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A method previously devised for the solution of the p-center problem on a network
has now been extended to solve the analogous minimax location-allocation problem
in continuous space. The essence of the method is that we choose a subset of the
n points to be served and consider the circles based on one, two, or three points.
Using a set-covering algorithm we find a set of p such circles which cover the points
in the relaxed probiem (the one with m < n points). If this is possible, we check
whether the n original points are covered by the solution; if so. we have a feasible
solution to the problem. We now delete the largest circle with radius r, (which is
currently an upper limit to the optimal solution) and try to find a better feasible
solution. If we have a feasible solution to the relaxed problem which is not feasible
to the original, we augment the relaxed problem by adding a point, preferably the
one which is farthest from its nearest center. If we have a feasible solution to the
original problem and we delete the largest circle and find that the relaxed problem
cannot be covered by p circles, we conclude that the latest feasible solution to the
original problem is optimal. An example of the solution of a problem with ten
demand points and two and three service points is given in some detail. Compu-
tational data for problems of 30 demand points and 1-30 service points, and 100,
200, and 300 demand points and 1-3 service points are reported.

1. INTRODUCTION

In cases where the location of emergency facilities is considered, one usually
utilizes the minimax criterion. This means that one attempts to locate the service
facilities in such a way that the response time to the farthest “customer” will
be minimal. In the context of the location of a single facility in two-dimensional
Euclidean space, the problem can be formulated as

min max r;, 1)
x,y i
where r; = [(x — a;)* + (y — b,)%]", (a;,b;) are the locations of the customers.
i =1,...,n, and (x,y) is the variable point which is to be located optimally,
Numerous authors (e.g.. Hearn and Jesunathadas [12], Shamos and Hoey [17].
Elzinga et al. [9]) solved this problem and its generalization,

min max w;r;, (2)

X,y i
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where w; is a weight attached to point i. Most of the methods developed for
solving problem (1) (the extension of which will be considered in this paper)
are “geometrical” in nature. The solution of the problem will be the center of
the smallest circle enclosing n given points in the plane (Chrystal [3]). This can
occur in one of two ways. The smallest circle can be determined by three demand

acute triangle (see Rademacher and Toeplitz [15]). The geometrical methods
are based on a sophisticated search for the smallest enclosing circle among the
circles built on subsets of two and three demand points.

Two kinds of extensions to this single-facility minimax problem can be con-
sidered. One is the multifacility minimax problem (Elzinga, Hearn, and Ran-
dolph [9]) in which one is.interested in the optimal location of a number of
different kinds of emergency stations (e.g., a fire station and a hospital); the

the location-allocation minimax problem in which a number of identical centers
are to be located so that each demand point is served by the closest center. This
problem can be written as (see Chen 2h

min max w; min r,,, 3)

X,CE? i J
where X, = {xj,)’j}f=1, ry = [(a; - X)) + (b; - ¥;)’]'* and xpy)j=1,... P
are the service points to be Jocated optimally. The minimax location-allocation
problem is the version applicable to the location of emergency stations of the
rather well known minisum location-allocation problem (e.g., see Cooper [4],
Eilon, Watson-Gandy, and Christofides [7], Ostresh [14], Scott [16]). In a recent
paper, Chen [2] suggested a method which permits the solution of both the
minisum and minimax location-allocation problems by using a differentiable
approximation to the objective function and solving it by using nonlinear pro-
gramming. This enabled the solution of very large problems, but the result was
not necessarily optimal since local minima may have been reached. The minimax
problem has been solved (see Handler and Mirchandani [11]) as a location-
allocation problem, usually termed the p-center problem, on networks. This was
first solved by Minieka [13], who devised a finite method which is rather inef-
ficient for large problems. Handler and Mirchandani [11] improved on this by
use of a relaxation approach. As described below, the present method is an
adaptation of the method in [11], developed originally for network problems,
to the present problem in continuous Euclidean two-dimensional space. As
opposed to the method mentioned above (2], this yields optimal results for fairly
large problems. However, the previous one is capable of solving much larger
problems. A combination of the two methods is also considered in which the
solution of the approximate method Serves as a starting point for the optimal
one.

