On the Calculation of Activation Energies and Frequency Factors from Glow Curves
Reuven Chen

Citation: Journal of Applied Physics 40, 570 (1969); doi: 10.1063/1.1657437
View online: http://dx.doi.org/10.1063/1.1657437
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/40/2?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
The thermoluminescence activation energy and frequency factor of the main glow of Ca S O 4 : Tm phosphor determined by heating rate method including very slow rates of heating
J. Appl. Phys. 97, 123523 (2005); 10.1063/1.1947898

Computerized analysis of glow curves from thermally activated processes
J. Appl. Phys. 64, 3193 (1988); 10.1063/1.341535

Analog Computer Calculation of Thermoluminescence Glow Curves
J. Appl. Phys. 41, 832 (1970); 10.1063/1.1658774

Activation Energies from the Widths of Curves of Dielectric or Dynamic Mechanical Loss Factor against Reciprocal of Absolute Temperature
J. Chem. Phys. 46, 2845 (1967); 10.1063/1.1841128

Frequency Factor and Activation Energy for the Volume Diffusion of Metals
J. Appl. Phys. 21, 1189 (1950); 10.1063/1.1699563
On the Calculation of Activation Energies and Frequency Factors from Glow Curves*

REUVEN CHEN
Department of Physics, Polytechnic Institute of Brooklyn, Brooklyn, New York 11201
(Received 25 July 1968; in final form 13 November 1968)

A new method for calculating activation energies and frequency factors from thermoluminescence and thermally stimulated current peaks is described. The validity of this method, as well as of most of the other known ones, is examined for a broad range of energies and frequency factors by the use of a computer. A combination of theoretical and empirical-computational analysis is used to give corrected formulas for some of the previous methods, while only empirical corrections are given for some others. Apart from the half-intensity temperatures on the low- and high-temperature side of the peak, respectively. For a first-order peak with a frequency factor independent of temperature, the activation energy is given by

\[E = 2kT_m(1.26 T_m/\omega - 1) \]

where \(k \) is Boltzmann’s constant. The frequency factor is found for this case to be

\[s = [29(1.26 T_m/\omega - 1)/(2.52T_m/\omega)] \exp(2.52T_m/\omega) \]

where \(\beta \) is the (linear) heating rate and \(s \) is 2.718. For the case where pre-exponential factors depend on temperature as some power function and for second-order glow peaks, similar formulas are developed for the calculation of activation energies. The relative advantages of the various methods are discussed both from the theoretical and experimental points of view. The method for distinguishing between first- and second-order peaks is also discussed.

1. INTRODUCTION

An important and convenient method for investigating trapping levels in crystals is the thermal-glow method, including thermoluminescence (TL), thermally stimulated current (TSC) and thermally stimulated electron emission (TSE) measurements. The first method for calculating activation energies by TL curves was given by Urbach, who found empirically that a reasonable estimate for the trap energy, \(E \) in electron volts, is given by

\[E = T_m/S_{500} \]

where \(T_m \) is the temperature of the glow-curve maximum in \({}^\circ\text{K}\). The first theoretical treatment for a well isolated TL peak was given by Randall and Wilkins, who assumed no retrapping and a TL intensity proportional to the rate of change of the concentration of trapped electrons. The equation given by them was

\[I = -c(dn/dt) = cs \exp(-E/kT)n \]

where \(I \) is the TL intensity, \(s \) is a constant (having dimension of sec\(^{-1}\)) called the “escape-frequency factor” or sometimes just the “pre-exponential factor,” \(n \) is the concentration of trapped electrons (cm\(^{-3}\)), \(T \) is the absolute temperature, \(k \) is Boltzmann’s constant, and \(c \) is a proportionality factor which can be set equal to unity without any loss in generality. The solution of the differential equation in (1.1) is

\[n = n_0 \exp(-s/\beta \int_{T_0}^{T} \exp(-E/kT')dT') \]

where \(n_0 \) is the initial concentration. This gives (assuming \(c=1 \), for the TL intensity

\[I = n_0s \exp(-E/kT) \]

\[\times \exp\left(-s/\beta \int_{T_0}^{T} \exp(-E/kT')dT'\right) \].

By differentiating and equating to zero, one finds the condition for the maximum

\[\beta E/(kT_m) = s \exp(-E/kT_m) \]

where \(T_m \) is the temperature at the maximum. If one has some estimate for the value of \(s \), this could serve as a transcendental equation to be solved numerically for \(E \).

Another approximation, more suitable for some of the glow peaks, was given by Garlick and Gibson, and is represented by the following equation

\[I = -dn/dt = s'n^2 \exp(-E/kT) \]

where \(s' \) is a constant with dimensions of cm\(^3\) sec\(^{-1}\). This case is usually referred to as “second-order kinetics,” whereas the previous case is “first-order kinetics.” According to Garlick and Gibson, the second-order approximation applies when retrapping and recombination probabilities are equal. The solution of (1.5) is

\[I = n_0^2s' \exp(-E/kT) \]

\[\times \left(1 + (n_0s'/\beta) \int_{T_0}^{T} \exp(-E/kT')dT'\right)^{-2} \].

The term in brackets in (1.6), as well as the righthand exponential term in (1.3), varies only slightly at temperatures low in comparison to \(T_m \). Therefore \(I \) is proportional in this region to \(\exp(-E/kT) \). This provides a simple means for calculating the activation energy from the slope derived from a plot of \(\ln(I) \) vs \(1/T \) in the “initial rise” region. The initial rise method is expected to be valid for intermediate order kinetics as well. However, some theoretical reasons limit its use.

* Research Supported by National Science Foundation Grant SDP-GU-1557.
1 F. Urbach, Wiener Ber. IIa, 139, 363 (1930).
One does not yet have any general operational method for calculating activation energies, which is based on the shape of the glow peak. The first- and second-order approximations are, however, fairly good ones for most of the experimentally found peaks, and all the methods given in the literature are based on one of these assumptions.

A number of methods for calculating activation energies are based on measurement of T_m, the temperature at the maximum, and T_1 and T_2, the first- and second-half-intensity temperatures. The formulas for finding the energies by these methods usually contain one of the following factors: (a) $\tau = T_m - T_1$, the halfwidth at the low-temperature side of the peak, (b) $\delta = T_2 - T_m$, the halfwidth towards the falloff of the glow peak, or (c) $\omega = T_2 - T_1$, the total halfwidth.

By assuming that the area of the half peak toward the falloff is equal to the area of a triangle having the same height and halfwidth, Lushchik9 showed that the activation energy can be given by

$$E = kT_m^2/\delta.$$

(1.7)

Once E is calculated by any method, insertion into Eq. (1.4) gives the value of the pre-exponential factor. Using the value of E in the more general form (1.7), one has by insertion into (1.4)

$$s = (\beta/\delta) \exp(T_m/\delta),$$

(1.8)

which gives s directly. For second-order kinetics, Lushchik found by the same assumption

$$E = 2kT_m^2/\delta.$$

(1.9)

Halperin and Braner4 found two general equations for evaluating the activation energy, one for carriers raised into a level within the forbidden gap,

$$E = (q/\beta)kT_m^2,$$

(1.10)

and another for excitation into the band

$$E = (q/\beta)kT_m^2(1-\Delta),$$

(1.11)

where $\Delta = 2kT_m/E$ is a correction factor, usually of the order of magnitude of 0.1. The value of q depends on the order of the process, and can be found accurately only for strict first- or second-order kinetics. For first order, Halperin and Braner gave $q_1 = 1.72\mu_0(1 - 1.58\Delta)/(1 - \mu_0)$, and for second order, $q_2 = 2\mu_0(1 - 2\Delta)/(1 - \mu_0)$, where μ_0 is defined as n_{m1}/n_0 and n_m is the concentration of trapped carriers at T_m. The value of μ_0 was used by Halperin \textit{et al.}10 for evaluating the order of the process. Values of μ_0 around $(1-\Delta)/e$ indicate first-order kinetics ($e = 2.718 \cdots$), and values around $(1+\Delta)/2$ indicate second order. As an approximation for μ_0, the value of $\mu_0 = \delta/\omega$ has also been taken. Halperin and Braner4 have also shown that

$$E = 1.72(kT_m^2/\tau)(1 - 1.58\Delta).$$

(1.12)

They gave similar equations for excitation to a band and for second-order kinetics. The value of E is calculated from these equations iteratively. A first approximation is found by assuming $\Delta = 0$, and the subsequent ones are found by inserting the calculated E into Δ and thus correcting the E value.

Another method using the value of τ was given by Grosswiener11 who found

$$E = 1.51kT_mT_1/\tau,$$

(1.13)

which, he claims to be accurate to better than $\pm 5\%$, provided that $s/\beta > 10^7$ deg$^{-1}$ (where β is the heating rate) and $E/kT_m > 20$. Again, by inserting (1.13) into (1.4) one has

$$s = 1.51\beta T_1/(\tau T_m) \cdot \exp[1.51(T_1/\tau)].$$

(1.14)

Dussel and Bube12 showed that Grosswiener's method for E is out by about 7% and gave some other similar formulas for E using T_m, T_2, and δ, or T_1, T_2, and ω instead of T_1, T_m, and τ. Keating,13 following other investigators,10,15 introduced the possibility of temperature-dependent frequency factors, $s = s''T_\gamma$, where $-2 \leq a \leq 2$. For all values of a, Keating gave the following formulas for first-order peaks

$$kT_m/E = (1.2\gamma - 0.54)\omega/T_m + 0.0055 - [\frac{3}{2}(\gamma - 0.75)^{1/2}],$$

(1.15)

from which E can be calculated. In this formula $\gamma = \delta/\tau$. The formula is reported to hold true for $0.75 < \gamma < 0.9$ and $10 < E/kT_m < 35$. It is worthwhile to mention here that Halperin and Braner's case of excitation into a band corresponds to $a = 2$, namely, $s = T^2$. According to Lax14 and Bemsky,15 the most common values of a are $-2, 0, 1,$ and 2.

It is important to note that the validity of the first- and second-order approximations is much larger than that described by Randall and Wilkins2 and Garlick and Gibson.3 First-order cases appear for TL in semiconducting crystals,16 for TL when traps and luminescence centers are geometrically adjacent,17 and for various conditions in TSC measurements.18 Second-order peaks might occur, not only when retrapping and

13 M. Lax, Phys. Rev. 119, 1502 (1960).

15 For example, see A. Halperin and R. Chen, Phys. Rev. 148, 839 (1966).

recombination are equally probable, but also when the probability for retrapping is much larger than that for recombination.19,20

Two other articles should be mentioned here. Nicholas and Woods21 reviewed most of the above mentioned methods and used them for experimental results of glow peaks observed in CdS crystals. Typical first- and second-order calculated curves can also be found in this work. Kelly and Laubitz22 analyzed some of the methods by using computer calculations. The results of their work will be discussed in the last paragraph in comparison with those of the present one.

