
series of a/b yields:

_Ilep)” (e @ .
e O =gerrey (17 e T )
(30)

while the expansion of eq. (29) gives closely the
same result;

n(a, 0) = Iy(a/b)

p(p+1) o
_‘2—F+ .

(31)

X l—p.%+

note I' (1.25) = 0.906.

For a sum of closely spaced very narrow activa-
tion energy levels generally giving only a single
unresolved glow peak the isothermal relaxation
rate:

I= Zaini(O) e (32)

relates to the distribution:

7(a, O)=Zni(0) $(a~-a), (33)

where 8(a — «;) is the delta function locating the
energy of the level designated by the index i/ and
the corresponding total level occupancy is n,(0) at
t=0.
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4. Discussion and conclusions

It is found possible to normalize the stretched
exponential relaxation function to an appropriate
decay function based on a Gaussian activation
energy distribution using first order kinetics. By
working at the normalization point x = agt =t/
=1 it is possible to associate a particular value of
y with each value of {. Such paired relaxation
curves are found to be nearly indistinguishable in
the range 0.1 <x <10. Comparison of the two
activation energy distributions reveals that this
close congruence in relaxation rates over a range
of about a factor 100 in time is due primarily to
the similarity in values of the FWHM of the two
distributions resulting from the normalization pro-
cedure.

It is necessary to have short-time relaxation
rate data, ¢ values as low as x = 0.01, in order to
observe the presence of the striking low energy tail
of the distribution corresponding to the stretched
exponential, a tail which is not significantly pre-
sent in the Gaussian distribution. These data may
be difficult to obtain experimentally for TL due to
the finite time it takes to bring the phosphor
sample to the isothermal observation temperature
from room temperature. For example, in the
CaF, : Mn isothermal TL experiments at least 25 s
were required to reach substantial thermal equi-
librium in going from room temperature to 230° C.
This corresponds to x = 0.02. The need for storage
at a low temperature after irradiation to allow
fading to go to completion prevents irradiation at
the isothermal elevated temperature which would
be a means for reducing this “heat up” time.

To observe the difference in the high energy
region of the two activation energy distributions
requires reaching values of x > 10. In the analysis
of TL data presented here it was assumed that
there is no retrapping present. If retrapping were
present it would be expected to become increas-
ingly significant for values of x > 1. This is due to
the fact that retrapping effectively transfers some
electrons from trap sites having shallower activa-
tion energies to trap sites having deeper activation
energies. These electrons in turn are finally re-
leased at times greater than that corresponding to
x =1, a time when the window function is span-

ning the energy region near E;. It should be noted

that the CaF : Mn phosphor appears to have some

retrapping present in its TL kinetics behavior [6].

In view of the above difficulties it is likely that
TL isothermal relaxation rate experiments will
mostly be sensitive to the activation energy distri-
bution width and will not be able to distinguish
definitively between various possible bell-shaped
energy distributions in their entirety.

The most successful experimental program for
determining the important TL characteristics: s,
E,, FWHM, and the retrapping factor BN /an,
for a kinetics model of the type shown in fig. 1, is
to obtain both a TL glow curve and an isothermal
relaxation measurement [6]. The initial rise method
applied to the glow curve yields values for s and
E, and hence a, =1/1,. The relaxation rate data
in the time range 0.1 < x = a,f < 10 should yield a
reasonable value for the FWHM.

If retrapping is not too severe the following
rules pertain in the range 0.1 < x <10 and possi-
bly beyond:

(1) for { <02 (FWHM > 0.5 eV)* an inverse
time dependence prevails for the relaxation
rate;

(i) for 0.2 < ¢ < 0.4 (0.5 eV > FWHM > 0.25 eV)
a relaxation rate results obeying a function of
the type I,(1 +bz)™* with p near 1 and I,
the initial rate at t =0,

(iii) for 04 <{<0.99 (0.25 eV > FWHM > 0.02
eV) only the transitional behavior results for
the relaxation rate, requiring tabulated or
numerically computed unfolding;

(iv) For 0.99 <{ <1 (0.02 eV>FWHM > 0) an
exponentially decaying relaxation rate fol-
lows.

Relaxation rate experiments indicating time de-
pendent behavior of the types (i) or (ii) above
should yield a reasonable measure of the activa-
tion energy distribution near E, using the Primak
analysis contained in eqs. (24) and (25). At the
narrower end of the distribution range given in (i1)
and in those cases where at least in the critical
region 0.1 <x <10, the relaxation rate is ade-

* Corresponding values of y may be found in table 1 or by
use of eq. (15).
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quately matched by the function in eq. (27), the
data for cases with FWHM widths as small as
only a few kT may be sufficiently characterized
by the distribution given in eq. (28). At the broader
end of the range given in (ii) the Primak method is
to be preferred since it treats the observed data
directly.

There are potentially important problems with
the theoretical aspects of the development pursued
above. Even for the simple kinetic model of fig. 1
the treatment of n, and dn_/dt is questionable.
For example, near ¢ = 0 (albeit masked by experi-
mental difficulties) dn_/dt is of the same order of
magnitude as dn/d¢ and hence not negligible as
must be assumed for the application of either
relaxation function of eq. (14) to the TL data. The
TL observed is given by dm/dt not dn/dt. In
general dm/dt=dn/dt+dn_/dt and m=n+
n_. To properly determine dm/d¢, no approxima-
tions concerning n. should be made, rather the
relevant differential equations should be solved
exactly.

It should be noted that the use of differential
equations for the time rates of change of n, m,
and n_ obscure any stochastic processes that might
be present. This is particularly true for the trans-
port of the electrons (n,_) in the conduction band
as they move across the sample prior to arriving at
a recombination center. The usual treatment for
the luminescent capture of the conduction elec-
trons (n_) is to associate a capture cross section o
with each trapped hole m and use the average
velocity p, for the sea (gas) of conduction elec-
trons to yield the bimolecular reaction rate:

dm/dt= —ypomn,= —ymn_.

The very likely presence of retrapping should be
added to the model of fig. 1 [11].

To address these questions, an extensive
numerical program has been begun to study the
kinetic model of fig. 1 with retrapping added. The
activation energy distribution is divided into R
sections with adjustable electron occupancies at
t=0. The R+ 2 resulting coupled differential

equations are solved simultaneously to give all the
relevant quantities (e.g. dm/d¢, n., dn /dt, ng)
as the kinetics parameters are varied. At present
only the program with R = 5 is running. The more
desirable program with R = 7 should be running
soon. Additional experimental work is also con-
templated.
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