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The economic problem of locating optimally a service facility in a two-dimensional Euclidean
space is equivalent to a problem of equilibrium between forces in statics. A mechanical analog,
suggested at the beginning of the century, as well as more modern numerical methods for the
solution of the problem, are discussed. The multifacility problem, which is an extension to the
original one, is also mentioned. Cases in which the cost involved is nonlinearly dependent on the

Euclidean distance are briefly referred to.

L. INTRODUCTION

The modern economic problem of the optimal location
of one or several service facilities with respect to a given set
of “demand” points (i.e., points that are to be served by one
or more of the service facilities) has emerged from an old
geometrical problem. The problem, first posed by Fermat
in the 17th century and solved by Steiner in the 19th cen-
tury, is the following: Given three points, find a point such
that the sum of distances to the given points is minimal.
The solution is (e.g., see Eilon ez al.,! p. 39) that if all the
angles in the triangle formed by the three given points are
smaller than 120°, the optimal location is the point from
which lines, drawn radially to each demand point, form
three angles of 120°. If the triangle contains an angle
greater than or equal to 120°, then the optimal location is at
that vertex. Two extensions to this problem are to be con-
sidered. One is that several points are to be served by a
single service facility and the other is that each pont is as-
signed a certain “weight.” The problem will now be to
minimize the cost function

Slxy) = 2 w;ri(x,y), (1)
i=1

where m is the number of given points, w, is the weight of
the ith point and 7,(x,y) = [(x — x,)> + (¥ — »;)*]"/% the
Euclidean distance between the ith point, having coordi-
nates (x;,;), and the point to be located (x,y). This problem,
usually known as the Weber? problem, is considered to be a
reasonably good model for the practical problem of situat-
ing a service facility so that the total travel cost is mini-
mum. The weight involved reflects the economic impor-
tance of the demand point; in many cases it is proportional
to the population in the ith site. The model is good in parti-
cular when the means of transportation can move in a
straight line, e.g., boats, helicopters, or airplanes. The
problem is entirely different when the transportation is
along given roads; however, Love and Morris> showed that
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the Euclidean distance is quite a good measure to the road
distance in a dense network of roads.

The possible nonlinearity of the cost with the radial dis-
tance has been considered by Cooper* who discussed the
solution of the minimization of

f(x’y) = 2 wir?’ (2)
i=1

which includes either superlinearity of the cost dependence
on the distance for n > 1, sublinearity for n < 1, or the pre-
vious case of linearity for n = 1. Even more general cost
functions have been considered by Katz® who took into
account different cost functions for different “customers,”
&,(r;), where ¢, are nondecreasing differentiable and con-
vex (having a positive second derivative) functions of the
radial distances r;, so that the objective function to be mini-
mized is

Sxy)= _El @u(r;)- (3)

Different generalizations to the original Weber problem
have also been discussed in the literature. These include the
case where the transportation is only on a given network (of
roads) and that where the L, norm is considered, namely,
when minimization is of

m

flxy)= z wi(lx — x|+ |y — y:|F)%, (4)
i=1
the rectilinear norm being a special case in which P = 1.
In the present paper we deal with the solution of the
radial cases, i.e., Egs. (1)~(3) and the mechanical analog
which can add much insight to the properties of the solu-
tion.

I1. SOLUTION OF THE WEBER PROBLEM

In order to study the properties of the solution, the first
derivatives of Eq. (1) are to be written, namely,
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L — 5 wx—xy, (52)
¥_ 5 _
a = i;} w;y — y:)/r.. (5b)

It is obvious that a necessary condition for a point (x,y) to
be a solution of the problem is that the sums in Egs. (5) are
equal to zero. It should be noted that the two-dimensional
function in Eq. (1) has the property of convexity (e.g., see
Ref. 1, p. 45) which means that the Hessian (the matrix of
second derivatives) is positive definite. The important
property of a convex function is that if it has a local mini-
mum, it is necessarily a global one. Thus our main aim is to
find a point in which df /dx = df /dy = 0 which will auto-
matically be the only solution of our problem.

