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The usual, simple model for the analysis of thermoluminescence (TL) curves deals with just one
trapping level and one recombination level and assumes that only one recombination pathway exists
for the production of luminescence (e.g., the thermal release of trapped electrons to recombine with
thermally stable, trapped holes). In this paper we examine a more complex model which allows for
the thermal release of both charge carriers in the same temperature range. Known as the Schon-
Klasens model, this charge-transfer scheme has been often suggested as a cause of the thermal
quenching of luminescence in insulators. The set of four simultaneous differential equations which
describe the flow of charge between the energy levels in the Schon-Klasens model is solved numeri-
cally without the use of approximations. The TL curve shapes so generated are then analyzed with
use of the usual Randall-Wilkins, Garlick-Gibson, or general-order formalisms—i.e., the so-called
“three-parameter” form of equations. In the cases examined, good fits between the generated TL
curves and the curves expected using these approximate formulations were obtained. We conclude
that a fit of an experimental glow curve to a “three-parameter’” form of equation cannot be used to
indicate that the simple “three-parameter” model is necessarily valid. Additional to curve fitting,
the curves were also analyzed using the conventional initial-rise and heating-rate methods. The pa-
rameters calculated from these analyses were compared with the original parameters inserted into
the model and conclusions drawn regarding the interpretations of the calculated values. Finally,
with use of these calculated parameters the isothermal stabilities of the TL curves were predicted
and compared with the stabilities calculated from the numerical solution to the differential equa-
tions. We conclude that a “three-parameter” type of analysis is not a reliable means of estimating
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the thermal stability of the TL when the Schon-Klasens model is applicable.

I. INTRODUCTION

A useful experimental method for studying the charge-
transfer processes which can take place in insulators and
semiconductors is to follow the thermally stimulated re-
laxation of a nonequilibrium defect distribution following
the application of an external stimulus. Several experi-
mental techniques exist within this category and among
these thermoluminescence (TL) and thermally stimulated
conductivity (TSC) have proved to be popular. These
techniques monitor the thermally stimulated charge
transfer between defects after irradiation of the material.
A primary objective is to derive, from the luminescence or

conductivity “glow curves,” values for the various param- .

eters associated with the charge-transfer process. To this
end, most glow curves are analyzed purely on the basis of
a phenomenological model involving localized energy lev-
els within the band gap of the material (see, e.g., Refs.
1-3). For this type of model the relevant parameters in-
clude trap depths (E), frequency factors (s), capture cross
sections, and densities of the various traps and recombina-
tion centers taking part in the process. Having arrived at
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these values, however, we are still a long way from defin-
ing the point-defect model with which they are associated.
Nevertheless, calculations of this type are considered to be
a necessary step in arriving at an acceptable level of
understanding of the underlying processes.

The major difficulty with this procedure is that without
a prior knowledge of the actual point defects involved we
have no way of knowing that the phenomenological model
is, in fact, an accurate representation of the process. Most
analyses of TL and TSC proceed on the basis of a simpli-
fied energy-level scheme involving just two energy levels
(a “trap” and a “recombination center”) and on the as-
sumption that only one charge-carrier type is thermally
activated in a given temperature regime. During TL the
luminescence transition then involves the recombination
of the mobile carrier with the trapped carrier of opposite
sign, such that the intensity of the TL is described by
where m is the number of recombination sites (i.e., the
number of trapped oppositely charged carriers) and ¢ is

’ (1)
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time. If the recombination sites are trapped holes, then
dm /dt is related to the free-electron concentration n, by

am
dt

where A,, is the probability of recombination of electrons
with trapped holes. In a similar fashion, the time depen-
dences of n, and of the trapped electron concentration »
may be written

=—n.,mA,, , 2

dn, .

—d—tiz—_nsexp T —n[(N—n)A,+A,m] (3)
and

d_n= nsexp | —-—— +n (N——n)A,, . (4)

dt kgT ¢

In these equations, which were first written by Halperin
and Braner,* N is the concentration of available electron
traps and A4, is the retrapping probability for electrons.
E and s are interpreted as the electron trap depth and the
electron attempt-to-escape frequency factor, respectively.