The scope of this paper is to: (1) introduce a new method for calculating trap parameters by the total halfwidth (ω) of a first- or second-order peak, (2) examine and correct some of the other methods using the temperature of the maximum and half intensity, and (3) to discuss the relative advantages of these methods for various concrete cases. This investigation has been done for a broad range of activation energies ($0.1 \leq E \leq 2.0$ eV) and pre-exponential factors ($10^{16} \leq \varepsilon \leq 10^8$ sec$^{-1}$) in order to cover all the values found thus far in various experiments. The calculations were carried out by computation of T_0, T_m, and T_2 for each set of E and s, using the IBM 360 computer.

2. METHODS BASED ON THE TOTAL HALFWIDTH OF A PEAK

A new method for calculating glow parameters by the use of the halfwidth ω and the maximum temperature for first- and second-order peaks, and for the possible dependence of the pre-exponential factor on temperature is developed here.

A. First-Order Kinetics, s Independent of T

By Eq. (1.3), the intensity at the maximum is

$$I_m=sn_0 \exp(-E/kT_m) \times \exp\left(-\frac{s}{\beta} \int_{T_0}^{T_m} \exp(-E/kT) dT \right). \quad (2.1)$$

The integral on the right-hand side can be approximated8,23 by the asymptotic expansion

$$\int_{T_0}^{T_m} \exp(-E/kT') dT' = T \exp(-E/kT) \sum_{n=1}^{\infty} \left(\frac{kT}{E}\right)^n (-1)^{n-1} n!. \quad (2.2)$$

Since kT/E is usually small (about 0.05), a reasonable approximation is given by

$$\int_{T_0}^{T_m} \exp(-E/kT) dT \approx (kT_m^2/E) \times \exp\left(-\frac{E}{kT_m}\right) (1-\Delta), \quad (2.3)$$

where $\Delta=2kT_m/E$.

Using Eq. (2.1) and the maximum condition (1.4), one has

$$I_m = (E_n \beta/kT_m^2) \exp\left[-\frac{1}{\Delta}\right] = (E_n \beta/kT_m^2) \varepsilon^2. \quad (2.4)$$

The assumption of Lushchik24 about the equality of the area of the second half of the peak to that of a triangle having the same height and halfwidth can be written as $n_m=\delta_l I_m$, where n_m is the concentration of trapped carriers at T_m, and δ_l is the halfwidth of the second half of the peak in time units. Since $\delta_l=\beta/\beta$, the relation can be expressed by $\delta_l n_m/\beta n_0=1$. A similar assumption about the relation between the total-glow area and a triangle can be written as $\omega I_m/\beta n_0=1$. This assumption can be regarded as two separate assumptions: (a) $\omega n_m/\beta n_0$ is a constant, i.e.,

$$C_\omega = \omega I_m/\beta n_0, \quad (2.5)$$

and (b) C_ω is equal to unity. The validity of these two assumptions was examined, and the results show (see Appendix) that the first one is good to quite a high precision, whereas the value of C_ω usually differs from 1.0 appreciably. Inserting βn_0 from Eq. (2.5) into Eq. (2.4) one finds now

$$E \delta = eC_\omega kT_m^2/\omega. \quad (2.6)$$

Since Δ is always quite small, writing $e^{\delta}\approx 1+\Delta$ is quite a good approximation, and thus one has

$$E(1+2kT_m/E) = eC_\omega kT_m^2/\omega. \quad (2.7)$$

This can be written as

$$E_0 = eC_\omega kT_m^2/\omega - 2kT_m = 2kT_m[(eC_\omega/2)(T_m/\omega - 1)]. \quad (2.8)$$

By insertion into (1.4) one has for the frequency factor

$$s = (2\delta/\varepsilon^2 T_m) [(eC_\omega/2)(T_m/\omega - 1)] \exp(eC_\omega T_m/\omega). \quad (2.9)$$

C_ω was found to be 0.92 for this case (see Appendix), which changes Eq. (2.8) to

$$E_0 = 2kT_m(1.25T_m/\omega - 1). \quad (2.10)$$

Two small systematic errors have been introduced by taking only the first two terms in the asymptotic series for the integral and in the series for e^{δ}. Further calculations (see below) show that these can be compensated for by changing the constant in the parentheses from 1.25 to 1.26. A method which is a little less accurate, but easier to use, can be derived by dropping

the unity in the parentheses and reducing the value of
the other constant for compensation. It was found that
quite a good approximation is given by
\[E_Q = 2.29kT_m^2/\omega. \]
(2.11)
Again by insertion into (1.4) one now has
\[s_Q = (2.29\beta/\omega) \exp(2.29T_m/\omega). \]
(2.12)
Since 2.29 is close to \(\ln 10 \), one can write
\[s_Q = (2.67\beta/\omega) 10^s/\omega. \]
(2.13)
Here again the constant multiplying \(\beta/\omega \) has been
slightly changed (from 2.29 to 2.67) in order to compen­
sate partially for the additional inaccuracies. Equa­
tion (2.13) can be considered as an "express" method
for evaluating the pre-exponential factor.

B. Second-Order Kinetics, \(s' \) Independent of \(T \)

For second-order kinetics, the intensity at the maxi­
mum is given according to (1.6) by
\[I_m = n_0 s' \exp(-E/kT_m) \]
\[\times \left(1 + (n_0 s'/\beta) \int_{T_0}^{T_m} \exp(-E/kT) dT\right)^{-2}. \]
(2.14)
By differentiating Eq. (1.6) and equating the deriva­
tive to zero, the condition for the maximum is found to
be
\[(n_0 s'/\beta) \int_{T_0}^{T_m} \exp(-E/kT) dT \]
\[+ 1 = (2kT_m^2n_0 s'/\beta E) \exp(-E/kT_m). \]
(2.15)
By inserting (2.15) into (2.14) we have
\[I_m = (\beta E/2kT_m^2)^s \exp(E/kT_m)/s'. \]
(2.16)
Using the two first terms in the series expansion (2.2)
in (2.15) and rearranging, one now has
\[(\beta E/s'kT_m^2) \exp(E/kT_m) = n_0(1+\Delta). \]
(2.17)
Using this in (2.16) and taking again the expression
(2.5), we now find
\[E(1+\Delta) = 4C_mkT_m^2/\omega, \]
(2.18)
which in a similar way to the previous case can be written
\[E = 2kT_m(2C_mT_m/\omega - 1). \]
(2.19)
Since \(C_m \) was found to be 0.878 (Appendix) for this
case, the constant 2 \(C_m \) is now 1.756. In a way similar to
the first-order case, it can be shown that a slightly
higher constant is preferable in order to account for the
dropping of terms of the order of \(\Delta^3 \) in the series, and
thus a constant of 1.77 was found to be useful here.

C. Temperature-Dependent \(s \) Values

As has been said before, the possible dependence of
\(s \) on temperature is \(s = s''T^a \). The equation governing
these cases for first-order factors is
\[I = -dn/dt = s''T^n \exp(-E/kT)n. \]
(2.20)
The solution of this is
\[I = s''n_0T^n \exp(-E/kT) \]
\[\times \exp\left(-\left(s''/\beta\right) \int_{T_0}^{T_m} T^n \exp(-E/kT) dT\right). \]
(2.21)
Keating\(^3\) has shown that for these cases one can use
\[\int_{T_0}^{T_m} T^n \exp(-E/kT) dT' = (kT_m^{n+2}/E) \exp(-E/kT_m)(1-\Delta), \]
(2.22)
where \(\Delta = (a+2)kT_m/E = (1+\frac{3}{2}a)\Delta \). The maximum condition is found to be here
\[s''T_m^{n+2} \exp(-E/kT_m) = (\beta E/k)(1+\frac{3}{2}a\Delta). \]
(2.23)
By writing \(T_m \) instead of \(T \) in (2.21), \(I_m \) can be found. By inserting Eq. (2.22) into this expression for \(I_m \), and using (2.23), we now find
\[I_m = (n_0 \beta E/kT_m^2)(1+\frac{3}{2}a\Delta) \]
\[\times \exp\left[-(1+\frac{3}{2}a\Delta)[1-(1+\frac{3}{2}a)\Delta]\right]. \]
(2.24)
Neglecting second-order \(\Delta \) terms, and taking \(1+\Delta \)
for \(\Delta \), we now have
\[I_m = (n_0 \beta E/ekT_m^2)[1+(1+\frac{3}{2}a)\Delta]. \]
(2.25)
Using as before, Eq. (2.5), one now has
\[E[1+(1+\frac{3}{2}a)\Delta] = C_0ekT_m^2/\omega, \]
(2.26)
and this gives as before
\[E = 2kT_m[2C_0eT_m/\omega - (1+\frac{3}{2}a)]. \]
(2.27)
To account for the omission of terms of the order of
\(\Delta^3 \), the constant given by \(\frac{1}{4}C_0 \) can be slightly changed.
The value of \(C_0 \) could, in principle, depend on the
power \(a \). However, it is shown (see Appendix) that this
dependence is very weak. Equation (2.27) can there­
fore be written in general as with (1.26) replacing \(\frac{1}{4}C_0 \).
Equation (2.19) is a special case of Eq. (2.27)
for \(a = 0 \). The two extreme (and most common) cases,
nameley, \(a = 2 \) and \(a = -2 \) give for 1+\(\frac{3}{2}a \) values of 2 and
0 respectively. Thus for \(a = -2 \) one has the simplest
formula, which could be expected beforehand, since the
integral in (2.22) can be calculated easily and an­
alytically in this case.

Similar reasoning could be given for second-order
kinetics when \(s' = s''T^a \). Without going into details, the
result can be found to be
\[E = 2kT_m[2C_0eT_m/\omega - (1+\frac{3}{2}a)]. \]
(2.28)

3. METHODS BASED ON THE HIGH-
TEMPERATURE-SIDE HALF PEAK

The aim of this paragraph is to show that the method
of Lushchik\(^4\) has to be slightly modified so as to give
more accurate values. The assumption of Lushchik, $\delta I_m/\beta n_m = 1$, is to be changed to

$$\delta I_m/\beta n_m = C_4.$$ \hspace{1cm} (3.1)

The value of C_4 and its small variation with E and s are discussed in the Appendix. For first-order kinetics with s independent of T we have from Eq. (1.1) (with $c=1$)

$$I_m/n_m = s \exp(-E/kT_m).$$ \hspace{1cm} (3.2)

By the maximum condition (1.4), and using Eq. (3.1),

$$I_m/n_m = s' n_0 \delta \exp(-E/kT_m)$$ \hspace{1cm} \left(1 + (s'n_0/\beta) \int_0^T \exp(-E/kT) dT \right).$$ \hspace{1cm} (3.4)

4. METHODS BASED ON THE LOW-TEMPERATURE-SIDE HALF PEAK

Activation energies calculated by the method of Halperin and Braner were usually found to be too high by 10% or more. The method included two inaccuracies: (a) Lushchik's assumption given by $C_4 = 1$, and (b) approximation of $\mu_e = n_0 / n_m$ by $\mu_e = \delta / \omega$. The necessary correction to this method is represented by introducing

$$\tau I_m/\left[\beta (n_0 - n_m)\right] = C_t,$$ \hspace{1cm} (4.1)

which means that the ratio between the first half of the peak and a triangle having the same height and half-width is a constant. The constancy is checked, again, in the Appendix. Dividing the expression for C_4 [see Eq. (3.3)] by Eq. (4.1) and rearranging, one gets

$$n_m/(n_0 - n_m) = \delta C_t/\left(\tau C_4\right).$$ \hspace{1cm} (4.2)

