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Abstract-A method is proposed for the solution of minimax optimization problems in which the 
individual functions involved are convex. The method consists of solving a problem with an objective 
function which ia the sum of high powers or strong exponentials of the separate components of the 
original objective function. The resulting objective function. which is equivalent at the limit to the 
minimax one. is shown to be smooth as well as convex. Any efficient nonlinear programming method 
can be utilized for solving the equivalent problem. A number of examples are discussed. 

I. INTRODUCTION 

The minimax optimization problem is that of finding 

min {max [f,(x)ll, 
x 111S11 

(1) 

where x = (x,, . xk). The functions f;(x) are assumed to be smooth, however, the main 
difficulty in solving (1) is usually related to the kinks in the objective function 

F(x) = max Lfi(x)l 
,S!S,! 

These kinks are points at which F(x) is not differentiable and in most cases, the solution point 
occurs at such a kink. The theory of nonlinear minimax has been thoroughly studied by Dem’yanov 
and Malozemov[9] who investigated the differentiability of the maximum function, and discussed 
the necessary and sufficient conditions for local and global solutions as well as the properties 
of the maximum problem. More recent theoretical work has been given by Ben-Tal and Zowe[3] 

and by Drezner[ lo]. The importance of the nonlinear minimax problem seems to exceed sub- 
stantially the scope of solving problems which are initially of this nature since as shown by 
Bandler and Charalambous[2]. any nonlinear programming problems with nonlinear constraints 
can be transformed into an equivalent unconstrained minimax problem. The numerical methods 
utilized for solving nonlinear minimax problems consisted mainly of approximating the F(x) 
= max,,,,,, [f,(x)] function by close enough functions in which the kinks are smoothed out. 
Charalambous and Bandler[4] suggested the use of 

as long as f,(x) are all positive and P is a large enough positive number. The result is a smooth 

approximation for max,,,,,, [f,(x)]. Intuitively, if f;(x) are all positive valued, raising each of 
them to a high power will emphasize the largest one as compared to the others so that if fN(x) > 
f,(x) V i # N. then 

*Work done while in residence in the Institute for Mathematics and its Applications. Umversity of Minnesota. 
Mmneapohs. MN 55455 C.S.A. 
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Taking the p-th root yields 
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(2) 

For a more rigorous proof see [ 111. 

In the case that some or all of the functions may attain negative values, one can easily 
find a constant number A such that f,(x) + A are positive for all the functions. Furthermore, 

the values of [fi(x) + Alp may be very large numbers, unmanageable by the computer in hand. 

A number M can be chosen such that {[f,(x) + Al/M}’ will not exceed the capability of the 
computer to handle large numbers. 

Zang[l2] has given an alternative of smoothing the objective functions by utilizing poly- 
nomials on both sides of the kinks. 

In the present work we suggest an improvement over these methods by utilizing equivalent 
differentiable functions, the solutions of which should coincide at the limit with those of the 
original minimax problem. One of these methods which has been successfully utilized for 
minimax location problems[7] is basically a variation of that by Charalambous and Bandler[4] 
mentioned above. Another method is presented here for the first time and the results of some 
test runs are given. The main features of these methods are the simplicity of their use as well 
as the rather fast convergence of the iterative procedure. 

2. THE METHOD OF “SUM OF POWERS” 

Let us assume in this section that f,(x) are all positive valued; if some of them are negative, 
a value A is chosen as explained above, and the f,(x) discussed here are the previous f,(x) + A. 
By the use of (2) above, a good approximation for min, max, [f,(x)] can be achieved by min, 

{C:= I [f,(X)IP~“P f or a large enough value of P. As pointed out by Zang[ 121, if all the f,(x) 

functions are convex, the minimax problem is also convex, and as shown below, so are the 
approximations considered. As large as P may be, raising this approximate function to the 

P-th power should leave the minimum point unchanged. We can therefore solve 

min i Lf,(x)lP (3) 
X ,=I 

for large values of P. This has been done very successfully with “radial” functions which 

occur in location problems[6]. In these cases, the functions are f,(r) where r is the Euclidean 
distance between a demand point and a service facility. The functions f,(r) represent the (positive) 
costs involved. In the location problems, convergence was quite good even for large values of 
P. A better strategy, similar to that often taken in the penalty function approach in the solution 

of constrained nonlinear program problems, was the following. First solve the approximate 

problem (3) for a moderate value of P and then use the solution as a starting point for a better 
solution with a larger value of P. This yielded usually much faster convergence. 

The values of [f,(x)lP may be too large, which, as pointed out above, calls for a normalization. 
namely, division of all the fi(x) functions by a constant. If increasing values of P are used 
successively, the value of the constant may be changed so that no overflow is encountered. 