At this point, two major assumptions are normally in
troduced, namely ‘

R, <<Hh ) (5a)
and
dnc dn
— . 5
7z <a (5b)

Taken together, these assumptions imply that free charge
does not accumulate in the delocalized bands during the
thermal stimulation of the trapped carriers. As a result of
these assumptions, the so-called “Randall-Wilkins” and
“Galick-Gibson” formalisms may be developed.>® They
are, respectively,

I71 = snpexp

kT
T E
— — aTr 6
X exp (s/B) fToexp ’pT (6)
and
Iy, = sngexp | — E
TL = SHo€Xp kpT
T E =2
X [(s/B) fToeXp —?B'Y“: dT +1 N 7

where (3 is the heating rate.

Known as the “first-order” (no retrapping) and
“second-order” (extensive retrapping) equations for TL,
these expressions led directly to the development of the
empirical “three-parameter” equation,’’ namely

It = sngexp

kT
(b—1)s T —b/(b—1)
ﬁ‘ fTO exp

X dT +1

__E_
kT

(8)

The above expression is a general form of Eq. (7) and
reduces to Eq. (6) in the limit as b— 1. In all of the above
relationships, n, is the initial concentration of trapped
electrons, kp is Boltzmann’s constant, and T is tempera-
ture.

The three-parameters referred to in the description of
Eq. (8) are E, s, and the kinetic order b. When b=1, Eq.
(6) is used. When b =2, Eq. (7) is used. This last parame-
ter relates to the probability that the thermally released
carrier will be retrapped before it undergoes recombina-
tion.

Recently, however, Fillard, Gasiot, and colleague:sg"10
have presented experimental evidence to indicate that Eq.
(1) is invalid in many cases. It appears that charge car-
riers are being removed from the recombination site by an
additional route to the radiative recombination, and as a
result, the analysis leading to the three-parameter equa-
tion is inappropriate in these cases.

In the material ZnSe:Al, Fillard et al.® argue that the
thermal release of charge from the recombination site
must be taking place. Thus, if electrons are being released
from their traps to recombine with trapped holes, then, in
ZnSe:Al, holes are also being thermally released in the
same temperature range before the electrons can recom-
bine with them. This model of simultaneous electron and
hole release within the same temperature range was dis-
cussed previously by Schon!’!? and by Klasens!® and is
thus described as the Schon-Klasens energy-level scheme.
It is illustrated schematically in Fig. 1. In this figure n,
and p are the concentrations of free electrons and holes,
respectively, n (and m) are the concentrations of trapped
electrons (and holes), and N (and M) are concentrations of
available electron (and hole) traps. The other terms are
defined below.

The additional route by which m may decrease was in-
cluded by Schon and by Klasens to explain the
phenomenon of thermal quenching in those materials for
which luminescence production involved transitions of the

ne

A Eyrsy
N,n

M,m
E,»s; Ay,

FIG. 1. Energy levels, trap depths, concentrations, and tran-
sition probabilities for the Schén-Klasens energy-level model.
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charge carriers to the delocalized bands. Despite the fact
that there are many reported cases of thermal quenching
during TL production,’ glow curves are nevertheless still
analyzed primarily on the basis of the three-parameter
equation. It should be noted that not all forms of thermal
quenching can be described by the Schon-Klasens model,
and neither are all causes of the breakdown of Eq. (1) due
to the simultaneous thermal release of carriers. Neverthe-
less, there is such a large number of reported cases of
thermal quenching that a consideration of the Schon-
Klasens model becomes one of importance.

Briunlich and Scharmann'* developed an approximate
analysis of the Schon-Klasens scheme by introducing
several assumptions into the model. They defined two pa-
rameters, namely R=4,,/A4,, and R*=A,,/A,,, where,
from Fig. 1, 4,, and A, are the retrapping probabilities,
and A4,, and A,, are the recombination probabilities, for
the electrons and holes, respectively. By assuming relative
values for R and R* and by introducing some simplifying
assumptions (in particular, the assumption of a quasicon-
stant concentration of free charge in the delocalized
bands), Briunlich and Scharmann were able to arrive at
approximate solutions to the rate equations. Specifically,
for R~0 and R*~0, for R~0 and R*>>1, and for
R >>1 and R* =0, equations similar in form to Eq. (6)
were derived, whereas for R >>1 and R* >>1 an expres-
sion similar to Eq. (7) was produced. Thus, despite the in-
troduction of an apparently more complex set of recom-
bination pathways, the simple three-parameter type of
equation could still be used to describe the glow-curve
shape (leaving aside, for the moment, interpretations of
the activation energy so calculated).