The lefthand side is equal to $\mu_t/(1-\mu_t)$ appearing in all the expressions for q in (1.10). From the equation for first-order kinetics, for example, we get for excitation into a level not in a band,

$$E = 1.72C_4[\delta C_t / \tau C_4] (kT_m^2/\beta) (1-1.58\Delta),$$ \hspace{1cm} (4.3)

where the factor C_4 has to be introduced as in the previous case (Sec. 3). By using (4.2) we get

$$E = 1.72C_4 [\delta C_t / \tau C_4] (kT_m^2/\beta) (1-1.58\Delta) = 1.72C_4 (kT_m^2/\tau) (1-1.58\Delta),$$ \hspace{1cm} (4.4)

and similar equations for the other three cases. C_t was found to be between 0.88 and 0.91 for the various cases. These equations could be derived, however, from first principles and Eq. (4.1) without going into the somewhat complicated calculations of Halperin and Braner, and with the advantage of getting the corresponding noniterative formulas as follows:

A. First-Order Kinetics, Constant s Value

The expression (4.1) for C_t can be written as

$$n_0/n_m = \left[\tau / (\beta C_t)\right] I_m/n_m.$$ \hspace{1cm} (4.5)
From (1.2) we have
\[\frac{n_0}{n_m} = \exp \left(\frac{s}{\beta} \int_{T_0}^{T_m} \exp(-E/kT) dT \right). \] (4.6)

By using the approximation for the integral (2.3) and inserting the maximum condition (1.4) we have
\[\frac{n_0}{n_m} = \exp(1-\Delta) \approx (1-\Delta)/e. \] (4.7)

By inserting (3.2) and (4.7) into (4.5) we have
\[(1-\Delta) e^{-1} = \left(\tau C \right) \beta E/kT_m^2 = \tau E/C_\tau kT_m^2, \] (4.8)
which gives
\[E = C_\tau \left(e-1 \right) \left(kT_m^2/\tau \right) \left(1-\left[e/(e-1) \right] \Delta \right). \] (4.9)

This is identical to Eq. (4.4). With the value of \(C_\tau \) found empirically, this becomes
\[E = 1.52 \left(kT_m^2/\tau \right) (1-1.58\Delta). \] (4.10)

An approximation for \(n_0/n_m = \exp(1-\Delta) \), which is about as valid as (4.7), is
\[n_0/n_m = e/(1+\Delta), \] which gives directly the criterion of Halperin and Briner\(^5\) for first-order kinetics, i.e.,
\[\mu_\nu = n_m/n_0 = (1+\Delta)/e. \] (4.11)

Using this, Eq. (4.8) becomes now
\[e/(1+\Delta) - 1 = \tau E/C_\tau kT_m^2. \] (4.12)

This can be written as
\[1.72(1-0.58\Delta) = \tau E(1+\Delta)/C_\tau kT_m^2. \] (4.13)

Because of the smallness of 0.58\(\Delta \) we can write
\[1.72 = \tau E(1+1.58\Delta)/(C_\tau kT_m^2), \] (4.14)
or
\[E \left[1+1.58 \left(kT_m/E \right) \right] = 1.72 C_\tau kT_m^2/\tau. \] (4.15)

This can now be written as
\[E = 1.52 kT_m^2/\tau - 1.58(2kT_m). \] (4.16)

The difference in accuracy between Eqs. (4.10) and (4.16) is very slight. However, this last equation is more useful, since no iterations are necessary.

B. Second-Order Kinetics, Constant Pre-exponential Factor

By solving (1.5) directly, one has
\[n_m = n_0 \left(1 + \left(n_0 s'/\beta \right) \int_{T_0}^{T_m} \exp(-E/kT) dT \right)^{-1}. \] (4.17)

Using the maximum condition (2.15), one finds
\[n_m = [\beta E/\left(2kT_m^2 s' \right)] \exp(E/kT_m), \] (4.18)
and using (2.17), we find
\[n_0/n_m = 2/(1+\Delta). \] (4.19)

Using Eq. (4.5) again and inserting \(n_0/n_m \) from (4.19) and \(T_m/n_m \) from (3.5), one has now
\[2/(1+\Delta) - 1 = \tau E/\left(2C_\tau kT_m^2 \right). \] (4.20)

Use of the approximation \(2/(1+\Delta) \approx 2(1-\Delta) \) gives directly the formula of Halperin and Briner\(^5\) corrected by \(C_\tau \), which, with the known value of \(C_\tau \) (Appendix), is written
\[E = 1.813 \left(kT_m^2/\tau \right) (1-2\Delta). \] (4.21)

By an argument similar to the previous case, a more convenient formula which is as accurate as (4.21) can be written by
\[E = 1.813 kT_m^2/\tau - 2(2kT_m). \] (4.22)

Directly from Eq. (4.19) we see that
\[\mu_\nu = n_m/n_0 = (1+\Delta)/2, \] (4.23)
which is the criterion of Halperin and Briner\(^5\) for second-order kinetic peaks.

C. Cases of Temperature-Dependent \(s \) Values

For temperature-dependent pre-exponential factors let us take again the case of first-order kinetics and \(s = s'T' \). The equation governing this process is (2.20) with \(a = 2 \). The solution of this was given by Eq. (2.21). Solving for \(n \) and inserting \(T_m \), one has for the maximum
\[n_m = n_0 \exp \left(\int_{T_0}^{T_m} T' \exp(-E/kT) dT \right). \] (4.24)

By using the approximation of Keating in Eq. (2.22) for \(a = 2 \), we have
\[n_m/n_0 \approx \exp\left[(s'' kT_m^4/\beta E)(1-2\Delta) \right], \] (4.25)
and by the maximum condition (3.18) we find
\[n_m/n_0 \approx \exp\left[-(1+\Delta) \right] \approx (1+\Delta)/e. \] (4.26)

This becomes
\[n_m/n_0 \approx \exp\left[(s'' kT_m^4/\beta E)(1-2\Delta) \right] \approx (1+\Delta)/e. \] (4.27)

This is again the \(\mu_\nu \) value indicating first-order kinetics. By inserting (4.27) and (3.9) into (4.5) one has
\[e/(1+\Delta) - 1 = \tau E/(C_\tau kT_m^2) \] (4.28)

The corrected Halperin and Briner formula is found by dividing by (1+\(\Delta \)) and writing 1/(1+\(\Delta \)) \(\approx 1 - \Delta \) and 1/(1+\(\Delta \)) \(\approx 1 - \Delta \). With the calculated value of \(C_\tau \) for this case, one finds now
\[E = 1.515 \left(kT_m^2/\tau \right) (1-2.58\Delta). \] (4.29)
Table I. Calculated values of activation energies and preexponential factors by several methods, first-order kinetics and s independent of temperature.