A smaller number of investigators have recently tackled the present problem.
Drezner [5] has developed a heuristic as well as an optimal method. The former
can solve, not necessarily optimally, rather large problems, whereas the latter
solves more limited problems. His examples contain results for problems with
up to 60 demand points and 2 centers, 40 demand points and 4 centers or 30
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demand points and 5 centers optimally. In another work, Drezner [6] offered a
method which can optimally solve problems with a large number of demand
points but only two service centers. Watson-Gandy [19] has also suggested an
algorithm which can optimally solve problems with up to about 50 demand points
and three centers in a reasonable time. Vijay [18] has very recently proposed
an algorithm which appears to solve fairly large problems very efficiently. He
presents computational results for problems with up to 100 demand points.
Vijay’s method, like Drezner’s optimal algorithm [5]. is similar to ours in that
it solves a sequence of set-covering problems. The efficiency of his method is
due to a geometrical technique whereby the number of columns in the set-
covering matrices is significantly reduced. The algorithm described here is based
on an entirely different idea. Using a relaxation approach the number of both
rows and columns is significantly reduced. The relative efficiency of the method
increases as a function of the number of demand points. As a thought for further
research it seems to us that a hybrid version combining Vijay’s method with the
one described here might produce a highly efficient algorithm for very large-
scale problems. Specifically, we would suggest using Vijay’s algorithm to solve
the reduced problems resulting from the relaxation process. The main advantage
of the present method as compared to the others mentioned is the use of relax-
ation, which permits the solution of relatively large problems in most cases.

2. PROPERTIES OF THE SOLUTION

Let us consider first the properties of an optimal solution of the minimax
location-allocation problem. Proceeding from our knowledge of the properties
of the single-facility minimax problem and drawing an analogy from the p-center
problem on networks, we can conclude that an optimal solution will consist of
a set of p equal-radius circles which cover all the demand points. Usually, only
one of these circles will be critical in the sense that two or three demand points
will be on its circumference. There is much freedom in the exact position of the
other circles and therefore in the location of all but one of the centers (see also
[2]). The value of the solution is determined by the radius of this critical circle,
whereas the radii .of the other circles may vary in size below this critical value.
Thus, the number of possible optimal solutions is usually infinite. The following
theorem will help us to reduce the number of candidate optimal solutions to a
finite number.

THEOREM: Among all the optimal solutions to the minimax problem of
serving n demand points in Euclidean space by p service points, there is at least
one in which all demand points are covered by critical circles, the largest of
which has a radius 7, which is the value of the solution.

PROOF: Let us consider any optimal solution in which the n demand points
are covered by p circles with radii 7,. Let us divide the n points into p disjoint
subsets so that each demand point is covered by one of the circles with radius
rp- If a point is covered by more than one circle. we shall arbitrarily associate
it with one of the covering circles. For each of the P subsets, let us consider the
minimal covering circle. As known from the properties of the single-facility
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minimax solution, we obtain a circle based on one. two. or three demand points
on the circumference. This yields p critical circles, the largest of which has a
radius r,. u

With the aid of this theorem, we can reduce the search to a finite number of
critical circles. The number of critical circles to be considered is G) + @) +n,
where (5) is the number of circles determined by three points on their circum-
ference, (3) is the number of circles defined by two points determining the
- diameter, and # is the number of null circles, i.e., a service point at a demand
point, the former serving solely the latter. The number of possible combinations
to thus cover n points by p critical circles becomes very large indeed when 7 is
large. The method described here shows how to reduce the number of combi-
nations which are to be checked.

3. DESCRIPTION OF THE METHOD

The reduction in the number of candidate critical circles is achieved by utilizing
the following ideas:

(1) If three demand points determine an obtuse triangle, we will disregard it,
since a circle built on the two points farthest from one another will be smaller
and will cover the three points [15].

