Thus a lower objective function value is achieved by
assigning the destination i to hub k& instead of hub ¢ if

<Ejek W, + Yrer W, + Er::e Yiez, VV.‘I)

X (Ci — Cy) + (Zper W, — Yiek Wi)Che  (A3)
+ Er::e ez, Wa(Chr — C.)) < 0

where K and T are used in place of K’ and T since
Wi=o0.
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Conditional Minisum and Minimax
Location-Allocation Problems
in Euclidean Space

REUVEN CHEN

Tel Aviv University, Tel Aviv, Israel

The problems of minimax and minisum location-allocation in two-dimensional Euclidean space,
where some fixed service centers already exist in the area in question, are treated. The method

. INTRODUCTION __

The problem of the simultaneous location of a
number of identical service facilities, with a given set
of demand points distributed over a given area, has
been investigated by many researchers (e.g., see [2, 5,
7-9, 11, 12]). Two versions of the problem have been
dealt with, the minisum and the minimax problems.
Problems of this kind have been solved on networks!™®
and in continuous two-dimensional space. In the
minisum version, only one work, by KUENNE and
SoLAND" proposes an optimal solution approach to
the multicenter problem in Euclidean space, limited
to relatively small problems, DREZNER'® has recently
given another method which is limited to two service
centers but can handle a large number of demand
points.

As for minimax problems, a number of methods
have recently been suggested for their optimal solu-
tion.[3-6.14.18) v o f these are quite efficient for a large
number of demand points'™ and of service centers.'

All'the other methods suggested in the literature
yield solutions which in most cases are local minima.
The best one can do is start the iterative procedure
from different initial points and choose the best final
result attained. At the moment, this may be the only
feasible route to take for large minimax and for all
minisum problems. A work by the present author'?
gave one such method, usable for both minimax and
minisum problems. The essence of the method is the
utilization of a differentiable approximation to the
problems which are originally not everywhere differ-
entiable. The approximation is then solved by using a
powerful nonlinear programming technique. Some ad-
ditional details of thig method are discussed below
since the subject matter of the present work is an
adaptation of the same method for conditional
problems.

The term “conditiona]” location has first been used
by MINIEKA."3 Thig pertains to the very realistic
situation in which a number of service centers are
already located among given demand points and the
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decision maker is considering the construction of some
additional centers without altering the positions of
the fixed original ones. Minieka solved this problem
on graphs and with one additional center only. The
present work seems to be the first to deal with the
problem in Euclidean space. In parallel, an approach
has been proposed by CHEN and HANDLERY which
optimally solves the minimax conditional problem;

_this can be utilized at present to solve moderate size
" minimax problems.

SOLUTION OF THE MINISUM CONDITIONAL
PROBLEM

THE LOCATION-ALLOCATION unconditional minisum
problem is formulated as'?

min,,,,, ¥, w;min;[(a; — x;) + (b; — ¥;,)°]', o
J=1,...,m

where (a;, b;), i =1... n are the given demand points,
(%, ¥), J = 1 ... m are the service centers to be
optimally located, and w; are the weights associated
with the demand points. The meaning of (1) is that
min; selects for each demand point the closest service
facility, ¥ 7., sums all the weighted Euclidean dis-
tances and min,,,, means that the minimization is
over the 2m variables x,, y,, ..., X, Ym. Thus, in the
unconditional problem both j and J have the same
span, from 1 to m. This is the main difference between
the conditional problem and the unconditional one.®?!
Out of the m service facilities we denote the number
of variable centers by k, therefore, the number of fixed
service centers is m — k. The formulation of the
conditional minisum problem is then only aslight
modification of that of the unconditional one,

minx,,.y., 2:"‘-1 wiminj-l...m [(a;— y;)” + (b -)’1)2]1/2,

2
J=1,...,k

the difference being that now j goes from 1 tom
whereas J from 1 to k. Let us denote by r; the Euclid-

ean distance between the ith demand point and
the jth service center, namely, r; = [(a; — x)* +
(bi = ¥,)%)/%. If we choose a large enough number
N we get a good approximation for (2) by solving
(see also [1])

ming, ,, S wil YR, rg™M VY, J=1,...,k 3)

This is a differentiable function in the 2k variables x,,
Y1, ..., X, yx and can be minimized using standard
nonlinear programming methods. The “large” number
N has been chosen to be 200 and for the minimiza-
tion, a quasi-Newton method, the Broyden-Fletcher-
Shanno (BFS) one has been utilized as previously
with the unconditional problem.”? Even for one vari-

able service center addition to the given fixed centers,
the problem is not convex.