<table>
<thead>
<tr>
<th>E_i (eV)</th>
<th>s (sec$^{-1}$)</th>
<th>E_0 (eV)</th>
<th>E_{eq} (eV)</th>
<th>$s_{0/s}$</th>
<th>E_k (eV)</th>
<th>E_{ex} (eV)</th>
<th>$s_{L/s}$</th>
<th>E_0 (eV)</th>
<th>s_{in}</th>
<th>E_0 (eV)</th>
<th>$s_{0/s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10^4</td>
<td>0.109</td>
<td>0.101</td>
<td>1.48</td>
<td>0.107</td>
<td>0.770</td>
<td>0.103</td>
<td>0.101</td>
<td>1.08</td>
<td>0.097</td>
<td>0.098</td>
</tr>
<tr>
<td>0.2</td>
<td>10^4</td>
<td>0.217</td>
<td>0.203</td>
<td>1.45</td>
<td>0.215</td>
<td>0.767</td>
<td>0.205</td>
<td>0.201</td>
<td>1.06</td>
<td>0.195</td>
<td>0.197</td>
</tr>
<tr>
<td>0.4</td>
<td>10^4</td>
<td>0.433</td>
<td>0.404</td>
<td>1.40</td>
<td>0.432</td>
<td>0.762</td>
<td>0.411</td>
<td>0.402</td>
<td>1.08</td>
<td>0.391</td>
<td>0.395</td>
</tr>
<tr>
<td>0.8</td>
<td>10^4</td>
<td>0.864</td>
<td>0.807</td>
<td>1.36</td>
<td>0.867</td>
<td>0.759</td>
<td>0.821</td>
<td>0.802</td>
<td>1.08</td>
<td>0.784</td>
<td>0.791</td>
</tr>
<tr>
<td>1.6</td>
<td>10^4</td>
<td>1.726</td>
<td>1.611</td>
<td>1.33</td>
<td>1.738</td>
<td>0.756</td>
<td>1.641</td>
<td>1.603</td>
<td>1.07</td>
<td>1.571</td>
<td>1.585</td>
</tr>
<tr>
<td>0.1</td>
<td>10^7</td>
<td>0.108</td>
<td>0.100</td>
<td>1.27</td>
<td>0.109</td>
<td>0.730</td>
<td>0.102</td>
<td>0.100</td>
<td>1.02</td>
<td>0.099</td>
<td>0.100</td>
</tr>
<tr>
<td>0.2</td>
<td>10^7</td>
<td>0.215</td>
<td>0.200</td>
<td>1.23</td>
<td>0.218</td>
<td>0.747</td>
<td>0.205</td>
<td>0.200</td>
<td>1.03</td>
<td>0.196</td>
<td>0.199</td>
</tr>
<tr>
<td>0.4</td>
<td>10^7</td>
<td>0.429</td>
<td>0.400</td>
<td>1.19</td>
<td>0.438</td>
<td>0.744</td>
<td>0.410</td>
<td>0.406</td>
<td>1.05</td>
<td>0.396</td>
<td>0.399</td>
</tr>
<tr>
<td>0.8</td>
<td>10^7</td>
<td>0.857</td>
<td>0.799</td>
<td>1.15</td>
<td>0.877</td>
<td>0.742</td>
<td>0.819</td>
<td>0.800</td>
<td>1.04</td>
<td>0.792</td>
<td>0.799</td>
</tr>
<tr>
<td>1.6</td>
<td>10^7</td>
<td>1.712</td>
<td>1.597</td>
<td>1.12</td>
<td>1.757</td>
<td>0.740</td>
<td>1.638</td>
<td>1.600</td>
<td>1.04</td>
<td>1.586</td>
<td>1.599</td>
</tr>
<tr>
<td>0.1</td>
<td>10^9</td>
<td>0.107</td>
<td>0.100</td>
<td>1.05</td>
<td>0.110</td>
<td>0.735</td>
<td>0.102</td>
<td>0.100</td>
<td>1.01</td>
<td>0.099</td>
<td>0.100</td>
</tr>
<tr>
<td>0.2</td>
<td>10^9</td>
<td>0.214</td>
<td>0.199</td>
<td>1.04</td>
<td>0.218</td>
<td>0.735</td>
<td>0.204</td>
<td>0.199</td>
<td>0.98</td>
<td>0.199</td>
<td>0.201</td>
</tr>
<tr>
<td>0.4</td>
<td>10^9</td>
<td>0.426</td>
<td>0.397</td>
<td>0.99</td>
<td>0.440</td>
<td>0.732</td>
<td>0.409</td>
<td>0.399</td>
<td>1.02</td>
<td>0.398</td>
<td>0.402</td>
</tr>
<tr>
<td>0.8</td>
<td>10^9</td>
<td>0.852</td>
<td>0.795</td>
<td>0.96</td>
<td>0.880</td>
<td>0.730</td>
<td>0.818</td>
<td>0.799</td>
<td>1.01</td>
<td>0.797</td>
<td>0.804</td>
</tr>
<tr>
<td>1.6</td>
<td>10^9</td>
<td>1.702</td>
<td>1.590</td>
<td>0.94</td>
<td>1.759</td>
<td>0.729</td>
<td>1.636</td>
<td>1.598</td>
<td>1.01</td>
<td>1.595</td>
<td>1.609</td>
</tr>
<tr>
<td>0.1</td>
<td>10^{11}</td>
<td>0.106</td>
<td>0.099</td>
<td>0.93</td>
<td>0.108</td>
<td>0.729</td>
<td>0.102</td>
<td>0.100</td>
<td>0.91</td>
<td>0.100</td>
<td>0.101</td>
</tr>
<tr>
<td>0.2</td>
<td>10^{11}</td>
<td>0.212</td>
<td>0.198</td>
<td>0.85</td>
<td>0.219</td>
<td>0.724</td>
<td>0.204</td>
<td>0.199</td>
<td>0.99</td>
<td>0.200</td>
<td>0.202</td>
</tr>
<tr>
<td>0.4</td>
<td>10^{11}</td>
<td>0.424</td>
<td>0.396</td>
<td>0.84</td>
<td>0.437</td>
<td>0.724</td>
<td>0.408</td>
<td>0.398</td>
<td>0.97</td>
<td>0.400</td>
<td>0.403</td>
</tr>
<tr>
<td>0.8</td>
<td>10^{11}</td>
<td>0.848</td>
<td>0.793</td>
<td>0.81</td>
<td>0.877</td>
<td>0.722</td>
<td>0.817</td>
<td>0.798</td>
<td>0.98</td>
<td>0.800</td>
<td>0.807</td>
</tr>
<tr>
<td>1.6</td>
<td>10^{11}</td>
<td>1.696</td>
<td>1.582</td>
<td>0.79</td>
<td>1.751</td>
<td>0.721</td>
<td>1.634</td>
<td>1.596</td>
<td>0.98</td>
<td>1.601</td>
<td>1.615</td>
</tr>
<tr>
<td>0.1</td>
<td>10^{12}</td>
<td>0.106</td>
<td>0.099</td>
<td>0.79</td>
<td>0.107</td>
<td>0.723</td>
<td>0.102</td>
<td>0.100</td>
<td>0.90</td>
<td>0.100</td>
<td>0.101</td>
</tr>
<tr>
<td>0.2</td>
<td>10^{12}</td>
<td>0.200</td>
<td>0.199</td>
<td>0.71</td>
<td>0.218</td>
<td>0.717</td>
<td>0.204</td>
<td>0.199</td>
<td>0.97</td>
<td>0.201</td>
<td>0.202</td>
</tr>
<tr>
<td>0.4</td>
<td>10^{13}</td>
<td>0.422</td>
<td>0.397</td>
<td>0.70</td>
<td>0.434</td>
<td>0.717</td>
<td>0.408</td>
<td>0.398</td>
<td>0.94</td>
<td>0.401</td>
<td>0.405</td>
</tr>
<tr>
<td>0.8</td>
<td>10^{13}</td>
<td>0.844</td>
<td>0.701</td>
<td>0.68</td>
<td>0.870</td>
<td>0.716</td>
<td>0.816</td>
<td>0.797</td>
<td>0.97</td>
<td>0.803</td>
<td>0.809</td>
</tr>
<tr>
<td>1.6</td>
<td>10^{13}</td>
<td>1.693</td>
<td>1.578</td>
<td>0.65</td>
<td>1.737</td>
<td>0.715</td>
<td>1.633</td>
<td>1.595</td>
<td>0.96</td>
<td>1.606</td>
<td>1.620</td>
</tr>
</tbody>
</table>

[This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to] IP: 1
Again the easier form of this equation is given by

$$E = 1.515kT_m^a/\tau - 2.58(2kT_m).$$ \hspace{1cm} (4.30)

For other power factors \((s = s'/T^a)\) it is easy to show that a good approximation is given by replacing 2.58 by \(\frac{3}{2}a + 1.58\).

In this case also, we shall not give the details of calculations for the second-order peak with a temperature-dependent preexponential factor \((s' = s'/T^a)\), but only give the results

$$E = 2Ca_kT_m^a/\tau[1 - (2 + \frac{3}{2}a)\Delta].$$ \hspace{1cm} (4.31)

For \(a = 2\), this is the correction used by Grosswiener formula, where \(2C_2\) was calculated to be about 1.8. The noniterative corresponding equation is thus

$$E = 1.81kT_m^a/\tau - (2 + \frac{3}{2}a)(2kT_m).$$ \hspace{1cm} (4.32)

5. Calculations of Activation Energies and Frequency Factors

In this chapter, computed values of \(T_1\), \(T_m\), \(T_2\), \(\tau\), \(\delta\), and \(\omega\) for various given \(E\) and \(s\) values are used to calculate the activation energies and the preexponential factors by several methods. The method for calculating these temperatures is described in the Appendix. The comparison between the results of the activation energies and frequency factors and the given parameters serves as a check for the accuracy of a method. In some cases it is possible and useful to change empirically some of the constants in the formulas using the results found in this way in order to reduce systematic errors.

A. First-Order Kinetics, Constant \(s\)

Table I represents some of the results found by the formulas for first-order kinetics. Column 1 gives representative given energy values \((E)\) ranging from 0.1 eV to 1.6 eV. Column 2 shows the given \(s\) values changing from \(10^8\) to \(10^{10}\) sec\(^{-1}\). Column 3 gives the values of calculated energies \((E_o)\) according to Grosswiener's formula (1.13) which are seen to be too high on the average by about 7%. This agrees well with the results of Dussel and Bube. Column 4 gives the values for a corrected Grosswiener formula \((E_{0o})\) with 1.41 replacing 1.51 in Eq. (1.13). The results are now within \(\pm 1.5%\) throughout the broad \(E\) and \(s\) ranges. Column 5 shows the calculated frequency factors \((s_{0o})\) by the suitably corrected Eq. (1.14), namely, taking 1.41 instead of 1.51 both in front of, and in the exponent. The values given in this column and in the other columns giving \(s\) values are the calculated values divided by the given \(s\) values. It is self-evident that small inaccuracies in the calculated \(E\) value correspond to rather high ones in the \(s\) values and thus results accurate to a factor of 1.5 seem to be fairly good.

Column 6 gives the values calculated by the method of Keating \((E_K)\). The results are seen to be on the average too high by about 8%. This can be corrected by introducing a correction factor of about 0.92.

The results for this case are given in Table II. The calculated values of \(s''\) are not given in the table for the sake of brevity, but they can be found by Eq. (2.23). It is expected, as in the previous case, that the \(s''\) errors will be much higher (in percentage) than the corresponding \(E\) values, and that the more accurate methods for finding activation energies will be more precise for finding \(s''\) as well.

B. First-Order Kinetics, \(s = s'T^a\)

The results for this case are given in Table II. The calculated values of \(s''\) are not given in the table for the sake of brevity, but they can be found by Eq. (2.23). It is expected, as in the previous case, that the \(s''\) errors will be much higher (in percentage) than the corresponding \(E\) values, and that the more accurate methods for finding activation energies will be more precise for finding \(s''\) as well.
very good results. Column 9 shows the results \((E_a)\) by the new full-width method \((2.27)\), and column 10 represents the results \((E_w)\) by the changed Halperin and Branner method \((4.32)\).

C. First-Order Kinetics, \(s=s' T^{-2}\)

Table III gives the results for this case. Column 3 gives the energy results \((E_0)\) by the corrected Gross-wiener method \((1.13)\), corrected by the addition of \(2kT_m\). The reasonable values shown here enhance the feeling that \(akT_m\) has to be subtracted from \(E_0\) for the general case \(s=s' T^{-2}\). Column 4 gives the results found by the method of Keating. The results here are better than in the two previous cases, but still are not as good as those found by the other methods. The condition \(\gamma>0.75\) is fulfilled only for some of the values and these are not those for which the results are relatively good. Again better results are found by multiplying \(E_k\) by 0.92 and adding \(2kT_m\). Column 6 gives the results \((E_{LS})\) for the corrected Lushchik method according to Eq. \((3.11)\). In column 7, the \(E_v\) values calculated by Eq. \((2.27)\) are given. The results are within \(\pm 2\%\).

Column 8 shows the results by the corrected Halperin and Branner formula \((4.32)\).

D. Second-Order Kinetics, \(s'\) Independent of \(T\)

Table IV gives some calculated energy values of the various methods for given \(E\) and \(s' n_0\) values. Column 3 shows the values \((E_L)\) found by the corrected Lushchik method \((3.6)\). Column 4 represents the results \((E_r)\) by the corrected Halperin-Branner method \((4.22)\) when the constant \(2C_w=1.813\) was slightly changed to 1.83 for reasons discussed previously. Column 5 gives the values \((E_w)\) found by the new whole-width method \((2.28)\). As can be expected, because of the small variations in the \(C_w\) value for second-order kinetics (see Appendix), the \(a\) method is the most accurate in this case. Column 6 gives the results of a method analogous to that of Gross-wiener [see also Ref. \((12)\)], namely

\[
E=1.68 kT_m / \tau
\]

The value of 1.68 was chosen "empirically" in order to...
TABLE III. Calculated activation energies by several methods for first-order kinetics and \(\alpha \approx T^{-2} \).