The assumption that the electron and hole populations
in the conduction and valence bands are approximately
constant is one of the cornerstones of the derivation of the
Randall-Wilkins and Garlick-Gibson expressions, from
which the three-parameter equation is developed. This is
true no matter if the conventional, simplified energy-level
scheme or the more complex Schon-Klasens scheme is
adopted. However, Kelly et al.'® have shown that this as-
sumption has only a limited range of generality, and many
sets of parameter values (i.e., numerical values for A,
A,., m, n, etc.) can be chosen for which the assumption
becomes invalid. Under these circumstances, glow curves
can be produced which should not be analyzed using the
three-parameter form of equation.

In view of this, it becomes instructive to analyze the
Schén-Klasens scheme numerically, without the use of
any assumptions regarding the relative values of the dif-
ferent parameters. In the following section we discuss the
relevant rate equations describing the flow of charge dur-
ing thermal stimulation using the Schon-Klasens model.
From these equations we produce numerical solutions
which describe the shape of the TL glow curves. It is the
primary purpose of this paper to describe an analysis of
the glow curves so generated using the three-parameter
type of equation [viz., Egs. (6)—(8)]. These equations are
those which are used in almost every analysis of real TL
curves that we have seen in the published literature, and it
is our intent to point out the limitations of such analyses
when a scheme of the Schén-Klasens type is suspected.
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II. THE SCH6N-KLASENS MODEL

As described in the Introduction, the Schon-Klasens
model concerns the simultaneous release of charge from
trapping levels for electrons and holes (Fig. 1) located near
the demarcation levels within the band gap of an insulator
or semiconductor.

The four rate equations which describe the flow of
charge carriers between the various energy levels in this
model have been discussed by Briunlich and Scharmann'4
and are rewritten here thusly

dn

= TSinexp —-k— +An.(N—n)—Aypn , (9a)

dnc - El .

—:j—t——zsln exp ;B—T —Apen (N —n)—A,n.m , (9b)

dm E,

—-‘—i—;:—szm exXp | — 'k +A;hp(M m) Arencm ’
(9¢)

d,

~d—’;=szm exp m —App(M —m)—A,pn . (9d)

The set of equations includes the neutrality condition

dn dn. dm dp
ar T dr T ar Tar , e

Similar sets of simultaneous differential equations
describing trap filling'®!7 and trap emptying,'>!® but for
the simple energy-level scheme, have been solved numeri-
cally in the past. The present set of equations for the
Schon-Klasens model has so far been solved analytically
only with the use of simplifying approximations.!# In this
paper we solve for the first time the complete set of equa-
tions numerically without any simplifying assumptions.
Two programs were utilized in the solution, one a
second-order predictor-corrector routine and the other a
sixth-order Runge-Kutta predictor-corrector routine.
Both programs gave the same results for the range of
values of input parameters discussed in this paper. The
calculations were performed on IBM 370 and Control
Data Corporation Cyber 170/720 computers.

In the analysis we allow for one of two transitions, or
for both simultaneously, to yield TL. The allowed radia-
tive transitions are (i) free electron to bound hole (e-h),
for which the TL intensity is

Ity=A,n.m, (10a)
(ii) free hole to bound electron (h-e), giving

It =Ampn , (10b)
and (iii) both transitions (i) and (ii), giving

Ity =A,.n.om+A,,pn . (10c)

All other transitions are assumed to be nonradiative, or, if
radiative, not detected. It is to be noted that each of Egs.
(102)—(10c) means that Iy % —dm /dt [viz., Eq. (1)].

In a previous numerical solution to these equations'® we
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preferred to limit the complexity and, therefore, the gen-
erality of the solutions by considering only free-electron to
bound-hole transitions to be radiative, and to ignore hole
retrapping. In this paper we remove these restrictions in
an effort to increase the generality and applicability of the
results, although we are still necessarily dealing with a rel-
atively unsophisticated case and are ignoring, for instance,
the existence of a multiplicity of electron and/or hole
traps.20

The earlier results!” showed that while the three-
parameter equation could be used as a rather accurate
description of the glow-peak shape, even in this complex
case, anomalously high values for the frequency factors s
could be obtained, along with an apparent order of kinet-
ics of less than one. (Both of these situations have been
reported in the literature.)