(i) In the following discussion we shall use the term “feasible solution” with
respect to a set of given demand points and a set of given circles. If all the
demand points are covered by the circles, the set of centers of the circles is said
to be a feasible solution to the problem. The radius of the largest circle r, is the
value of the feasible solution. If we have a feasible solution to the problem with
p service centers and we are looking for a better one, we will only consider
circles with radii smaller than the current r,. The fact that at each stage we can
disregard any subset of two or three points determining a circle with radius larger
than or equal to the current r, reduces very substantially the number of subsets
to be considered. Thus, for example, if we have an optimal solution for the
p — l-center problem, its value can serve as an upper limit to the value of r,,
and the number of candidate subsets is diminished. We can therefore solve the
problems with 1,2,3, . . . p service points sequentially. Alternatively, we can
start with a known local minimum [2] and proceed by checking whether it is
optimal or improve it. This permits us to find the p-center solution without going
through the 1,2,3, . . . ,p — I-center solutions. This method seems to be ap-
propriate for the solution of relatively large problems.

(iti) As indicated previously, the essence of the method is the use of relax-
ations. Even with all the reductions mentioned above, the size of the problem
may remain rather large. Similar to [11] we use the following strategy. We choose
arbitrarily a subset of m demand points, m < n, and begin to solve the problem
of optimally covering this subset by p critical circles. Once we find a feasible
solution (if there exists one with a maximal radius smaller than the best solution
known so far) to the relaxed (reduced) problem, we check whether it is a feasible
solution to the full-size problem. This is done by checking the coverage by p
circles with a radius of r,. where r, is the largest radius of the p critical circles
covering the reduced problem. If there is no complete coverage of the full-size
problem, we add a demand point to the relaxed point. preferably the one which
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is farthest away from its closest service center, and solve the enlarged relaxed
problem. If the solution of the relaxed problem solves the full-size problem, we
have an improved feasible solution to the latter and proceed by looking for a
better one. We do this by reducing the current r, to be the value of the latest
feasible solution and choose again a relaxed problem and solve it. The procedure
terminates when, for a given radius r,, which is the best feasible solution known
at the moment to the full-size problem, we cannot find a solution with value
less than r, to the reduced problem. It is obvious that if no solution can be found
to the reduced problem under these circumstances, there will be no solution for
the full-size one. Thus, the latest feasible solution to the n-points problem is
necessarily the optimum.

An important point that has not been discussed so far is how to find a coverage
to the reduced problem. For each critical circle considered we construct a vector
of zeros and units having m terms, where m is the number of demand points in
the reduced problem. In the ith place in the vector we insert unity if the ith
point (out of the m) is covered by the critical circle and a zero otherwise. To
each of these vectors we associate the coordinates of the center of the circle and
its radius. Once we have this 0 — 1 matrix we consider the unit set-covering
problem, namely, the problem of finding the minimum number of columns (the
vectors mentioned above) so that their sum does not include any zero. Suppose
we find a solution with p columns; then we have a feasible solution to the reduced
problem and the value of this solution is the largest of the radii associated with
the covering columns. It is to be noted that the covering by p columns is not
generally unique and hence the p-center solution is not necessarily optimal
among all possible p-covers. However, the procedure is that once we find a
feasible solution for the reduced problem, we do not have to check its being
optimal, but rather test its feasibility to the full-size problem and proceed as
explained above. In simple cases, such as the ten-demand-points example given
below, the set-covering solution of the relaxed problem can usually be solved
manually by inspection (see also {11] in the network problem). For larger prob-
lems, a computerized set-covering algorithm (see e.g., Garfinkel and Nemhauser
[10] and Balas [1]) is required.

4. AN EXAMPLE

As a simple example we take the ten-demand-points problem defined in Ta-
ble 1.

The solution found (by any of the established methods) for the single-facility
minimax problem is a center at (45.4554, 51.7240) with a critical radius r; =
46.5752. The critical points are (4,7,10). For the solution of two service points

Table 1. Ten demand points problem.
i 1 2 3 4 5 6 7 8 9 10

a, 39 63 71 7 53 39 64 23 29 65
b, 20 11 22 78 61 7 9 20 78 94
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we start from here where r, is the upper limit. Let us add arbitrarily point 1 and
present the matrix shown in Table 2. )

The 4 x 4 unity matrix on the right-hand side represents the null centers,
each of which covers, obviously. only itself. In order to save space we shall not
include it in the tables below. although its existence will be implicitly assumed.
Let us take as a solution of the relaxed problem the third (1-7) and sixth (4-
10) columns. The solution we take has a value (radius) r, = 30.0832. This value,
along with the data on the centers, (51.5,14.5) and (36.0,86.0) is inserted into
the other part of the program which checks feasibility of the full-size problem.
We find that the solution of the reduced problem is not a feasible solution of
the large one. and that the point farthest from its closest center is No. 5. We
add this point to the above-mentioned four and return to the first part of the
program. The limiting value for critical circles is still the best solution known
so far, i.e., r; = 46.5752. We now have Table 3.