<table>
<thead>
<tr>
<th>(E) (eV)</th>
<th>(s') (sec(^{-1})K(^{-1}))</th>
<th>(E_{a}+2kT_{m}) (eV)</th>
<th>(E_{E}) (eV)</th>
<th>(\gamma)</th>
<th>(E_{a}) (eV)</th>
<th>(E_{r}) (eV)</th>
<th>(E_{r}) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>(10^{9})</td>
<td>0.103</td>
<td>0.090</td>
<td>0.787</td>
<td>0.100</td>
<td>0.099</td>
<td>0.099</td>
</tr>
<tr>
<td>0.2</td>
<td>(10^{9})</td>
<td>0.206</td>
<td>0.178</td>
<td>0.794</td>
<td>0.200</td>
<td>0.198</td>
<td>0.199</td>
</tr>
<tr>
<td>0.4</td>
<td>(10^{9})</td>
<td>0.414</td>
<td>0.349</td>
<td>0.801</td>
<td>0.400</td>
<td>0.394</td>
<td>0.395</td>
</tr>
<tr>
<td>0.8</td>
<td>(10^{9})</td>
<td>0.830</td>
<td>0.684</td>
<td>0.810</td>
<td>0.800</td>
<td>0.786</td>
<td>0.798</td>
</tr>
<tr>
<td>1.6</td>
<td>(10^{9})</td>
<td>1.669</td>
<td>1.338</td>
<td>0.819</td>
<td>1.602</td>
<td>1.567</td>
<td>1.570</td>
</tr>
<tr>
<td>0.1</td>
<td>(10^{10})</td>
<td>0.103</td>
<td>0.097</td>
<td>0.801</td>
<td>0.100</td>
<td>0.099</td>
<td>0.099</td>
</tr>
<tr>
<td>0.2</td>
<td>(10^{10})</td>
<td>0.206</td>
<td>0.192</td>
<td>0.800</td>
<td>0.199</td>
<td>0.199</td>
<td>0.199</td>
</tr>
<tr>
<td>0.4</td>
<td>(10^{10})</td>
<td>0.414</td>
<td>0.381</td>
<td>0.800</td>
<td>0.394</td>
<td>0.397</td>
<td>0.398</td>
</tr>
<tr>
<td>0.8</td>
<td>(10^{10})</td>
<td>0.829</td>
<td>0.754</td>
<td>0.800</td>
<td>0.800</td>
<td>0.798</td>
<td>0.793</td>
</tr>
<tr>
<td>1.6</td>
<td>(10^{10})</td>
<td>1.663</td>
<td>1.492</td>
<td>0.800</td>
<td>1.596</td>
<td>1.582</td>
<td>1.580</td>
</tr>
<tr>
<td>0.1</td>
<td>(10^{11})</td>
<td>0.100</td>
<td>0.101</td>
<td>0.800</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>0.2</td>
<td>(10^{11})</td>
<td>0.200</td>
<td>0.200</td>
<td>0.798</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
</tr>
<tr>
<td>0.4</td>
<td>(10^{11})</td>
<td>0.402</td>
<td>0.397</td>
<td>0.798</td>
<td>0.402</td>
<td>0.402</td>
<td>0.404</td>
</tr>
<tr>
<td>0.8</td>
<td>(10^{11})</td>
<td>0.804</td>
<td>0.790</td>
<td>0.798</td>
<td>0.804</td>
<td>0.804</td>
<td>0.809</td>
</tr>
<tr>
<td>1.6</td>
<td>(10^{11})</td>
<td>1.611</td>
<td>1.572</td>
<td>0.798</td>
<td>1.606</td>
<td>1.616</td>
<td>1.616</td>
</tr>
<tr>
<td>0.1</td>
<td>(10^{12})</td>
<td>0.099</td>
<td>0.103</td>
<td>0.798</td>
<td>0.099</td>
<td>0.101</td>
<td>0.102</td>
</tr>
<tr>
<td>0.2</td>
<td>(10^{12})</td>
<td>0.200</td>
<td>0.203</td>
<td>0.798</td>
<td>0.202</td>
<td>0.202</td>
<td>0.204</td>
</tr>
<tr>
<td>0.4</td>
<td>(10^{12})</td>
<td>0.399</td>
<td>0.405</td>
<td>0.798</td>
<td>0.404</td>
<td>0.404</td>
<td>0.408</td>
</tr>
<tr>
<td>0.8</td>
<td>(10^{12})</td>
<td>0.798</td>
<td>0.808</td>
<td>0.798</td>
<td>0.808</td>
<td>0.808</td>
<td>0.814</td>
</tr>
<tr>
<td>1.6</td>
<td>(10^{12})</td>
<td>1.598</td>
<td>1.613</td>
<td>0.798</td>
<td>1.615</td>
<td>1.626</td>
<td>1.626</td>
</tr>
<tr>
<td>0.1</td>
<td>(10^{13})</td>
<td>0.099</td>
<td>0.102</td>
<td>0.798</td>
<td>0.099</td>
<td>0.102</td>
<td>0.103</td>
</tr>
<tr>
<td>0.2</td>
<td>(10^{13})</td>
<td>0.198</td>
<td>0.205</td>
<td>0.798</td>
<td>0.203</td>
<td>0.203</td>
<td>0.205</td>
</tr>
<tr>
<td>0.4</td>
<td>(10^{13})</td>
<td>0.396</td>
<td>0.408</td>
<td>0.798</td>
<td>0.406</td>
<td>0.406</td>
<td>0.410</td>
</tr>
<tr>
<td>0.8</td>
<td>(10^{13})</td>
<td>0.794</td>
<td>0.816</td>
<td>0.798</td>
<td>0.811</td>
<td>0.817</td>
<td>0.817</td>
</tr>
<tr>
<td>1.6</td>
<td>(10^{13})</td>
<td>1.589</td>
<td>1.630</td>
<td>0.798</td>
<td>1.621</td>
<td>1.635</td>
<td>1.635</td>
</tr>
</tbody>
</table>

give a good estimation to the known values. The errors are within ±2%.

E. Second-Order Kinetics, \(s''=s'T^{2} \)

The results for this case are given in Table V. Columns 3, 4, and 5 give the \(E_{a}, E_{r}, \) and \(E_{o} \) results according to (3.11), (4.32), and (2.28), respectively. These are the same equations as in the previous case when \(2kT_{m} \) is subtracted. Column 6 gives the results of the energies calculated by

\[
E = 1.68kT_{m}\gamma - 2kT_{m},
\]

which is Eq. (5.1) with the suitable correction. As in case D, here also the most accurate method seems to be the new \(\omega \) method. Corrections of the same sort are expected to hold true for any possible \(a \) in \(s''=s'T^{2} \), namely, subtracting \(akT_{m} \) from the expression on the right of Eq. (5.1)

6. DISCUSSION

Table VI sums up the calculated values of the "constants" \(C_{a}, C_{b}, \) and \(C_{o} \) for first- and second-order peaks, and for some values of the power factor \(a. \) The ranges of deviations of individual calculated values from the given average values are given in percents. The ratio \(C_{o}/C_{a} \) and its range of deviation is also given. The detailed calculations and results are given in the Appendix.

The results \(C_{a}=0.976 \) is in quite good agreement with the results of Kelly and Laubitz, who have shown that for the case \(E/\langle kT_{m}\rangle \rightarrow \infty \), the ratio of the triangle area to the half-peak area is 0.985, and it is smaller for finite values of \(E/\langle kT_{m}\rangle \). Thus, the error in assuming this ratio to be unity is relatively small. However, for second-order kinetics, the ratio of the areas is about 0.85 and the formula for the activation energy has to be changed substantially. Kelly and Laubitz calculated the values of \(C_{a} \) and the correction factor for Gross-
The conclusions of Kelly and Laubitz therefore have to be modified, not only as a result of taking T_m as the independent variable, but also because they do not mention the fact that the errors are systematic and thus can be corrected easily as shown above. The accuracy of one of the discussed methods is thus dependent on the values of ΔC_A, ΔC_r, and ΔC_T (see Table VI), rather than on the deviations of C_A, C_r, and C_T from unity. The influence of factors other than the "triangle area" assumption have also been checked by the computational calculation of the value of E in the various methods (Sec. 5). The additional systematic errors (usually small), due to inaccuracies in developing the formulas, can be partly corrected empirically (as far as computational results can be considered to be "empirical"), as shown in Sec. 5. As shown in Table VI, the theoretical possible error for first order would be the largest in the r method, and the smallest in the δ method, whereas the ω-method accuracy would be intermediate. For second order, however, the ω method provides the smallest possible theoretical error. It should be noted that the values of C_A, C_r, and C_T are only slightly dependent on the power factor, a, in $s=s'/T^a$, but are strongly dependent on the order of the process.

Table IV. Calculated activation energies by several methods for second-order kinetics and s' independent of temperature.

<table>
<thead>
<tr>
<th>E (eV)</th>
<th>s'^{in} (sec$^{-1}$)</th>
<th>E_A (eV)</th>
<th>E_r (eV)</th>
<th>E_T (eV)</th>
<th>E_{G2} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>104</td>
<td>0.101</td>
<td>0.098</td>
<td>0.099</td>
<td>0.102</td>
</tr>
<tr>
<td>0.2</td>
<td>104</td>
<td>0.202</td>
<td>0.197</td>
<td>0.199</td>
<td>0.203</td>
</tr>
<tr>
<td>0.4</td>
<td>104</td>
<td>0.405</td>
<td>0.398</td>
<td>0.398</td>
<td>0.406</td>
</tr>
<tr>
<td>0.8</td>
<td>104</td>
<td>0.807</td>
<td>0.794</td>
<td>0.797</td>
<td>0.810</td>
</tr>
<tr>
<td>1.6</td>
<td>104</td>
<td>1.613</td>
<td>1.589</td>
<td>1.595</td>
<td>1.617</td>
</tr>
<tr>
<td>0.1</td>
<td>104</td>
<td>0.100</td>
<td>0.098</td>
<td>0.100</td>
<td>0.101</td>
</tr>
<tr>
<td>0.2</td>
<td>104</td>
<td>0.200</td>
<td>0.199</td>
<td>0.200</td>
<td>0.201</td>
</tr>
<tr>
<td>0.4</td>
<td>104</td>
<td>0.401</td>
<td>0.399</td>
<td>0.401</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>104</td>
<td>0.801</td>
<td>0.799</td>
<td>0.800</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>104</td>
<td>1.601</td>
<td>1.599</td>
<td>1.598</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1010</td>
<td>0.099</td>
<td>0.099</td>
<td>0.100</td>
<td>0.099</td>
</tr>
<tr>
<td>0.2</td>
<td>1010</td>
<td>0.199</td>
<td>0.200</td>
<td>0.200</td>
<td>0.198</td>
</tr>
<tr>
<td>0.4</td>
<td>1010</td>
<td>0.398</td>
<td>0.404</td>
<td>0.400</td>
<td>0.396</td>
</tr>
<tr>
<td>0.8</td>
<td>1010</td>
<td>0.795</td>
<td>0.808</td>
<td>0.801</td>
<td>0.750</td>
</tr>
<tr>
<td>1.6</td>
<td>1010</td>
<td>1.598</td>
<td>1.610</td>
<td>1.602</td>
<td>1.580</td>
</tr>
<tr>
<td>0.1</td>
<td>1016</td>
<td>0.099</td>
<td>0.101</td>
<td>0.100</td>
<td>0.098</td>
</tr>
<tr>
<td>0.2</td>
<td>1016</td>
<td>0.197</td>
<td>0.201</td>
<td>0.200</td>
<td>0.197</td>
</tr>
<tr>
<td>0.4</td>
<td>1016</td>
<td>0.395</td>
<td>0.405</td>
<td>0.400</td>
<td>0.391</td>
</tr>
<tr>
<td>0.8</td>
<td>1016</td>
<td>0.790</td>
<td>0.814</td>
<td>0.802</td>
<td>0.784</td>
</tr>
<tr>
<td>1.6</td>
<td>1016</td>
<td>1.580</td>
<td>1.629</td>
<td>1.604</td>
<td>1.568</td>
</tr>
</tbody>
</table>

Table V. Calculated activation energies by several methods for second order kinetics and $s'=T^2$.