Since there are many aspects of such a complex model
that could be examined, we have limited our attention to
the following: examining the validity of certain aspects of
the Braunlich and Scharmann!* analysis, examining the
degree to which the produced glow curves can be
described by the three-parameter analysis, interpreting the
meaning of the E values so obtained, and, finally, testing
the ability of the three-parameter analysis to predict the
thermal behavior (i.e., the isothermal decay rates) of the
glow peaks. This latter item was thought to be of impor-
tance because of the use to which TL is put in the fields
of radiation dosimetry, archaeology, and geology, wherein
the isothermal stability of a particular glow peak is often
predicted on the basis of a three-parameter examination.

III. RESULTS AND DISCUSSION

We have selected parameter values which, for the sim-
ple energy-level model, would yield either first- or
second-order kinetics. We have done this (i) for the situa-
tion where carrier accumulation in the delocalized bands
is prevented [thereby ensuring that the assumptions in-
herent in the development of Egs. (6)—(8) are valid], and
(ii) for the case where some carrier accumulation does
occur. The purpose of the latter case is to produce a situ-
ation in which the constancy of the electron and hole pop-
ulations is not achieved and thus the three-parameter type
of analysis should be inappropriate, irrespective of the en-
ergy scheme adopted.

A. Curve fitting

The results corresponding to case (i) are shown in Fig.
2. For each of the curves illustrated in this figure the
electron trap depth E, is held constant at 0.8 eV and the
hole trap depth E, is varied, as indicated in the figure
caption. As can be seen, first-order [Fig. 2(a)] and
second-order [Fig. 2(b)] curves are produced by varying
the relative values of the recombination and trapping
coefficients, as indicated. The important point is that the
three-parameter type of equation can be used to describe
accurately the curve shape, despite the fact that the curves
were generated using a more complex model than these
equations are meant to describe. (We leave aside, until
later, a discussion of what the fitted parameters mean in a

TL Intensity (arb. units)

300 400
Temperature (K)

FIG. 2. (a) First-order TL curves (data points) generated
from Egs. 9(a)—9(e) with E;=0.8 eV and (i) E;=0.6 eV, (ii)
E;=0.8 eV, and (iii) E,=1.0 eV. The other parameter values
are mo=no=1.0X10° cm™3, M=N=1.0x10"° cm3,
neo=po=0, s;=5,=1.0Xx10"° s~ 4,=4,=1.0x10
cm®s™!, and A4, =A4,;,=1.0x10° cm®s~!. Heating rate =5
Ks~! The solid lines are the fitted curves using Eq. (8). For (b)
the parameters are the same, except A,=Ay=A,.=A,
=1.0x10® cm3s~! and the kinetics are approximately second
order. e-h transitions are radiative.

physical sense.) In Fig. 3 we find that even when
moderate charge-carrier accumulation in the delocalized
bands is allowed [case (ii)], the equations still accurately
describe the curve shape. For this case carrier accumula-
tion was induced by making the retrapping probabilities
for both energy levels very much less than the recombina-
tion probabilities, as indicated in the figure caption. The
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FIG. 3. First-order TL curves generated using the parame-
ters listed in Table II, except for M=N=1.0Xx10° cm3,
Ape=A4,;,=1.0x10"7 cm?®s~% and A=Ay =1.0x10"18
cm?s~!. Moderate free-carrier accumulation is allowed. For
each curve E;=0.8 eV. For curve (i), E;=0.6 eV, and for

curve (ii), E,=1.0¢eV.



32

TL peak produced is very well described by a first-order
curve. :

The free-carrier accumulation in these latter cases is
moderate only. For example, in Fig. 3 the free carrier to
trapped carrier ratio is only ~10~? at the TL peak, and
thus inequality (5a) is still approximately true. However,
dn./dt and dp/dt can be rather large compared with
dn /dt and dm /dt, respectively [viz., inequality (5b)]. In
more extreme cases of carrier pile up we obtained TL
peaks with extremely long high-temperature tails. These
TL peaks could not be fitted by equations of the type
(6)—(8). Carrier pile up can be induced if both the retrap-
ping coefficients and the recombination coefficients are
small, or if the initial trapped charge densities are low.