All the problems solved involved equiweighted de-
mand points distributed in random over a 100 X 100
square, with three fixed service centers located at (10,
10), (10, 90), (90, 10). All the runs reported have been
performed on the Tel Aviv University Cyber 170-855
CDC computer. The results are shown in Table I. The
table gives four solutions of the two-additional-centers
problem. Four different results are found but they are
all within 1.1% from each other. The next entries in
the table are 3-, 4- and 5-centers problems (two of
each). The difference between the values of the local
minima obtained are 5.5%, 0.4% and 3.8% in the 3-,
4- and 5-centers problems, respectively. The last entry
in the table refers to a large problem, with seven
variable centers in addition to the three fixed ones.

SOLUTION OF THE MINIMAX CONDITIONAL
PROBLEM

THE CONDITIONAL location-allocation minimax prob-
lem can be stated as

min,,, max;w;{min;[(a; — %)* + (b — y,)%1V3 @)
J=1,...,k

where (a;, b;), (), ¥;) and w; have the same meaning
as in the previous section. As shown in [2], a differ-
entiable approximation to (4) can be written, namely,

min,,,, ¥ wi{ Y7 [(ai— %)% + (b, — y;)?) V3™ 5)
J=1,...,k

In the problems solved, the same demand points as
in Section 2 are distributed in random on a 100 X 100
square and the three fixed service centers are located
again at (10, 10), (10, 90), (90, 10). Problems of 30,
40, 50, 100 and 200 demand points have been solved
each with 1, 2, ..., 6 variable centers. Some of these

problems have also been solved with a method capable -

of finding optimal solutions.! The comparison of the
results with the optimal ones (attained for relatively
small problems only) provides insight to the question
of how close to the optimal solution one can get by
using the method proposed here.

The results of some representative problems are
summarized in Table II. The demand points have been
chosen in such a way that the set of, say, 30 demand
points is a subset of the set of 40 demand points,
which in turn is a subset of the 50 demand points
problem. The entries in the table indicate the final
values of r,, the solution of (5). An exclamation mark
means that the solution is known (from [4]) to be a
global optimum. In other cases, the number given with
the percentage sign denotes the deviation from the
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TABLE I

Results of Some Conditional Minisum Problems with 100 Demand Points and 3 Fixed Centers at (10, 10), (10, 90), (90, 10).
F Is the Value of the Objective Function