<table>
<thead>
<tr>
<th>E (eV)</th>
<th>s'^{in} (sec$^{-1}$)</th>
<th>E_A (eV)</th>
<th>E_r (eV)</th>
<th>E_T (eV)</th>
<th>E_{G2} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>103</td>
<td>0.101</td>
<td>0.099</td>
<td>0.100</td>
<td>0.102</td>
</tr>
<tr>
<td>0.2</td>
<td>103</td>
<td>0.202</td>
<td>0.197</td>
<td>0.201</td>
<td>0.202</td>
</tr>
<tr>
<td>0.4</td>
<td>103</td>
<td>0.402</td>
<td>0.396</td>
<td>0.398</td>
<td>0.401</td>
</tr>
<tr>
<td>0.8</td>
<td>103</td>
<td>0.803</td>
<td>0.796</td>
<td>0.797</td>
<td>0.801</td>
</tr>
<tr>
<td>1.6</td>
<td>103</td>
<td>1.602</td>
<td>1.598</td>
<td>1.596</td>
<td>1.596</td>
</tr>
<tr>
<td>0.1</td>
<td>105</td>
<td>0.101</td>
<td>0.100</td>
<td>0.100</td>
<td>0.101</td>
</tr>
<tr>
<td>0.2</td>
<td>105</td>
<td>0.201</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
</tr>
<tr>
<td>0.4</td>
<td>105</td>
<td>0.400</td>
<td>0.400</td>
<td>0.400</td>
<td>0.399</td>
</tr>
<tr>
<td>0.8</td>
<td>105</td>
<td>0.800</td>
<td>0.803</td>
<td>0.799</td>
<td>0.796</td>
</tr>
<tr>
<td>1.6</td>
<td>105</td>
<td>1.597</td>
<td>1.608</td>
<td>1.599</td>
<td>1.587</td>
</tr>
<tr>
<td>0.1</td>
<td>109</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>0.099</td>
</tr>
<tr>
<td>0.2</td>
<td>109</td>
<td>0.199</td>
<td>0.201</td>
<td>0.200</td>
<td>0.198</td>
</tr>
<tr>
<td>0.4</td>
<td>109</td>
<td>0.398</td>
<td>0.404</td>
<td>0.401</td>
<td>0.395</td>
</tr>
<tr>
<td>0.8</td>
<td>109</td>
<td>0.795</td>
<td>0.809</td>
<td>0.801</td>
<td>0.789</td>
</tr>
<tr>
<td>1.6</td>
<td>109</td>
<td>1.588</td>
<td>1.618</td>
<td>1.602</td>
<td>1.574</td>
</tr>
<tr>
<td>0.1</td>
<td>1012</td>
<td>0.100</td>
<td>0.099</td>
<td>0.099</td>
<td>0.098</td>
</tr>
<tr>
<td>0.2</td>
<td>1012</td>
<td>0.199</td>
<td>0.199</td>
<td>0.199</td>
<td>0.196</td>
</tr>
<tr>
<td>0.4</td>
<td>1012</td>
<td>0.397</td>
<td>0.400</td>
<td>0.398</td>
<td>0.393</td>
</tr>
<tr>
<td>0.8</td>
<td>1012</td>
<td>0.792</td>
<td>0.802</td>
<td>0.798</td>
<td>0.785</td>
</tr>
<tr>
<td>1.6</td>
<td>1012</td>
<td>1.584</td>
<td>1.608</td>
<td>1.597</td>
<td>1.658</td>
</tr>
</tbody>
</table>
The above mentioned analysis can give, naturally, information only about the various theoretical inaccuracies introduced in some of the methods without considering the possible experimental errors. Taking only this into account, one should prefer, for example, for the first order case, to always use Lushchik's corrected formula, and thus get values of E correct to within $\pm 0.4\%$. This would be recommended, however, only in cases when the values of T_m and T_2 are known accurately, because the small difference, $\delta = T_1 - T_m$ entering the calculations, is subject to relatively large errors if considerable inaccuracies are involved in measuring the temperatures. The main factor in the possible error, $\Delta \delta = \Delta T_1 + \Delta T_m$, is ΔT_m, since the possible inaccuracy in determining the temperature is much higher at a point where the derivative is zero (T_m), than in points of high (absolute) value of the derivative (T_1 and T_2). Thus $\Delta \delta$ and $\Delta \tau = \Delta T_1 + \Delta T_m$ are much larger than $\Delta \omega = \Delta T_1 + \Delta T_m$. Moreover, since ω is bigger than τ and δ, the relative errors $\Delta \tau / \tau$ and $\Delta \delta / \delta$ are even larger in comparison to $\Delta \omega / \omega$. The additional T_m appearing in all the equations for the activation energies contributes only a small additional inaccuracy, since $\Delta T_m / T_m$ is usually relatively small because of the high value of T_m (compared to τ, δ, and ω). From this point of view, the method using the value of ω is the best one.

Another experimental fact that should be taken into account is that in many cases a glow peak is not completely clean, but rather includes sometimes additional "satellites". If this satellite appears at the low-temperature half of the peak, it cannot be cleaned thermally. From this point of view, the method using the value of τ is expected to be the best one, whereas the method using δ would probably give erroneous values. The accuracy with the ω method will be intermediate in this respect.

One can use, thus, the δ method as a "precision" method for first-order pure peaks. The τ method could be preserved for unclean peaks, where the influence of other peaks is appreciable. The ω method is to be used for many intermediate cases as a "general use" method which also has very low theoretical error in second order.

When an indeterminacy exists about the order of the kinetics, methods using the low-temperature half of the peak (Halperin-Braner and Grosswiener) are preferable since the value of τ is the least sensitive to the order of the process. The poorest method in this respect is that using the high-temperature half peak, since δ is very sensitive to the order of the kinetics (see Fig. 1 in Ref. 21). As for the possible dependence of the preexponential factor on temperature, one should use the formulas assuming that s is independent of temperature if no information is available for the value of a in $s = s T^a$. Since a can be between -2 and $+2$, the errors could be up to $\pm 2kT_m$, which is usually not more than $\pm 10\%$. It is preferable, of course, to avoid this indeterminacy by getting some information about a. This is not so difficult in most cases.

The fact that the factor akT_m should be subtracted from the calculated energy values was proved for the new ω method and for the corrected Lushchik and Halperin-Braner methods, and was shown to be true for some of the other ones. This has a close relation to the analysis of Aramu et al.,7 about the initial-rise method. For $a = 0$, the energy was found to be

$$E = -kd(\ln I)/d(1/T).$$

If I is proportional to $T^s \exp(-E/kT)$, one has

$$E' = kd(\ln I)/d(1/T) = E + akT,$$

where E' is the value found directly from the slope of the curve. Thus one has

$$E = E' - akT.$$
initial rise. Thus the correction is about the same as that found in the other methods.

It has been shown by Halperin and Branner that first-order kinetics is characterized by \(\mu_s = n_m / n_0 \) being equal to \((1 + \Delta) / \epsilon \), whereas for pure second-order kinetics, \(\mu_s = \frac{1}{3} (1 + \Delta) \). As mentioned before, \(\mu_s' = \bar{\beta} / \omega \) was usually used for this purpose, assuming that \(\mu_s' = \mu_s \). According to the definition of \(C_w \) [Eq. (2.5)], and of \(C_t \) [Eq. (3.1)], one has

\[
\mu_s = \mu_s' (C_w / C_t). \tag{6.4}
\]

The values of \(C_w / C_t \) are given in Table VI and these values can be used for adjusting the \(\mu_s' \) values to be closer to the real \(\mu_s \). The fact that the values of \(\mu_s' \) in these cases are smaller than \(\frac{1}{3} (1 + \Delta) \) is due to the result \(C_w / C_t = 1.025 \) in Table VI. On the other hand, the relation \((1 + \Delta) / \epsilon < \mu_s' \) in Tables A–I and A–II is connected to the values of \(C_w / C_t = 0.94 \) for first-order peaks.

Apart from introducing the necessary correction (\(C_t \) and \(C_s \)) in the formulas of Halperin and Branner or Lushchik, the usual correction factors, which were multiples of \(\Delta = 2kT_m / E \), are replaced by corrections which are multiples of \(2kT_m \). This kind of correction, which is shown to be a valid approximation, is easier for use, since the final results are found directly without the iteration process. Thus, instead of having generally an equation of the form

\[
E = A (kT_m \alpha) (1 - b \Delta), \tag{6.5}
\]

where \(A \) and \(b \) are constants appearing in the methods of Halperin and Branner or Lushchik, and \(a \) stands for \(\tau \) or \(\omega \), we have now

\[
E = AC_w (kT_m \alpha) - 2kT_m, \tag{6.6}
\]

where \(C_w \) stands for \(C_t \) or \(C_s \). For example, a formula of the form (6.5) is (1.12), whereas the corresponding (6.6)-type one is (4.30). Table VII sums up the constants appearing in equations (6.5) and (6.6) for the various cases.

All the calculations in this work have been done for a given heating rate \(\beta = 0.5 \) deg/sec. It is easy to see, however, that the parameter which is really meaningful is \(s / \beta \) (or \(s' / \beta \)) and thus changing \(s \) is equivalent to variations in \(\beta \) (in the opposite direction). Since the preexponential factor was varied in a very wide range, it was not necessary to change \(\beta \) separately.

ACKNOWLEDGMENTS

I would like to express my thanks to Professor A. Halperin from the Hebrew University, Jerusalem, for criticism and helpful discussions. I also wish to thank Professor J. J. Dropkin and Professor H. J. Juretschke for reading the manuscript and for their suggestions on how to improve the presentation. Sincere thanks are also due to G. A. Haber for many important comments.

APPENDIX

Some details on the numerical calculations will be given here. The calculations were done for five cases: the first-order kinetics with values of \(a \) (in \(s = s' / T_m \)) of \(-2, 0, \) and \(2 \) and for second-order kinetics with values of \(a \) of 0 and 2.

A. First-Order Kinetics: No Dependence of the Pre-exponential Factor on Temperature

For given values of \(E, s \) and \(\beta \), one has to find numerically the value of \(T_m \) from Eq. (1.4). This has been done by writing

\[
f(T_m) = \beta E/kT_m - S \exp(-E/kT_m), \tag{A.1}
\]

and reducing the value of \(f(T_m) \) by the Newton–Raphson iterative process down to the point where the correction is smaller than \(0.01^\circ K \). The method of Urbach was used as a rough first approximation (i.e., \(T_m (\circ K) = 500 \times E \)). The values of \(n_m \) and \(I_m \) were calculated by inserting \(T_m \) in (1.2) and (1.3), respectively, when the asymptotic series (2.2) up to 14 terms is used as an approximation to the integral. It has been shown that the relative inaccuracy in the estimate for the integral does not exceed \(10^{-5} \).