In a treatment similar to that offered here, but for the
simple energy-level model, Kelly et al.!® illustrated that
when the parameter values were such that the assump-
tions inherent in the derivation of the approximate solu-
tions were invalid, TL and TSC curve shapes were ob-
tained which could not be described by the approximate
solutions. Here, for the more complex Schoén-Klasens
model, we see that the approximate solution can be a good
description of the curve shape but only under similar re-
strictions to those dealt with by Kelly et al.!> Although
we have only demonstrated this for a limited number of
cases (there are many combinations and permutations of
the various parameter values that could be tried), we have
no reason to suspect that these cases are in any way
unique.

From the above results it becomes clear that the fact
that the approximate three-parameter type of equation
can be used to describe accurately the glow-curve shape
obtained in a TL or TSC experiment should not be regard-
ed as evidence that the energy-level system under investi-
gation is described by the simple energy-level scheme
from which Egs. (6)—(8) were developed.

B. Parameter analysis

The above discussion leads naturally to the question re-
garding the interpretation of the derived parameters, when
the approximate solution is used to analyze the results.

NUMERICAL SOLUTIONS TO THE RATE EQUATIONS . . .
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As seen in expressions (6)—(8), these equations contain a
single activation energy E and a single frequency factor s.
However, the Schon-Klasens model contains two activa-
tion energies, E; and E,, and two frequency factors, s;
and s,. In what follows, we compare the parameter
values obtained from the three-parameter curve fitting,
and those obtained from the initial-rise® and heating-rate?®!
methods of analysis, with the actual values for E,, E,, s,
and s, inserted into the program. Tables I—III list some
of the results of this analysis. Several possibilities regard-
ing the luminescent transition have been considered,
namely those described in Egs. (10a)—(10c). For the
variable-heating-rate analysis, heating rates of 5, 10, 50,
and 100 K s~! were used.

It emerges from these data that if we consider only the
e-h transition as radiative then the initial-rise method of
analysis yields an accurate value for the trap depth of the
electron trap. Conversely, if the A-e transition is radia-
tive, the hole trap depth can be found with similar accura-
cy. However, if both transitions are radiative, assuming
an identical quantum efficiency for each, then the initial-
rise analysis gives the trap depth of the least thermally
stable trap.

The different-heating-rates method, however, always
appears to give an activation energy which is a somewhat
less accurate (typically ~5—10%) reflection of the least
stable trap, irrespective of the radiative transition, or tran-
sitions, involved. The reason for the greater inaccuracy
with this method is probably due to the fact that the
heating-rate analysis as described by Hoogenstraaten?!
and as used in this paper is an approximation and only in
a strict first-order case will it yield an accurate value of E.
Additionally, and possibly more importantly, we are deal-
ing with a more complex system than that described by
Hoogenstraaten. In view of this, the inaccuracies in the
results of this method should not be considered surprising.

As a first step at understanding these results it is useful
to examine the approximate solutions to the rate equations
for the Schon-Klasens model, derived by Braunlich and
Scharmann.!* For illustrative purposes we select the situ-
ation of R >>1 and R*>>1, and rewrite the TL equation
developed by Braunlich and Scharmann using the nomen-
clature adopted in this paper; thus,

TABLE 1. No free-carrier accumulation; e-h transition radiative.

Three-parameter fit

Initial rise Heating rate

E, values E s b E s E s
Parameters eV) (eV) (s™hH eV) (s™Y (eV) (s™YH

(i) As for Fig. 2(a) (a) E;=0.6 0.741 2.33 102 1.17 0.791 1.85x% 101 0.597 6.9210°
(b) E,=0.7 0.761 1.04 x 10! 1.09 0.795 2.68 % 10! 0.701 1.05x 10"
(c) E,=0.8 0.808 2.62 10 1.04 0.798 1.92 10 0.803 2.3810%°
(d) E,=0.9 0.798 1.02 10 1.02 0.798 9.88 10° 0.819 1.99 x 10'°
(e) E;=1.0 0.803 1.10 10 1.03 0.796 9.17x10° 0.803 1.15x 10

(ii) As for Fig. 2(b) (a) E,=0.6 0.709 4.04x 10" 293 . 0.789 1.16 X 10'3 0.543 5.67x 108
(b) E,=0.7 0.777 8.17x 10 2.33 0.795 2.45x 101 0.634 8.84x10°
(c) E,=0.8 0.803 2.38<10%° 2.01 0.796 1.88x 10 0.754 5.96 < 10°
(d E,=0.9 0.805 1.47 % 10 2.04 0.798 1.06 < 10'° 0.740 2.40%10°
(e) E;=1.0 0.798 9.7 xX10° 2.01 0.798 9.93% 10° 10.731 2.29%10°
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TABLE II. No free-carrier accumulation; 4-e transition radiative.

