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Abstract-The solution of the Cooper location problem min 2 w,r,” where r, is the radial 

(Euclidean) distance between the ith given location (a,, hi) and the center (x, y) to be located is 
further investigated. The iterative method given by Cooper (which includes the well known 
Weiszfeld procedure for n = 1) was previously amended using semi-intuitive arguments. In the 
present work a better proof is offered for the results given before. Furthermore, using the same 
line of argument, a broader group of problems previously mentioned by Katz and others can be 

efficiently solved. These are the problems min ; +XrJ where 4i are non-decreasing functions of 

the Euclidean distances. The method is also extended to solve similar problems in EK with K > 2. 
Apart from the theoretical account, computational experience is reported for the three dimensional 

Cooper problem with differet values of n. Computational results of the rn$ ,g,exp(awy,- C) 

which is a different member of the Katz class of problems, are also presented. 

1. INTRODUCTION 

The Weber problem of optimally locating a service facility with respect to the location of 
a number of demand points in E’, was given its first iterative solution by Weiszfeld [ I]. This 
problem, in which costs are assumed to be proportional to the Euclidean distances, was 
further studied by a number of authors[2-51. Cooper[6] extended the Weber problem by 
posing the problem of minimizing the weighted sums of powers of the Euclidean distances 

where r, = [(x - aJ2 + (y - bJ2]“* and where (ai, bi), i = 1, . . ., m are the given fixed points 
having weights of wir and (x, JI) the variable point in E2 to be located optimally. Cooper 
pointed out that n > 1 represents the case of “diseconomies of scale” whereas n < 1 is that 
of “economies of scale”. n = 1 is, of course, the original Weber problem. Cooper also 
showed that for n 2 1, the problem is convex and therefore, a local minimum reached by 
any iterative process must be global. When n < 1, the objective function is not convex and 
therefore several local minima may exist. Cooper [6] suggested an iterative process to solve 
problem (1) which was an extension to Weiszfeld’s method. Starting from any point in the 
convex hull of the given points (ai, b,), usually from the “center of gravity” 

x0 = i wiai ’ f wi; 

i 
y” 

,=I ,=I 
= f wib,/ f w, 

<=I ,=l 

Cooper’s Nth step is given by 

(2) 

?‘ v+l = f w;b,\r,(xh’.yh’)~-2 
I 
‘f w,ir,(xN,yN)]n--, (3b) 

,=I i=l 

whereas Weiszfeld’s step is the special case in which n = 1. Other authors (e.g. [4,7]) 
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showed that Weiszfeld’s iterative process is just the steepest descent method with a 

step-size determined by the denominator C w,T~-I. Chen[8] showed that in the more 
!=I 

general case of n not being necessarily unity, Cooper’s iterative step is also along the 
steepest descent direction, the Nth step is given by 

X N+I_~N 

Y ~+1 _ YN= ‘f wi(bi - yN)r;-* 
I=1 

$, w,r,“-*. 

(44 

(4b) 

Again, the step-size is determined by the denominator 2 w,rFm2. Cooper[6] solved his 

problem with values of n of up to 3. In an attempt to approximate the minimax solution, 
Chen[8] tried to solve problem (1) with large values of n and found that for n > 3, the 
process usually did not converge at all. Empirical results as well as a “semi-intuitive” proof 
showed that Cooper’s step-size is too large for high values of n and Chen[8] showed that 
convergence occurs even for very high values of n if equations [4] are replaced by 

XN+‘= xN + (2/n) f w,(a, - xN)rrM2 
1 

i w,rFT2 
,=I i=l 

(5a) 

Y N+1=y”+(2jn)l~, w,(bi-yN)rFv2/f w,r,“-2. (5b) 
i=I 

For large values of n this reduces substantially (by a factor of 2/n) the Cooper step-size 
whereas for the original Weber problem (n = 1) this doubles the step-size. This particular 
result (for n = 1) is in accord with a statement by Ostresh[9] to the same effect. The proof 
given by Chen[8] was based on the properties of the Newton step (without search). It was 
shown that the Hessian matrix is nearly diagonal and that the diagonal elements are 
approximately equal to each other under the assumption that the given points are 
distributed over a given area. One of the purposes of the present work is to provide a more 
accurate proof for the result expressed by equation (5) which removes many of the 
restrictions in the previous work. Katz[lO] and Cordellier and Fiorot[l l] extended the 
Cooper problem so that more general cost functions are included. The objective function 
is now written as 

where the $i’s are “radial” cost functions, i.e. they depend on the Euclidean distances r, 
between (x, y) which is to be optimally located and the given points (a,, b,), rather than 
in any other way on (x, y). These authors showed thatf(x, y) is convex if 4, are convex, 
differentiable and nondecreasing, which ensures that a local minimum is necessarily global. 
This group of functions includes the Cooper case in which q5i(r,) = w,r,” with n > 1, as well 
as many other convex increasing functions. In analogy with the Weiszfeld [ l] and Cooper [6] 
iterative methods, Katz suggested the following iterative procedure for problem (6) 