In order to calculate the temperature values at half intensity, one has to solve the following equation in \(T \)

\[
I(T) = I_m \exp(-E/kT) \times \exp \left(-(s/\beta) \int_{T_0}^{T_1} \exp(-E/kT')dT' \right) = I_m / 2. \tag{A.2}
\]

This equation is solved in a way similar to the previous one, when the series up to 14 terms is used for the integral in the first approximation and during the iterations. The first approximation is taken to be 0.95 \(T_m \) for \(T_1 \) and 1.05 \(T_m \) for \(T_2 \). The advantage in using the series as an approximation for the integral is that it is not necessary in this case to integrate numerically throughout the region, and the possible cumulative errors which are usually introduced in such a calculation are avoided. By the \(T_1, T_m, \) and \(T_2 \) values thus calculated, one can immediately find \(\omega = T_2 - T_1, \delta = T_2 - T_m, \) and \(\gamma = T_m - T_1 \). Once these values are calculated, the values of \(\mu_s' = \beta \omega \) and \(\gamma = \beta \gamma \) can be found. With the calculated values of \(I_m \) and \(n_m \) and the given values of \(n_0 \) and \(\beta \), the values of \(C_w, C_t, \) and \(C_u \) can be found.

These calculations have been done for values of \(s \) ranging from \(10^5 \) to \(10^8 \) sec\(^{-1} \) (in multiples of 10) and values of \(E \) varying from 0.1 to 2.0 eV (in differences of 0.1). This covers most values found in experiments.

Table A-1 gives the values of \(T_1, T_m, T_2, C_w, C_t, C_u, (1 + \Delta) / \epsilon \), and \(\mu_s' \) for \(s = 10^6, 10^7, 10^8, 10^9, \) and \(10^{10} \) sec\(^{-1} \) and \(E = 0.1, 0.2, 0.4, 0.8, \) and 1.6 eV. The values of \(C_w \) are found to be around 0.920 with variations of \(\pm 0.8\% \). \(C_w \) is found to be 0.976, varying within the region \(\pm 0.4\% \). \(C_t \) is 0.883 within \(\pm 1.6\% \).
B. First-Order Kinetics, $s = s'^T$

The glow intensity is given in this case by

$$I = n_0 s''T^3 \exp(-E/kT) \times \exp \left(- \frac{(s''/\beta)}{T} \right) \int_{T_0}^{T'} T'^2 \exp(-E/kT')dT' \right). \quad (A.3)$$

The condition for the maximum is found to be

$$T_x^2(s''/\beta) \exp(-E/kT_x) = E/(kT_x^2) + 2/T_x, \quad (A.4)$$

which is solved numerically in a way similar to the previous one. The s'' values were chosen to give values of $s = s''T_x^2$ about the same as those for the previous case. Thus, the s'' values are from 10 to 104, whereas E values were again from 0.1 to 2.0 eV. The integral in $(A.3)$ is approximated by the asymptotic series

$$\int_{T_0}^{T'} T'^2 \exp(-E/kT')dT' = T^2 \exp(-E/kT) \sum_{n=1}^{14} \frac{(kT/E)^n}{n!} \frac{(-1)^{n-1}(n+2)!}{3!}. \quad (A.5)$$

Again, the approximation is seen to be very good when 14 terms were taken in this series. The values of T_1 and T_2 were calculated in a way similar to the previous one. From the values of T_1, T_2, T_m, n_m, and I_m found in this way, the values of τ, δ, ω, C_1, C_3, C_5, I'', and Δ were calculated. Table A-II gives some representative results. C_w varies between 0.911 and 0.932 with an average value of 0.924 (±1.3%). C_1 is found to be 0.983 (±0.6%), and C_3 is 0.880 (±1.4%) and C_5/C_3 is

<table>
<thead>
<tr>
<th>E (eV)</th>
<th>v (sec$^{-1}$)</th>
<th>T_1 (K)</th>
<th>T_m (K)</th>
<th>T_2 (K)</th>
<th>C_w</th>
<th>C_t</th>
<th>C_t</th>
<th>$(1+\Delta)/v$</th>
<th>C''</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10^4</td>
<td>75.5</td>
<td>83.0</td>
<td>88.7</td>
<td>0.9273</td>
<td>0.9731</td>
<td>0.8949</td>
<td>0.421</td>
<td>0.435</td>
</tr>
<tr>
<td>0.2</td>
<td>10^4</td>
<td>145.2</td>
<td>159.0</td>
<td>169.6</td>
<td>0.9265</td>
<td>0.9736</td>
<td>0.8934</td>
<td>0.418</td>
<td>0.434</td>
</tr>
<tr>
<td>0.4</td>
<td>10^4</td>
<td>279.6</td>
<td>305.3</td>
<td>324.8</td>
<td>0.9257</td>
<td>0.9739</td>
<td>0.8920</td>
<td>0.416</td>
<td>0.432</td>
</tr>
<tr>
<td>0.8</td>
<td>10^4</td>
<td>539.2</td>
<td>586.9</td>
<td>623.0</td>
<td>0.9250</td>
<td>0.9743</td>
<td>0.8907</td>
<td>0.414</td>
<td>0.431</td>
</tr>
<tr>
<td>1.6</td>
<td>10^4</td>
<td>1041.0</td>
<td>1130.0</td>
<td>1196.7</td>
<td>0.9243</td>
<td>0.9749</td>
<td>0.8895</td>
<td>0.413</td>
<td>0.430</td>
</tr>
<tr>
<td>0.1</td>
<td>10^4</td>
<td>59.5</td>
<td>64.2</td>
<td>67.7</td>
<td>0.9226</td>
<td>0.9757</td>
<td>0.8864</td>
<td>0.409</td>
<td>0.429</td>
</tr>
<tr>
<td>0.2</td>
<td>10^4</td>
<td>115.4</td>
<td>124.1</td>
<td>130.6</td>
<td>0.9220</td>
<td>0.9760</td>
<td>0.8854</td>
<td>0.407</td>
<td>0.428</td>
</tr>
<tr>
<td>0.4</td>
<td>10^4</td>
<td>223.8</td>
<td>240.1</td>
<td>252.3</td>
<td>0.9215</td>
<td>0.9763</td>
<td>0.8846</td>
<td>0.406</td>
<td>0.426</td>
</tr>
<tr>
<td>0.8</td>
<td>10^4</td>
<td>434.4</td>
<td>465.1</td>
<td>487.9</td>
<td>0.9209</td>
<td>0.9765</td>
<td>0.8836</td>
<td>0.405</td>
<td>0.426</td>
</tr>
<tr>
<td>1.6</td>
<td>10^4</td>
<td>843.9</td>
<td>901.8</td>
<td>944.5</td>
<td>0.9204</td>
<td>0.9768</td>
<td>0.8828</td>
<td>0.404</td>
<td>0.425</td>
</tr>
<tr>
<td>0.1</td>
<td>10^4</td>
<td>49.0</td>
<td>52.1</td>
<td>54.4</td>
<td>0.9192</td>
<td>0.9774</td>
<td>0.8807</td>
<td>0.401</td>
<td>0.424</td>
</tr>
<tr>
<td>0.2</td>
<td>10^4</td>
<td>95.4</td>
<td>101.3</td>
<td>105.7</td>
<td>0.9188</td>
<td>0.9777</td>
<td>0.8799</td>
<td>0.400</td>
<td>0.424</td>
</tr>
<tr>
<td>0.4</td>
<td>10^4</td>
<td>186.0</td>
<td>197.2</td>
<td>205.9</td>
<td>0.9184</td>
<td>0.9787</td>
<td>0.8793</td>
<td>0.399</td>
<td>0.422</td>
</tr>
<tr>
<td>0.8</td>
<td>10^4</td>
<td>362.7</td>
<td>383.9</td>
<td>399.5</td>
<td>0.9180</td>
<td>0.9780</td>
<td>0.8786</td>
<td>0.398</td>
<td>0.422</td>
</tr>
<tr>
<td>1.6</td>
<td>10^4</td>
<td>707.6</td>
<td>748.0</td>
<td>777.5</td>
<td>0.9176</td>
<td>0.9782</td>
<td>0.8780</td>
<td>0.398</td>
<td>0.422</td>
</tr>
<tr>
<td>0.1</td>
<td>10^4</td>
<td>41.5</td>
<td>43.8</td>
<td>45.4</td>
<td>0.9167</td>
<td>0.9787</td>
<td>0.8762</td>
<td>0.396</td>
<td>0.422</td>
</tr>
<tr>
<td>0.2</td>
<td>10^4</td>
<td>81.2</td>
<td>85.4</td>
<td>88.5</td>
<td>0.9163</td>
<td>0.9788</td>
<td>0.8759</td>
<td>0.395</td>
<td>0.420</td>
</tr>
<tr>
<td>0.4</td>
<td>10^4</td>
<td>158.8</td>
<td>166.9</td>
<td>172.8</td>
<td>0.9160</td>
<td>0.9789</td>
<td>0.8753</td>
<td>0.394</td>
<td>0.420</td>
</tr>
<tr>
<td>0.8</td>
<td>10^4</td>
<td>310.7</td>
<td>326.2</td>
<td>337.4</td>
<td>0.9157</td>
<td>0.9791</td>
<td>0.8749</td>
<td>0.394</td>
<td>0.419</td>
</tr>
<tr>
<td>1.6</td>
<td>10^4</td>
<td>608.1</td>
<td>637.9</td>
<td>659.3</td>
<td>0.9154</td>
<td>0.9792</td>
<td>0.8744</td>
<td>0.393</td>
<td>0.419</td>
</tr>
<tr>
<td>0.1</td>
<td>10^4</td>
<td>36.0</td>
<td>37.6</td>
<td>38.5</td>
<td>0.9147</td>
<td>0.9796</td>
<td>0.8729</td>
<td>0.392</td>
<td>0.419</td>
</tr>
<tr>
<td>0.2</td>
<td>10^4</td>
<td>70.5</td>
<td>73.7</td>
<td>76.0</td>
<td>0.9144</td>
<td>0.9796</td>
<td>0.8728</td>
<td>0.391</td>
<td>0.418</td>
</tr>
<tr>
<td>0.4</td>
<td>10^4</td>
<td>138.3</td>
<td>144.5</td>
<td>148.9</td>
<td>0.9142</td>
<td>0.9797</td>
<td>0.8723</td>
<td>0.391</td>
<td>0.418</td>
</tr>
<tr>
<td>0.8</td>
<td>10^4</td>
<td>271.4</td>
<td>283.2</td>
<td>291.7</td>
<td>0.9139</td>
<td>0.9798</td>
<td>0.8720</td>
<td>0.390</td>
<td>0.417</td>
</tr>
<tr>
<td>1.6</td>
<td>10^4</td>
<td>532.6</td>
<td>555.3</td>
<td>571.6</td>
<td>0.9137</td>
<td>0.9799</td>
<td>0.8716</td>
<td>0.390</td>
<td>0.417</td>
</tr>
</tbody>
</table>
Table A-II. Calculated glow parameters for given energies and preexponential factors for first-order kinetics and $s' \propto T^2$.