Three-parameter fit

Initial rise Heating rate

E, values E s b E s E s
Parameters eV) eV) (s~h eV) (s™h (eV) (s~h
@) B=5Ks~!, n,o=po=0 @ E,=0.6 0.618 2.18x10° 123 0600 1.04X10° 0542 2.17x10°
mo=ne=1.09%x10° cm™—3 (b) E,=0.7 0.726 2.80x 101 1.20 0.699 1.06x 10'° 0.647 1.95x% 10°
51=5,=1.0Xx10" s—1 (c) E;=0.8 0.804 2.39¢ 101 1.05 0.797 1.91x10'° 0.778 1.09¢ 10
Ae=A,;=1.0x10% cm’™! (d) E,=0.9 0.853 4.77x 10" 1.06 0.892 1.88x 10! 0.811 1.30x 10'°
A=Ay =1.0%x10" cm3s™! (e) E;=1.0 0.936 5.33x 10! 1.16 0.986 2.56 1012 0.803 9.64 < 10°
M=N=1.0x10"° ¢cm—3
E] =0.8 eV
(b) As above, except (a) E;=0.6 0.602 1.11x10° 2.05 0.597 9.90x 10® 0.618 2.42x10°
Ap=Ap=A,=Ay (b) E,=0.7 0.702 1.14 % 10° 2.01 0.697 1.06x 10° 0.736 4.53x10°
=1.0x10® cm’s™! (c) E;=0.8 0.793 1.89x 10° 2.26 0.797 2.02X10° 0.840 8.06 10°
(d) E;=0.9 0.860 1.85x%10° 2.26 0.910 2.64x 10 0.832 2.84x10°
(e) E;=1.0 0.920 1.92x 10%° 2.67 0.998 1.45x 10! 0.803 7.75% 108
It =n |s;ex ———E—l— +5,ex 2 ex ——l—fT siex ——£ +s,exp | - E dT (11)
L= 1€Xp ks T 26Xp kT p B 1, |°1 p kT 26Xp kpT

If the thermal stimulation of holes is neglected, this equa-
tion reduces to the first-order version of the three-
parameter equation [namely, Eq. (6)].

Equation (11) describes the TL produced assuming both
e-h and h-e transitions are radiative. If we were to con-
sider e-h transitions only, the second term in the first pair
of large parentheses would be ignored. Alternatively, to
consider the h-e radiative transitions only, the first term
in the first pair of large parentheses would be ignored.
Thus, the initial-rise analysis, which considers the terms
in the first pair of large parentheses only, calculates E,
for e-h transitions, E, for h-e transitions, or the smaller
of E, and E, if both transitions are radiative.

Similarly, the heating-rate analysis places importance
on the terms within the large curly braces and thus always
calculates the smaller of E, and E,, irrespective of the ra-

diative transition. If E,=E,=E, then E is calculated. If -

E, «<E,, E, is calculated. If E, <<E,, E, is calculated.
~ However, if E| and E, are different, but similar, the E
value calculated is a “weighted average” of the two (i.e.,

[

weighted by the rate of recombination of each species at
the peak temperature). Similar discussions can be made
for the other situations examined by Braunlich and Schar-
mann.'*

As stated above, the glow curves produced can be
described very well by the simple three-parameter form of
equation. However, interpretation of the activation ener-
gy obtained from a curve-fitting procedure using this
equation is not straightforward. Both the first and second
terms of the three-parameter type of equation contain just
one energy term E, where two energies are actually in-
volved (E; and E,). From a consideration of the data in
Tables I—III it emerges that the three-parameter fitting
procedure yields values for the smaller of E; and E, if
both transitions are radiative (viz., Table III). For e-k
transitions, it gives E; if E;<E,, and it gives a value
somewhere between E; and E, if E, <E; (viz., Table I),
and vice versa for h-e transitions. Clearly, without in-
dependent evidence to indicate which transition is radia-
tive and which trap depth is the smallest, interpretation of

TABLE III. No free-carrier accumulation; both 4-e and e-h transitions radiative.