The second and fifth columns constitute a solution to the relaxed problem
with r, = 30.0836. Checking this solution of centers at (36.0418,85.8484) and
(51.5,14.5) shows that it is a solution of the original problem. We therefore
delete all columns with rp = 30.0836 and remain with the matrix shown in Table
4. Again, the 5 x 5 unity matrix is not explicitly shown. Columns 4 and 5
represent a cover for the relaxed problem. Checking the full-size problem shows
that it is not a solution. We therefore have to add a point to the relaxed problem.
The point found to be farthest from its closest center is No. 8. We add it to the
current relaxed problem and obtain Table 5. The relaxed problem can now be
covered by columns 1 and 6. Checking this solution with r; = 30.0832 shows
that it is indeed a solution of the full-size problem, which is slightly better than
the previous one. Now deleting column 6 leaves us with a matrix which has no
cover with two columns. The latest solution, namely, centers at (48.4284,32.8695)
and (36.0,86.0) with r; = 30.0832 is thus the optimal solution of the two-center
problem.

Table 5 with column 6 omitted can be utilized for the solution of the three-
center problem. A cover can be found by columns 1, 5, and 9 and the algorithm
proceeds in the same way as before. The final resultsforp = 1,. . . 10 centers
are summed up in Table 6.

Table 4. Updated five points relaxation matrix.

Combination
Points 1-5 1-7 4-5 4-10 5-7 5-

10
1 1 1 0 0 1 0
4 0 0 1 1 0 0
5 1 0 1 0 1 1
7 0 1 0 0 1 0
10 0 0 0 1 0 1

r, 21.6622  13.6565 24.5204 30.0832 26.5754  17.5570
X; 46.0 51.5 30.0 36.0 58.5 59.0
y; 40.5 14.5 69.5 86.0 35.0 71.5
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Table 6. Results of 1,2,3. . . . ,10 demand points problems.

p T, Centers
1 46,5752 (45.4554.51.7240)
2 30.0832 (36.0,86.0),(51.5.14.5)
3240208 (47.0,21.0),(59.0,77.5),(7.0,78.0)
4 17.557 (55.0.21.0),(31.0,20.0),(23.0,74.5),(59.0,77.5)
5 11.00 (31.0,20.0),(67.5,15.5),(18.0,78.0),(46.0,66.0),(65.0,94.0)
6 801 (31.0.20.0),(67.5,15.5),(34.0,74.5),(7.0,78.0),(53.0,61.0),(65.0,94.0)
7 739 (67.5.15.5),(34.0,74.5),(39.0,20.0),(7.0,78.0).(53.0,61.0).(23.0.20.0)
(65.0,94.0)
8 611 (34.0.74.5),(39.0,20.0),(71.0,22.0),(7.0,78.0) ,(53.0,61.0),(64.0,9.0),

(23.0,20.0),(65.0,94.0)
9 1.118 All demand points except for Nos. 2 and 7, and (63.5,10.0)
10 ¢ All demand points

5. COMPUTATIONAL EXPERIENCE

While the relaxation technique allows manual solution of small problems,
larger problems require the use of a computerized algorithm. Preliminary com-
putational experience that has been gained in the course of this research is
described in this section.

Tables 7 and 8 contain a summary of results for six randomly generated
problems with the number of demand points ranging from n = 10 to n = 300
and the number of service facilities between p = 1 and p = 30. In all, 45 p-
center problems were solved using the CDC CYBER 170-855 computer.