Setting Eqgs. (5a) and (5b) to zero yields
.Zl [wi/ri(x’y)]’

m

X = z [wx;/r,(x.y)]

i=1

(6a)

y="3 [wp/rien)] [ 3 [wi/ries)].

i=1 i=1

Of course, these equations cannot be solved in closed form.
Weiszfeld® suggested an iterative process based on Egs. (6).
He wrote the ¥ th step in the iteration

I T N O

i=1

(6b)

.VN+ = z [wiyl‘/ri(xN’yN)] z [wi/ri(xN’yN)] . (7Y)
i=1 i=1
As a first guess for the solution, the “center of gravity”
point is usually taken, i.e.,

0_ m m . 0_ m
X" = 2 w;X; E w; Yy = E w,y;
i=1 i=1 i=1

It has been pointed out in the literature’ that Weiszfeld’s
method is merely the “steepest descent” method with a step
size determined by the denominator in Eqs. (7). In other
words, the process consists of going “downhill” along
— grad f.

This brings to mind the consideration of the mechanical
analog in which f'(x,y) in (1) is looked upon as a scalar field
analogous to the potential in a gravitational or an electric
field. The first derivatives in Egs. (5) can be looked upon as
the x and y components of the resultant force acting on the
service point which is to be located optimally. Let us con-

i w,.  (8)

i=1

xi,y)

X

Fig. 1. The ith demand point (x;, y;} as seen from a point (x, ). 7; is the
Euclidean distance and 6, is the angle between the horizontal and the line
connecting the two points.
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sider the contributions of the ith demand point to the ex-
pressions in Eqgs. (5). If we denote by 6; the angle from the
horizontal at which an observer at {x,p) views {x;,y;), the
contributions of the ith point are w, cos 8;, w; sin g, to the
x and y components of the gradient (see Fig. 1). From the
“physical” point of view, the problem can be considered as
follows. A “particle” is placed in a force field having m
attracting points distributed in the two-dimensional space.
The particle is attracted to each of the given points, the
attraction toward the ith point being proportional to the
weight of the point w;. The direction of the force is along
the line connecting the particle and the ith point. The
strength of this force element is not dependent on the dis-
tance between the particle and the demand point. The
problem is that of finding a stationary point for the particle
in this field. As opposed to the cases of gravitational and
electrostatic fields where no such stationary point exists,® a
minimum point always exists in the present circum-
stances.>'’

It is to be noted that one of the possibilities for the solu-
tion is that it coincides with one of the demand points. This
may cause some difficulty. The cost function, Eq. (1), is not
differentiable at the demand points, (x,,y;) for i =1,....m.
The ways to bypass the difficulties involved in the Weisz-
feld iterative procedure when the solution should coincide
with a demand point or when one of the intermediate
points in the iterative process happens to be the same as one
of (x,,y;), have been discussed in the literature.>’ In fact,
Katz® suggested to check first each of the demand points
for optimality before proceeding to the Weiszfeld itera-
tions, and that only if none of the demand points is found to
be optimal should the iterative process be initiated. We
shall reconsider this point in the framework of the physical
picture below.

III. THE MECHANICAL ANALOG

As early as 1909, Pick suggested the following analog
device in an introduction to Weber’s book.” Although his
approach was mainly intuitive, the rationale behind it was
practically the same as that mentioned above of the poten-
tial field and force concepts. The mechanical analog is
shown in Fig. 2. A map of the area in question is placed on a
board and holes are drilled in the points denoting the de-
mand locations. Strings are passed through the holes and
weights proportional to the economic “weights” are hung
on them. The other edges of the strings are tied together. In
view of the above explanation, it is quite obvious that the
stationary situation reached after possibly a few oscilla-
tions is the equilibrium point, namely, the solution of the
minimization problem. Of course, the accuracy of the
method is limited by the friction of the strings in the holes
and anyway, it looks quite primitive when the alternative of
an efficient numerical procedure is available. The mechani-
cal analog gives, however, an insight to the properties of the
solution.