3. THE METHOD OF “SUM OF EXPONENTIALS” 

The approximation for max, [f,(x)] has been shown to become better as the power P in 
C;=, [f,(x)lP becomes larger. From a broader point of view, if we took C:‘=, &[f,(x)], the 
approximation became better for “stronger” functions b(e). By “strong” one should understand 
here a more convex function (i.e., having a larger positive second derivative). Among other 
things, the utilization of a convex function is of importance since, according to a quite well- 
known theorem (see, e.g., Avriel [I, p. 74]), if f(x) is a convex function on R” and 4 is a 
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nondecreasing proper convex function on R. then *[f(x)] is convex on R”. In our case, this 

also means that if ,f,(x) are all convex. the approximation of solving min, C:l=, 4[f,(x)] preserves 
the important property of convexity. One can, therefore, choose any “strong” function 4(.) 
and the one that comes to mind is the exponential function. One can therefore solve 

min C exp Ia . f,(x)l, 
x ,=I 

(4) 

for rather large positive values of (Y. 
To show that the solution of (4) really approximates that of (I), note that in the sum, there 

are k (k being unity or a larger positive integer) largest terms. If (Y is large enough, we have 

2 exp Ia . f,(x)1 = k . exp [af,,,,(x)l. 
/=, 

(5) 

Taking the inverse of the exponential function we get at the limit of high QI 

il i ln {i exp lo!.f,fx)1} = lili { $ k . exp 1c~.f,,,~Jx)]} = lii i In k + fn&x). (6) 
,=I 

As (Y goes to infinity, the first term tends to zero. Since (1 icu) In (*) is a monotonically increasing 
function, it attains its maximum where its argument is maximal, which completes the proof 
that the solution of (4) coincides with that of (I). In fact, the same steps can be followed for 
the proof with any other increasing convex function 4(s) instead of the exponent. 

An advantage in solving (4) rather than (3) is that it does not make any difference if f;(x) 
attain negative or positive values. Again, it is advisable to solve the problem first for a relatively 
small value of (Y and use the solution as a first guess when the value of CY increases by, say, a 
factor of 10. Here too, for large values of (Y, exp [a . f,(x)] may be too large and normalization 
is necessary. This can be done in each step, i.e., after choosing the value of (Y, evaluate the 

current values of f,(x) and choose a constant c such that no value of exp [a . f,(x) - c] exceeds 
the values that can be handled by the computer. The subtraction of c actually amounts to the 
division of each of the terms by e’. Our approximation will thus be found by solving 

min 2 exp [o . f;(x) - C] 
x , 

(7) 

for large enough value of o associated with a suitable choice of c. 

4. NUMERICAL EXAMPLES 

The two minimax problems first suggested by Charalambous and Bandler[4] and later 
solved also by Zang[ 121 have now been solved by the “sum of exponentials” method. In 
’ ‘problem I’ ’ the following three functions in two variables are given 

f?(X) = (2 - .X,)2 + (2 - X1)? (8) 

fdx) = 2 exp (x2 - x,) 

The results are shown in Table 1. Since in this case the functions are only of two variables, 
the nonlinear programming method chosen was the Newton method, which turned out to be 
very easy to use as well as fast converging. In other problems. with more variables, other 
methods should be considered since the inversion of the Hessian could be very time-consuming 
in a problem with many variables. Charalambous and Bandler[4] used the Fletcher subroutine 
whereas Zang employed one of the quasi-Newton methods. The result. accurate to eight sig- 
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Table I. Results for Problem I 

number of 
(I c F lterattom I. x.. f. f_ f_ 

10-l 

loo 

lo1 

102 

lo3 

IQ4 

lo5 

lQ6 

lo’ 

lo* 

-200 1.0x10 4 

-198 3.16~10-~ 

-1.30 1.0x 1o-5 

0.31’ 3.16~10~ 
1.80x103 1.0x 10 -6 

1.9am4 3.16x10-’ 
2.0x105 1.0x10 -7 

2.0x106 3.16 x lo-* 
2_0~10’ 1.0x10 -8 

2.0x106 3.16x10-’ 