For a given number n, the locations of the n demand points were randomly
generated in a 100 x 100 square by choosing x and y coordinates from a uniform
distribution with integral values from 1 to 100. The experiments were designed
to provide some insight to problem complexity with respect to both input pa-
rameters —p and n. Thus, Table 7 describes computational results for a 30-
demand-points problem solved for all possible values of p. Table 8 provides
results for six values of n, n = 10,20,30,100,200,300 where each is solved for
P = 1,2,3. Before proceeding with a discussion of the results, we need to define
the symbols appearing in the tables. The letters n, p refer to the number of
demand points and the number of service facilities, respectively. CPf signifies
the size (rows by columns) of the final set-covering problem solved in finding a
given p-center solution. CPs denotes the number of set-covering problems solved
for a given value of p. Cols is the maximum number of columns among the CPs
set-covering problems for a given p, and Cuts is the total number of cuts gen-
erated while solving the CPs set-covering problems for a given p. Finally, Tcp
is the total time in seconds to solve the CPs set-covering problems for a given
P, and T is the total (incremental) time in seconds to solve the p-center problem
for a given p.

We turn now to a discussion of the computational results in Tables 7 and 8.
As expected, most of the computation time is taken up by the set-covering
portion of the algorithm. An exception to this is the case of n = 1, where the
set-covering problem degenerates into a trivial problem and furthermore, some
overheads are incurred in setting up the problem. But clearly, as problem com-
plexity increases, the major computational burden is due to solution of the
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Table 7. Computational results for 30-demand-points problem. p, number of service
facilities; CPA, size of final covering problem (rows x columns): CPs, number of covering
problems; Cols. maximum number of columns; Cuts, total number of cuts in solving
covering problems; Tcp, total time in seconds to solve the covering problems; and T,
total incremental computation time in seconds (including Tcp).

p CPf CPs Cols Cuts Tep T
1 5x15 4 16 1 0.007 0.660
2 12 x 113 18 122 31 1.614 2.034
3 14 x 88 23 120 24 0.930 1.713
4 15 x 67 19 85 85 4.796 5.251
5 17 x 75 16 78 27 1.050 1.507
6 19 x 74 21 88 37 2.798 3.602
7 20 x 79 16 80 27 1.916 2.522
8 21 x 66 23 78 66 9.843 11.048
9 23 x 74 19 79 58 8.657 9.741
10 22 x 64 14 64 163 46.061 46.627
11 24 x 55 19 65 19 2.058 3.252
12 25 x 56 16 63 16 2.124 3.089
13 24 x 43 15 47 0 0.508 1.378
14 23 x 38 12 40 0 0.382 1.020
15 26 X 46 13 47 3 0.728 1.567
16 27 x 47 13 47 0 0.578 1.497
17 28 x 45 16 51 2 1.208 2.522
18 27 x 42 11 43 0 0.561 1.399
19 27 x 36 12 42 0 0.698 1.732
20 29 x 39 1 40 0 0.673 1.689
21 30 x 40 11 41 0 0.740 1.849
22 30 x 38 11 40 0 0.799 1.989
23 30 x 36 9 38 0 0.673 1.652
24 27 x 30 4 30 0 0.268 0.630
25 30 x 33 7 36 0 0.591 1.420
26 29 x 32 4 32 0 0.333 0.772
27 30 x 33 4 33 0 0.365 0.850
28 30 x 31 5 33 0 0.492 1.172
29 30 x 30 3 30 0 0.302 0.705

respective set-covering problems. Our discussion will center around three cat-
egories—the set-covering algorithm, computational effort as a function of p.
and computational effort as a function of n.

(i) The Set-Covering Algorithm

The set-covering algorithm used in this research is due to Bellmore and Ratliff
as reported in Garfinkel and Nemhauser [10, Chap. 8). Large computation times
and memory requirements, when they occur, are due primarily to a large number
of cuts. An interesting feature here is that the great majority of cuts were
generated at the final covering problem for any value of p. It seems apparent
from Table 7 that the size of problem that can be solved with the relaxation
technique is essentially limited by the number of cuts generated by the set-
covering algorithm. In this research effort we have not emphasized the com-
putational efficiency of the set-covering algorithm. Two points are worth noting
in this respect. First, the performance of the algorithm utilized here could be
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Table 8. Computational results for several problems. n. number of demand points; p,
number of service facilities: CPf. size of final covering problem (rows X columns); CPs,
number of covering problems: Cols. maximum number of columns; Cuts. total number
of cuts in solving covering problems:; Tcp. total time in seconds to solve the covering
problems: and T. total incremental computation time in seconds (including Tcp).