As explained above the “force” elements due to each of
the demand points are radial in direction, but independent
of the distance between the demand point and the location
of the service facility. An interesting implication of this
point is that once the location of the solution is known, it is,
in fact, also the solution of other problems in which each
demand point can be anywhere along the line connecting
the service facility point and the demand point. In the me-
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Fig. 2. Mechanical analog model of the Euclidean problem [after Eilon ez al.
{Ref. 1) and Francis and White (Ref. 10)].

chanical analog, this means that if (x,y) represents in Fig. 2
the optimal solution, i.e., the final location of the knot con-
necting the strings, the solution will remain the same if we
move a hole along the line connecting it with the middle
point. Of course, this does not help in the solution of the
problem in the numerical iterative way, but it does give
some information on the sensitivity of the solution to
changes in the location of the demand points.

As pointed out in the literature, the mechanical analog
can be used to demonstrate the majority theorem'®!!
which states that if at least one-half of the cumulative
weight is associated with an existing facility, the optimum
location for the service facility coincides with this facility.
It is quite obvious that under these circumstances, the knot
in the mechanical analog will end up at this point. In fact,
this is a rather weak sufficient condition, and a much stron-
ger necessary and sufficient theorem can be stated with the
aid of the physical picture.

Suppose that we check whether the demand point & is
the solution. We would like to show that a necessary and
sufficient condition for £ to be the optimum is that w,, the
weight associated with the k th demand point, is larger than
the absolute value of the resultant of the “forces” of the
other m — 1 demand points at {x,,y,). A mathematical
proof has been given by Katz'?; however, one can use phys-
ical arguments as follows. If the sum of the forces exerted
by the other m — 1 points is R,, it will be nearly the same
R, in the very close vicinity of (x,,p,) due to continuity.
The contribution of the & th point in the close vicinity, say
points on a circle with a radius € centered at (x,,y,) is a
vector of magnitude w, pointing at (x,,y, ). The resultant
R, is least effective for “pulling” the facility (the knot in the
mechanical analog) if they point at opposite directions.
Thus, |R, | > w, is the condition for the service facility not
to be at (x, ;). If R, | <w,, the force of the demand point
k is strong enough to pull the knot to this sink.

It has been pointed out above that the cost function is not
differentiable at the demand points. As suggested by
Katz'? it is recommended to check each of the demand
points for optimality by comparing |R, | and w, and pro-
ceed with the iterative process only if none of them turns
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out to be the optimum. It should be mentioned, however,
that even if no given point is the optimum, it is possible that
the iterative procedure will go through one of the demand
points, which results in a failure of the process to converge
at the optimum. As shown by Kuhn,® however, this is a
very unlikely event since for all but a denumerable number
of initial points in the iterations, the Weiszfeld process con-
verges at the optimum. If the unlikely event does occur,
namely, that the iterations lead us to a demand point which
is known beforehand (by the abovementioned initial test)
not to be the optimum, a small perturbation can be intro-
duced in order to avoid the point of nondifferentiability
and the iterative process is proceeded.

IV. GENERALIZATION OF THE WEBER
PROBLEM

Two generalizations of the linear cost location problem
will be briefly discussed here. One is the problem (3) men-
tioned above which takes into account general cost func-
tions of the radial distance, ¢,(r;). Of course, the mechani-
cal analog of Fig. 2 cannot be utilized here, but extensions
of the iterative process can be employed.'*'* In this case,
the force concept can be maintained; the force element of
the ith demand point should be d¢,/dr;, and pointing to-
ward (x;,y;). The condition for the & th demand point to be
the optimum is, in analogy with the previous case,
d¢,/dr; > |R, | where R, is the resultant of the forces of all
the other m — 1 points at (x,,y,). As pointed out already,
the solution is unique only if ¢, (r;) are strictly nondecreas-
ing, differentiable, convex functions. The iterative process
suggested'* also specifies the step size to be used in the
steepest descent method, and, for example, it is shown that
a step size twice as large as that given by Weiszfeld yields
much better convergence in the original Weber problem.