Three-parameter fit

Initial rise Heating rate

E, values E s b E s E s
Parameters (eV) eV) (s~h eV) (s~ eV) (s7)
As Table II, (a) E,=0.6 0.618 2.03x 10 1.22 0.599 1.03x10%° 0.542 2.17x10°
part (a) (b) E;=0.7 0.709 1.44 10 1.13 0.701 1.75x% 10%° 0.657 4.50x 10°
: (c) E;=0.8 0.804 2.39x 10" 1.05 0.797 1.91x 101 0.778 1.09 < 10'°
(d) E;=0.9 0.805 1.47x 10 1.12 0.801 1.09 < 10% 0.759 6.79x 10°
(e) E;=1.0 0.808 1.33x 10! 1.15 0.789 7.39x10° 0.745 2.86x 10°
As Table II, (a) E;=0.6 0.602 1.10x 10° 2.05 0.598 1.02x10° 0.618 2.42x10°
part (b) (b) E;=0.7 0.707 1.36 < 10° 2.05 0.699 1.12x10° 0.727 2.90x 10°
() E,=0.8 0.793 1.89x10° 2.00 0.797 2.02x10° 0.840 8.06x 10°
(d E,=0.9 0.811 1.48x10° 2.05 0.809 1.6410° 0.829 3.16x10°
(e) E;=1.0 0.801 1.08x 10° 2.03 0.793 9.18x 10® 0.818 2.02x10°
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FIG. 4. TL decay curves generated using the Schon-Klasens
scheme and the parameters listed in Table I (@@®). These are
compared with the predicted decay rates calculated using the
three-parameter curve fit ( ), the initial-rise analysis
(— — —), and the heating-rate analysis (- - - -). The kinetics
are first order and the differences between diagrams (a), (b), and
(c) are described in the text.

the E values obtained from curve fitting is not possible in
the Schon-Klasens scheme. If one energy is much smaller
than the other (e.g., E; << E,) for e-h transitions, then the
term containing E{/kpT will dominate the equation and
a reasonably accurate value for E; will emerge. However,
if the E /kpT terms are not too different, an E value cor-
responding to neither E; nor E, will emerge. Further-
more, the value of the kinetic order b will be of little
meaning in this latter case. Both of these situations can
be seen, for example, in Table 1.

C. Thermal stability

A remaining question concerns not the interpretation of
the calculated activation energy, but its usefulness in
predicting the thermal behavior of the glow peak. Often
during the application of TL to the fields of archaeology,
dosimetry, and geology, it is useful to be able to predict
the thermal stability of a TL peak from the activation en-
ergy calculated using one or another of the methods dis-
cussed above. In this regard, our interpretation of what
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the activation energy physically means is of minor impor-
tance. It is only important to know if the calculated ener-
gy will provide for an accurate prediction of the peak’s
thermal behavior. Thus, although there may be some un-
certainty regarding the understanding of the activation en-
ergy calculated from a three-parameter type of fit, the
fact that this type of equation is a good description of the
curve shape raises the possibility that it may be used pro-
fitably to determine the isothermal stability.

To examine this point we have numerically calculated
the isothermal decay curves for several sets of data by set-
ting the heating rate 8 to zero. We then compared the
curves obtained with those expected using the results of
the three-parameter analysis. For this test we chose the
data relevant to Fig. 2 (Table I). The results are shown in
Figs. 4 and 5. For the decay temperature a value 20 K
less than the peak position (produced at a heating rate of 5
Ks™!) was chosen (viz., Fig. 2). In Fig. 4 panels (a), (b),
and (c) correspond to the values given in Table I, part (i),
(a), (c), and (d), respectively. Similarly, Figs. 5(a)—(c) cor-
respond to Table I, part (ii), (a), (c), and (d), respectively.