P n 10 20 30 100 200 300

CPf 5 x 15 6 x 24 5 x 15 7 x 39 6 x 25 6 X 28

CPs 4 5 4 6 5 5

1 Cols 16 25 16 40 26 29
Cuts 1 1 1 6 7 7
Tep 0.010 0.010 0.007 0.036 0.023 0.028
T 0.902 0.701 0.660 0.746 0.747 0.804
CPf 8 x 37 12 x 101 12 x 113 12 x 115 14 x 134 15 x 190
CPs 9 16 18 16 20 20

2 Cols 49 101 122 126 134 194
Cuts 3 96 31 36 26 96
Tep 0.073 10.843 1.614 1.608 1.138 19.741
T 0.169 11.174 2.034 2.011 1.813 20.664
CPf 8 Xx30 13 x 58 14 x 88 19 x 197 24 x 295 26 x 354
CPs 9 11 23 27 26 40

3 Cols 37 111 120 246 326 398
Cuts 1 20 24 28 146 232
Tep 0.059 0.603 0.930 2.509 79.152 126.369
T 1.224 1.038 1.713 4.426 83.689 132.77

substantially improved by sophisticated computer programming, for example,
storage of the zero-one elements of the matrix in bits rather than in words.
Second, the relatively outdated algorithm utilized here should be replaced by
state-of-the-art techniques such as the recent one developed by Balas [1].

(ii) Computational Effort as a Function of P

Table 7 demonstrates how computational effort increases and then decreases
as a function of p. An important factor influencing computational effort is the
number of columns in the covering problems. Inherent in the relaxation method
are two features which influence the number of columns as a function of pin

* opposite directions. As p increases, r, decreases, thus reducing the number of

columns, while the number of demand points in the relaxed set increases, thus
increasing the number of columns. The net effect of these two factors appears
to follow the pattern indicated in the table. As indicated earlier, the critical
factor influencing computational effort is the number of cuts, and it appears
from the table that this quantity is highly correlated with the number of columns.

(iii) Computational Effort as a Function of n

The advantages of the relaxation technique are clearly demonstrated in Table
8. Without the use of relaxations, the p-center problem quickly becomes un-
manageable as n increases. For example, for n = 100 the size of the covering
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problem matrices would be 100 rows by 166,750 columns without relaxation.
For n = 300 the cozresponding size would be 300 by 4,500,250. In comparison,
the relaxation algorithm yields verv much smaller matrices, as indicated in the
table. Furthermore, it appears that computational effort increases as a low-order
polvnomial function of . though more computational experience is needed in
order to validate this assertion.

The procedure discussed so far has been to get, for a given number of service
points p. successively better solutions until the optimum is reached. Once this
is achieved, the optimal solution for p service facilities is utilized as a first feasible
solution for the problem with p + 1 facilities. Thus, in order to solve a problem
with. say, ten service points. one has to go through the optimal solutions of
1.2.3, ... .9 service points, which may be very time consuming. This can be
bypassed by the following procedure. Suppose we have a reasonably good fea-
sible solution to the problem with p centers (see [2]). If the value r, of this
solution is relatively small, the number of columns eliminated will be large, and
we will often be left with a manageable number of columns.

6. CONCLUSIONS

A relaxation method for the Euclidean p-center problem has been described.
The method is capable of solving large-scale problems. Furthermore, the method
offers the possibility for substantial improvement to solutions found by heuristic
methods in very large problems that cannot be solved optimally.

Preliminary computational experience indicates that expected computational
effort increases as a low-order polynomial function of the number of demand
points.

Further research efforts are needed to consolidate the results attained thus
far. In particular, the efficiency of the method can be substantially improved by
use of an up-to-date set-covering algorithm and by more efficient computer
programming. Finally, more extensive computational experiments are required
to characterize the efficiency of the proposed method.
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