Another extension is that of locating a number of facili-
ties, the multifacility problem: In this case, each demand
point may have a different weight with respect to each of
the facilities. Furthermore, one can assume that the differ-
ent service facilities are expected to serve one another, and
therefore, an attractive force should be assumed to exist
between each pair of service facilities (in the absence of
interaction between service facilities the problem simply
reduces to p single location problems, p being the number
of service facilities). A mechanical analog has been suggest-
ed to this case based on representing fixed points by fixed
pegs and movable points by movable pegs, interconnected
by strings. The details are given in a paper by Miehle,'®
however, as pointed out by Miehle, friction prevents the
use of the method for this multifacility problem for a large
number of service facilities. It has been shown, however,
that the problem is convex, '° therefore any numerical itera-
tive process of the minimization problem in 2 p variables
should yield the optimal solution.

Another multifacility problem, usually referred to as the
location—allocation problem’® will only briefly be men-
tioned. A number of identical service facilities are to be
located among m given demand points in an optimal man-
ner in such a way that each demand point will be served by
the closest service facility. A number of methods have been
suggested for the solution, the main difficulty being that
the problem is not convex which means that iterative meth-
ods may end up at local minima which are not necessarily
global. Itis to be noted, however, that for each of these local
solutions, every one of the service facilities is in equilibrium
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under the influence of the “forces” exerted by the demand
points allocated to it. Some heuristic methods have been
given in the literature which yield “good’” but not necessar-
ily optimal solutions.

V.SUMMARY

The Weber problem and some of its extensions of opti-
mal location of service facilities in two-dimensional Euclid-
ean space have been introduced. The physical analog in
which one considers the total cost function as a potential
field has been pursued. Thus an optimal solution is shown
to be a point where the forces derived from the potential
(cost) field are in equilibrium. The possibility that one of the
demand points is the solution as well as the cases in which
another point is optimal are discussed in view of this phys-
ical concept. In the simple case of cost elements which are
proportional to the radial distance, it is shown that the
forces are independent of the distance tothe demand point,
they are in the direction of the demand point, and they are
proportional to the weights of these points. The implica-
tions of this kind of force behavior are considered. The
numerical methods used as well as the mechanical model
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The separation of Wigner’s rotation from the three-dimensional representation of two successive
Lorentz transformations is effected naturally via three-space tensor algebra. An alternative
derivation is afforded by means of Gibbs’s addition law of spin vectors. The explicit dependence of
the Wigner rotation operator on the intrinsic parameters of the two partaking boosts is derived.
Applications are given to the Thomas precession and the Lorentz-invariant helicity of a massless

particle.

L. INTRODUCTION

It is well known that a general orthogonal transforma-
tion in four dimensions is specified by six independent pa-
rameters. A pure Lorentz transformation (known as
“boost’’) is characterized by three parameters (components
of the translation velocity vector v) and a pure rotation is
determined by three parameters (e.g., the Euler angles). As
might be expected from naive counting, a combination of
two successive boosts which depend on six independent
parameters (components of v, and v,) cannot in general
result in a pure boost but will render an additional pure
rotation, known as *“Wigner’s rotation.””"* Physically, this
spatial rotation is a relativistic kinematic effect that stems
from the fact that the matrix of the resultant transforma-
tion includes antisymmetric contributions. Due to the said
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rotation, a spinning mass moving with a relativistic veloc-
ity will exhibit the known Thomas precession.”

The derivation of the rotation parameters was consid-
ered by several authors,* ' most of which are content with
the limiting case of infinitesimal rotation. We intend to
show that the problem lends itself to a rather compact solu-
tion which renders the rotation parameters in close form by
means of tensor algebra'! in three dimensions. Our results
have interesting physical applications.

II. THE COMPOUND GENERAL LORENTZ
TRANSFORMATION

Consider three frames of reference X, K’, and K ” with
parallel respective axes. The frame K ” moves with uniform
velocity v, with respect to K ', which in turn moves with
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