0.9853028 0. ‘061335 1.4410893 2.703’1’9 1.5128342 

1.023999’ 0.8’2’946 1.8613339 2.2231549 1.’ 193042 

1.009CO40 0.9’61852 1.9894433 2.0302698 1.93542’3 

1.001123’ 0.99’2958 1.9991053 2.0031655 1.9923629 

1.0001152 0.999’256 1.9999125 2.00031’9 1.9992220 

1.OwJO115 0.9999’25 1.9999913 2.0000318 1.9999220 

l.OOOOO12 0.99999’3 1.9999991 2.0000032 1.9999922 

l.O@mOOl 0.999999’ 1.9999999 2.0000003 1.9999992 

l.OOOWOO 1.OOOOOOO 2. owOooo 2.0000000 1.9999999 

l.OC00000 1.0000009 2.0000000 2.0000000 2.0000000 

nificant figures, has been reached in 57 steps which have taken 76 msec CPU time. Using the 
more sophisticated nonlinear programming methods probably would have reduced the number 
of iterations, but would have made each step more time-consuming and would also make the 

programming much more complicated. 
In the same way as in the previous works, the iteration started at the initial point (2.0, 

2.0). As mentioned above, the procedure started with a small value of ct (= 0.1) which was 
increased every time the termination criterion was satisfied. In the first stages, it would not 
have been beneficial to go for a very strict termination criterion because anyway, we are far 
from the final solution. Thus, for (Y = 0.1 we started with E = IO-’ where the termination 
criterion for each step was lA_.r,l + (Aql < E. The values of ct were increased by factors of 10 
up to 10B whereas the values of E were decreased by factors of VI0 down to 3.16 X lo-‘. 
The computation was performed on the University of Minnesota Cyber 845 CDC computer. 

In problem 2, solved in [4] and [ 121, the second and third functions are the same whereas 

the first is given by 

f,(x) = x; + x;. 

The results are shown in Table 2. To attain the same accuracy of eight significant figures, 
starting from the same initial point (2.0, 2.0), a total of 43 steps were needed and the CPU 

time used was 59 msec. 

Table 2. Results for Problem 2 

number of 
@ c E Iterations X. X.. f. f_ f_ 

10-l -200 

loo -198 

lo1 -180 

lD2 A.66 

lo3 1. ‘5 x lo3 

lo* 1.93x104 

lo5 1.95x lo5 

l.06 1.95 x 106 

m’ 1.95x10’ 

1.0x10 
4 

3.16 x 1o-5 

1.0x10 
-5 

3.16 x lO-6 

1.0x10 
-6 

3.16x 10 
-7 

1.0x 10 
-7 

3.16 x 10 
-8 

1.0x10 
-a 

1.2’63344 0. ‘269008 1.9082413 2.1444299 1.1545’85 

1.2284402 0.79’5116 1.9135908 2.0412836 1.2998128 

1.1403082 0.8933298 1.93’16’6 1.963’889 1.5623142 

1.1386056 0.8993522 1.9506358 1.9534259 1.5’44336 

1.1389943 0.8995391 1.9520651 1.9523449 1.5’41132 

1.1390333 0.89955’9 1.9522086 1.9522365 1.5’40809 

1.13903’2 0.899559’ 1.9522229 1.9522257 1.5’40’80 

1.13903’6 0.8995599 1.9522243 1.9522246 1.5’49”7 

1.13903’6 0.8995599 1.9522245 1.952224s 1.5740776 
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5. DISCUSSION 

A new group of methods is suggested for the solution 

consists of solving the problem 

min C blf,(x)l, \ ,=I 

1164, 

of the minimax problem (I ). This 

(10) 

where 4 is an increasing convex “strong” function. Problem (IO) is a nonlinear optimization 
problem which may be solved in many ways. In the present work, the examples given are of 

functions with two variables only, therefore the simple Newton method could be applied. Another 
nonlinear programming method, tailored for the radial functions occurring in location problems 
has been successfully used by Chen16.71. This included the steepest descent method with an 
optimal step size easily found for this class of functions. 

The present method has been found to be extremely simple for computation since the 
smoothing out of the kinks has been achieved by utilizing the exponential function rather than 

by a polynomial smoothing at each step. 
Similar considerations can be utilized for other classes of problems. For example, the 

maximin problem 

max min ]fitx)J 
I , 

(I I) 

is interesting in location problems, where f,(x) = W,T, and where W,T, is the weighted Euclidean 
distance between two points. This is used for the location of obnoxious facilities such as nuclear 
reactors. Using similar arguments to those before. an equivalent problem is 

min 2 exp I - af,(x) + C] 
\ ,=I 

(12) 

with large enough value of CY. Unfortunately, both (11) and (12) are not convex problems, and 
therefore, using any nonlinear programming method starting from any initial point would yield 
a local solution which is. certainly. not necessarily global. Finally, considerations similar to 
the “sum of powers” have been used for solving another class of problems, namely, minisum 
and minimax location-allocation problems[8]. Here too, the original problems as well as the 
approximations. are not necessarily convex and therefore the minima reached not global. 
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