No. of

Agg:::;al Initial Guess Solution F CPg:)m |
1 (60, 60) (65, 67) 2349 1.288
1 (90, 90) (65, 67) 2349 1.312
2 (40, 40), (80, 80) (40.77, 49.59), (74.60, 70.22) 1970 0.845
2 (40, 80), (80, 40) (69.67, 75.20), (53.95, 35.51) 1983 1.439
2 (90, 20), (20, 90) (51.69, 29.31), (71.80, 70.28) 1984 1.051
2 (50, 50), (90, 90) (34.64, 53.24), (74.30, 68.86) 1963 1.174
3 (30, 60), (60, 30) (31.32, 56.01), (63.12, 28.08)
(80, 80) (70.97, 76.14) 1656 1.633
3 (90, 60), (60, 90), (40, 40) (77, 67) (49.91, 90.26)
(51.92, 31.70) 1748 3.918
4 (50, 20), (20, 50) (55.70, 20.59), (31.32, 56.01) :
(90, 50), (70, 90) (81.17, 56.66), (63.10, 84.43) 1451 2.879
4 (20, 20), (20, 80) (55.70, 20.59), (31.32, 56.01)
(80, 20), (20, 80) (79.52, 59.22), (59.57, 88.45) 1445 3.156
5 (40, 90), (90, 90), (50, 50) (43.37, 94.01), (74.66, 73.10)
(40, 40), (90, 40) (31.32, 56.01), (55.70, 20.59) 1310 4.386
(80.36, 75.55)
5 (50, 25), (50, 75), (50, 50) (55.65, 19.42), (78.19, 64.74)
(25, 50), (25, 75) (41.18, 55.55), (10.92, 50.98) 1263 4.421
(53.03, 91.09)
7 (50, 10), (10, 50), (50, 90) (55.55, 19.42), (10.92, 50.98)
(90, 50), (85, 85), (40, 40) (48.53, 94.04), (80.36, 47.44) 1090 19.368
(60, 60) (81, 83), (40.28, 56.10)
(73.36, 67.67)
TABLE 11
Conditional Minimax Location-Allocation Problems: Computational Resul
Points :
Centers
30 40 50 100 200
1 36.12 (2.1%) 36.46! 36.46! 39.12! 41.23!
(0.65 sec) (0.82 sec) (0.96 sec) (2.32 sec) (2.34 sec)
2 30.15 (1.0%) 30.15 (1.0%) 30.15 (1.0%) 32.56 (3.2%) 33.53 (0.18%)
(0.68 sec) (1.14 sec) (1.33 sec) (2.19 sec) (4.19 sec)
3 30.15 (31.0%) 30.15 (31.0%) 30.15 (18.3%) 30.81 (2.2%) 31.62 (4.9%)
(1.13 sec) (1.74 sec) (2.08 sec) (4.28 sec) (8.71 sec)
4 19.53 (1.5%) 22.36! 22.36M 27.86 (5.9%) 31.62 (20.2%)
(1.43 sec) (2.03 sec) (2.15 sec) (4.31 sec) (10.91 sec)
5 19.235! 22.36 (13.5%) 22.36 29.09 31.62 (31.5%)
(1.17 sec) (1.72 sec) (5.24 sec) (4.90 sec) (8.84 sec)
6 19.235 (11.1%) 22.36 (16.2%) 22.36 31.62 27.66
(1.64 sec) (1.72 sec) (5.25 sec) (9.58 sec) (8.44 sec)

global optimum when the latter is known. The results
of the problem with 50 demand pcints and four addi-
tional centers is of special interest. The optimal
method”! behaved in a somewhat capricous manner
and in this particular case, did not reach the global
minimum and stopped at a feasible solution with r,=
22.69. The present result of r, = 22.36 is thus better
and therefore the optimum should be r, < 22.36.
Furthermore, since the optimal solution of the 40-
point problem is the same, it is obvious that in the

50-point problem r, = 22.36 since the 40-point set
constitutes a subset of the 50 points. The conclusion
that r, = 22.36 is the optimum value could have

been reached only through a combination of the two
methods. i

DISCUSSION

A METHOD has been developed for the solution of
minisum and minimax conditional location-allocation
problems. The main importance of this nonoptimal
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method can be summed up as follows:

1.

The proposed algorithm is the only one available
for solving the minisum conditional problem. In
fact, the situation with the unconditional problem
is not much better: as indicated above, a number
of nonoptimal methods exist for solving the uncon-
ditional problem, but the only optimal methods
known'®!% gre limited to small problems.

. In the minimax problem where an optimal alter-

native exists! the method proposed here makes
possible the solution of larger problems, not man-
ageable by the optimal method. The solution of
weighted problems can also be carried out, both in
the minimax and minisum cases.

. For the minimax problem a combination of the
heuristic method proposed here and of the optimal
method is strongly recommended. One such com-
bination has been described above for the optimal
solution of the problem with 50 demand points and
four service centers. Another combination of the
two methods can be effected as follows. The optimal
method is based on finding feasible solutions and
trying to improve them. The method proposed here
provides us with feasible solutions even for rela-
tively large problems. Such feasible solutions can
be used as a good starting point for a further
improvement and possibly proof of optimality for
large problems using the relaxation method.!!
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