In only two cases [Figs. 4(b) and (c)] can the calculated
decay be said to be a reasonable approximation to the ac-
tual decay. In each of the other cases, a poor correspon-
dence between the calculated and actual decay rates is ob-
served. No meaningful significance can be attached to

Intensity

Normalized

L L
(o) 5 10 15 20 25
Time (s)

FIG. 5. Same as for Fig. 4, but for second-order kinetics. See
text for further description.
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this observation and no obvious trends or patterns emerge.
We conclude that the estimation of the decay rate for TL
using analyses based on Egs. (6)—(8) must be performed
with extreme caution if premature judgements are to be
avoided.

IV. CONCLUSIONS

The main conclusions drawn from this work are the
following:

(i) Glow curves generated using the Schon-Klasens
model of simultaneous hole and electron release can have
the same shape as those expected from the simple
Randall-Wilkins and  Garlick-Gibson  energy-level
schemes. The three-parameter form of equation which re-
sults from these simplified models is seen to fit the curves
for the Schon-Klasens case with a high degree of accuracy
if the assumptions inherent in the derivation of the three-
parameter type of equation (primarily the constancy of
the free-carrier concentrations) are shown to apply. Al-
though similar conclusions were arrived at in earlier work,
using approximations, this is the first time that this has
been demonstrated using exact solutions to the appropri-
ate rate equations without the restrictive assumptions.
The ability of Egs. (6)—(8) to describe an experimental
glow-curve shape should not, therefore, be contemplated
as a test of the applicability of the simplified energy-level
scheme in any given material.

(ii) The activation energy calculated from a fit of the
three-parameter type of equation of the glow curve is not
straightforward to interpret. For the case where e-A tran-
sitions are radiative,, the fitting procedure yields a value
for the electron trap depth if E; <E,, and vice versa if
the h-e transitions are radiative. However, if the trap
depth of the opposite charge carrier is low (i.e., E; <E}),
an inaccurate figure is obtained.

The initial-rise method of analysis, however, is easier to
interpret. If only e-h transitions are radiative, a good
value for the trap depth of the electron trap is obtained.
The method gives the hole trap depth if h-e transitions
produce luminescence. If both transitions are radiative,
the trap depth of the least thermally stable trap is ob-
tained.

The heating-rate method always produces a value (al-
beit 5—10 % inaccurate) for the activation energy of the
least stable trap irrespective of the radiative transition in-

volved.

Wintle?? has advocated the use of both the initial-rise
and the heating-rate methods for phosphors in which
thermal quenching is taking place. For the Schon-
Klasens model for thermal quenching, according to
Wintle’s arguments, the heating-rate method should yield
the electron trap depth, if e-h transitions yield TL, and
the initial-rise method should give the difference between
the electron trap depth and the hole trap depth. However,
Wintle only introduces the temperature dependence of the
luminescence efficiency into the TL equation after this
equation has been derived, when, in fact, it ought to be in-
troduced before the derivation by accounting for it in the
original rate equations. When this is done, as performed
by Briunlich and Scharmann'* and in this work, the true
meaning of the discrepancy between the results of the
initial-rise and heating-rate methods comes to light, as
discussed above. If independent evidence exists regarding
which transition produces the luminescence, then, by a
careful application of the initial-rise and heating-rate
methods, one should be able to calculate at least one of the
two trap depths, and, in favorable circumstances, both of
them.

(iii) Although it is possible to describe the glow peak
produced using the Schon-Klasens model by the conven-
tional three-parameter form of equation, it is not possible,
using this equation, to predict confidently the long-term
thermal stability of the TL peak. Often such analyses are
used as a means of assessing the thermal-decay charac-
teristics of a TL signal in many different fields. However,
the present analysis indicates that this is an unsatisfactory
procedure.

(iv) Finally, the present work highlights the importance
of using several different techniques to calculate the trap
depths from a set of glow curves. In particular, curve fit-
ting, the initial-rise method, the heating-rate method, and
isothermal-decay analysis should all be carried out. Only
when good agreement between each of these methods is
achieved [as appears to be the case, for example, in
LiF:Mg (Refs. 23—25)] can one be reasonably certain that
the Schon-Klasens energy-level scheme does not apply.
If, on the other hand, these methods yield different results
(e.g., in quartz?*?), then one should suspect that a more
complex energy-level scheme such as the Schon-Klasens
model may be more appropriate. In such instances, in-
dependent evidence regarding thermal quenching, etc.’
should be sought before any interpretations are attempted.

*Permanent address: Department of Physics and Astronomy,
Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel.
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