<table>
<thead>
<tr>
<th>E (eV)</th>
<th>$s' (\sec^{-1} \text{K}^{-2})$</th>
<th>T_m (K)</th>
<th>C_w</th>
<th>C_1</th>
<th>C_r</th>
<th>$(1+\Delta)/\epsilon$</th>
<th>ν_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10^3</td>
<td>85.4</td>
<td>0.9321</td>
<td>0.9888</td>
<td>0.8928</td>
<td>0.422</td>
<td>0.434</td>
</tr>
<tr>
<td>0.2</td>
<td>10^3</td>
<td>152.4</td>
<td>0.9242</td>
<td>0.9784</td>
<td>0.8873</td>
<td>0.416</td>
<td>0.429</td>
</tr>
<tr>
<td>0.4</td>
<td>10^3</td>
<td>274.6</td>
<td>0.9215</td>
<td>0.9771</td>
<td>0.8841</td>
<td>0.414</td>
<td>0.426</td>
</tr>
<tr>
<td>0.8</td>
<td>10^3</td>
<td>498.9</td>
<td>0.9199</td>
<td>0.9773</td>
<td>0.8817</td>
<td>0.407</td>
<td>0.424</td>
</tr>
<tr>
<td>1.6</td>
<td>10^3</td>
<td>912.9</td>
<td>0.9186</td>
<td>0.9778</td>
<td>0.8797</td>
<td>0.404</td>
<td>0.423</td>
</tr>
<tr>
<td>0.1</td>
<td>10^3</td>
<td>67.2</td>
<td>0.9211</td>
<td>0.9771</td>
<td>0.8836</td>
<td>0.411</td>
<td>0.426</td>
</tr>
<tr>
<td>0.2</td>
<td>10^3</td>
<td>122.3</td>
<td>0.9196</td>
<td>0.9774</td>
<td>0.8813</td>
<td>0.407</td>
<td>0.424</td>
</tr>
<tr>
<td>0.4</td>
<td>10^3</td>
<td>224.1</td>
<td>0.9184</td>
<td>0.9779</td>
<td>0.8793</td>
<td>0.403</td>
<td>0.422</td>
</tr>
<tr>
<td>0.8</td>
<td>10^3</td>
<td>413.1</td>
<td>0.9173</td>
<td>0.9784</td>
<td>0.8775</td>
<td>0.401</td>
<td>0.421</td>
</tr>
<tr>
<td>1.6</td>
<td>10^3</td>
<td>765.5</td>
<td>0.9164</td>
<td>0.9788</td>
<td>0.8759</td>
<td>0.398</td>
<td>0.420</td>
</tr>
<tr>
<td>0.1</td>
<td>10^3</td>
<td>55.0</td>
<td>0.9182</td>
<td>0.9780</td>
<td>0.8790</td>
<td>0.403</td>
<td>0.421</td>
</tr>
<tr>
<td>0.2</td>
<td>10^3</td>
<td>102.6</td>
<td>0.9171</td>
<td>0.9785</td>
<td>0.8772</td>
<td>0.400</td>
<td>0.420</td>
</tr>
<tr>
<td>0.4</td>
<td>10^3</td>
<td>188.4</td>
<td>0.9162</td>
<td>0.9789</td>
<td>0.8756</td>
<td>0.398</td>
<td>0.419</td>
</tr>
<tr>
<td>0.8</td>
<td>10^3</td>
<td>351.1</td>
<td>0.9153</td>
<td>0.9793</td>
<td>0.8742</td>
<td>0.396</td>
<td>0.419</td>
</tr>
<tr>
<td>1.6</td>
<td>10^3</td>
<td>657.1</td>
<td>0.9146</td>
<td>0.9796</td>
<td>0.8730</td>
<td>0.394</td>
<td>0.418</td>
</tr>
<tr>
<td>0.1</td>
<td>10^3</td>
<td>46.4</td>
<td>0.9160</td>
<td>0.9790</td>
<td>0.8753</td>
<td>0.397</td>
<td>0.419</td>
</tr>
<tr>
<td>0.2</td>
<td>10^3</td>
<td>86.5</td>
<td>0.9152</td>
<td>0.9793</td>
<td>0.8739</td>
<td>0.395</td>
<td>0.418</td>
</tr>
<tr>
<td>0.4</td>
<td>10^3</td>
<td>162.0</td>
<td>0.9144</td>
<td>0.9797</td>
<td>0.8727</td>
<td>0.394</td>
<td>0.418</td>
</tr>
<tr>
<td>0.8</td>
<td>10^3</td>
<td>304.5</td>
<td>0.9137</td>
<td>0.9799</td>
<td>0.8716</td>
<td>0.392</td>
<td>0.417</td>
</tr>
<tr>
<td>1.6</td>
<td>10^3</td>
<td>574.3</td>
<td>0.9131</td>
<td>0.9802</td>
<td>0.8706</td>
<td>0.391</td>
<td>0.416</td>
</tr>
<tr>
<td>0.1</td>
<td>10^3</td>
<td>40.0</td>
<td>0.9143</td>
<td>0.9808</td>
<td>0.8725</td>
<td>0.393</td>
<td>0.417</td>
</tr>
<tr>
<td>0.2</td>
<td>10^3</td>
<td>74.2</td>
<td>0.9136</td>
<td>0.9800</td>
<td>0.8714</td>
<td>0.392</td>
<td>0.417</td>
</tr>
<tr>
<td>0.4</td>
<td>10^3</td>
<td>141.8</td>
<td>0.9130</td>
<td>0.9833</td>
<td>0.8704</td>
<td>0.390</td>
<td>0.416</td>
</tr>
<tr>
<td>0.8</td>
<td>10^3</td>
<td>268.4</td>
<td>0.9124</td>
<td>0.9805</td>
<td>0.8695</td>
<td>0.389</td>
<td>0.415</td>
</tr>
<tr>
<td>1.6</td>
<td>10^3</td>
<td>802.2</td>
<td>0.9119</td>
<td>0.9807</td>
<td>0.8687</td>
<td>0.388</td>
<td>0.413</td>
</tr>
</tbody>
</table>

0.938 ($\pm 1.9\%$). It should be noted that in all of these cases, the term "average" is in the sense of a middle value, the deviations from which do not exceed the values in percents given in parentheses.

C. First-Order Kinetics, $s' = s'' T^{-2}$

The intensity is given in this case by

$I = n_0 s'' T^{-2} \exp(-E/kT) \times \exp\left(-\frac{s''}{\beta} \int_{T_0}^{T} T'^{-2} \exp(-E/kT')dT'\right). \quad (A.6)$

Since the integrand here is integrable, one can find I (neglecting, as before, the very small term depending on T_0) analytically. The maximum temperature was found by solving numerically (iteratively) the corresponding equation for the maximum, and by using the T_m value thus found, I_m, T_1, and T_2 were calculated. The other parameters were found from these in the way shown above. The values of s'' were now between 10^9 and 10^{17} sec$^{-1}$ deg2. The detailed results are not given for the sake of brevity. C_w was found to be 0.925 ($\pm 1.1\%$), C_1 is 0.973 ($\pm 0.7\%$), C_r is 0.832 ($\pm 2.2\%$) and C_w/C_1 is about 0.950 ($\pm 1.8\%$).

D. Second-Order Kinetics, s' Independent of T

The equation governing this process is (1.5) whose solution is (1.6). The maximum condition is given by (2.15). This has been solved numerically by, again, using 14 terms in the series (2.2) as an approximation to the integral. I_m is found by (2.16) and then T_1 and T_2 are calculated in a way similar to the previous one,
and thus the other derived parameters are found as before. The results were calculated for values of $s' n_0$ changing from 10^6 to 10^{15} sec$^{-1}$. The detailed results are not shown. C_r is found to be 0.907 (±1.0%), C_s is 0.853 (±1.4%) and C_w is 0.878 (±0.4%). C_w/C_r is now 1.026 (±1.8%).

E. Second-Order Kinetics, $s'=s''T^2$

The differential equation governing this process is

$$I = -\frac{dn}{dt} = s''T^n \exp(-E/kT)n^2,$$

where s'' has dimensions of sec$^{-1}$ cm3 deg$^{-2}$. The solution of the equation for a linear heating rate is

$$I = n_0 s''T^n \exp(-E/kT)$$

$$\times \left(1 + \frac{n_0 s''/\beta}{\int_{T_0}^T T^n \exp(-E/kT) dT} \right)^2,$$

and the condition for maximum is found by equating the derivative of (A.8) to zero. The values of the parameters are calculated for $s'' n_0$ (which is again the important factor) between 10^6 sec$^{-1}$ deg$^{-2}$ and 10^{15} sec$^{-1}$ deg$^{-2}$. C_r is now 0.879 (±0.3%), C_s is 0.858 (±1.0%), C_w is 0.902 (±0.8%) and C_w/C_r is 1.024 (±1.2%).

Transient Double Injection in Trap-Free Semiconductors

R. H. Dean

Princeton University, Princeton, New Jersey 08540

(Received 17 September 1968)

When a step voltage is applied to injecting contacts on the ends of a long trap-free semiconductor, such as p-type germanium, an electron-hole plasma forms at the minority-carrier injecting end and propagates down the length of the bar. When the recombination time (τ) is much longer than the small-pulse transit time (t_0), the leading edge of the propagating plasma arrives at the far end at $t_e = (\tau) t_0$. The arrival is marked by a cusp in the time derivative of the current, which can be used to measure the minority-carrier mobility. After t_e, the current acquires an exponential form, with a time constant equal to the recombination time. Approximate analytic solutions and numerical results indicate that the important recombination effects are small (<2% for τ/t_0 greater than about 2). Early-transient diffusion effects are small when (applied voltage/thermal voltage)$^{1/2}$ is greater than about 40. All the prominent features can be described in terms of simple physical concepts, and the theoretical predictions are verified by experiment.

I. INTRODUCTION

When a sufficiently high voltage is applied to injecting contacts on the ends of a long bar of an extrinsic semiconductor, a large-signal electron-hole plasma builds up in the bulk. The steady-state properties of this plasma have been studied extensively by several authors. This paper deals with the turn-on transient.

The general nature of the transient is well known. The plasma forms at the minority-carrier injecting contact and propagates down the length of the sample in the direction of minority-carrier drift. In 1949, Herring obtained a theoretical description of the propagating front for the special case of constant current in a semi-infinite medium. His solution indicated that for times short compared to a recombination time the electric field varies as $x^{1/2}$ behind a sharp advancing edge.

In 1966, Baron, Marsh, and Mayer conducted a theoretical and experimental study of the transient following the application of an incremental voltage step to a long bar of silicon, which was already biased in the steady-state, double-injection square-law regime. (The step had to be such that the initial and final states were both in the square-law regime.) They found a resulting incremental current of the form

$$\Delta I = A + B [1 - \exp(-5/\tau)],$$

where τ is time and τ is the recombination time.

In this paper we will show the relation between Herring's description and Baron et al. findings. Both of

* Currently at RCA Laboratories, Princeton, New Jersey.