X N+ I = xN + 2 [4;(r;‘)(a, - xN)/riN]/ f [4:(r;‘)/r,“] 
1=, I=1 

Y IV + I = y N + ,g, [$ :(r,“)(b, - _v “Yr,“ll i [4 Xr,N>ir,‘vl~ 
,=I 
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This also is a steepest descent iteration with the step-size determined by the denominator 
in equation (7). A better step-size will be suggested here which includes the second 
derivative d’4Jdr:. Finally, the solution of three dimensional and multi-dimensional 
location problems with cost functions similar to those mentioned above will also be briefly 
mentioned. 

2. PROOF OF THE AMENDED COOPER STEP-SIZE 

As mentioned above. Chen[8] found the amended Cooper process expressed by 
equations (5) empirically, and supported it by a “semi-intuitive” proof based on the 
properties of the Hessian. The proof that equations (5) constitute the best step-size to 
be taken is changed here, based on the diagonal terms of the Hessian only. Following some 
early works[ 12-141, Cohen[l5] has recently summed up the matter of rate of convergence 
of descent methods. For the case of steepest descent he showed that if we write the ith 
iterative step as 

X A’+1 =XN - tl"VfN (8) 

where 8” E [a. 2/R,,, - 61, b E (0, l/1,,,) and I,,,, is the largest eigenalue of the Hessian at 
x’, then the descent method converges linearly. The best estimate of the convergence ratio 
occurs when 

ON = 2/(&W + &I”) (9) 

where i.,,, is the smallest eigenvalue of the Hessian, the resultant ratio being 

4 = (&l,X - L)/(L + L,). (10) 

In the present location problem which is two dimensional, the Hessian has, of course only 
two eigenvalues, namely, i,,,, and &,,,,. Since the trace of a matrix is invariant, we can write 

and 

for these problems 

&, + I.,,, = a2flax2+ a'fjay2. 

The first and second derivatives of (1) as given by Cooper[6] are 

af /ax = H i wiq - 2(~ - ai) 
ill 

afjay = n f w~T;-*c~) - bi) 
,==I 

dillax'=n~~,wir~-'+n(n - 2) 2 w~T;-~(x -Q 
#;-I 

a~/2y2=n t u’,r,“-2+n(n -2) f ~~r;-~(_y -bJ2. 
I=1 I==1 

Adding (13a) and (13b) yields 

?Tff!‘8sZ + S2f12y' = 2n i ~,r,“-~ + n(n - 2) 2 w,rre4[(x - ~7~)~ + 0, 
,=I I=1 

However. since r: = (s - a,)’ + 0% - b,)’ we have 

(11) 

(124 

Wb) 

(134 

(13b) 
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-By using equations (8), (9), (1 l), (12) and (15) we get the step-size given by equations (5) 
as the one giving the best convergence ratio according to Cohen[ 151. Thus, the step-size 
found empirically by Chen[8] to be the best, is now shown to be optimal in this sense. It 
is to be mentioned, that the semi-intuitive proof given by Chen[8], showing that the 
Hessian is “nearly”, diagonal with diagonal terms nearly equal to one another indicate that 
the two eigenvalues are rather close to one another. This is so since the eigenvalues of a 
matrix are continuous functions of the elements of the matrix[l6] and since in the extreme 
case of a diagonal matrix, the eigenvalues are, of course, the diagonal elements themselves. 
This would result in the ratio of convergence q in equation (10) being a small number which 
guarantees a fast linear convergence. 

3. EXTENSION TO GENERAL RADIAL COST FUNCTIONS 

We would like to extend the expression for the step-size so that it includes the general 
cost functions given in (6). By differentiating (6) we get 

r i i=l 
Vf= 

f 
i=l 

Second differentiation yields 

asflax’ = f [(dZ4Jdr,2)(x - aJ2/r; + (d+,/dr,)(_y - bJ2/rt3] 
i=l 

a2flay2 = i [(d2&dr,2)(y - b,)?/rf + (d@Jdr,)(x - a,)‘/r,‘]. 
,=I 

By adding up equations (17) we have 

kin + L, = a2fiax2 + aZflay2 = f [(d2di//dr,‘) + (d4Jdr,)/r,]. 
r=l 

The best step-size, which is the extension of equation (5) is given now by 

(16) 

(174 

(17b) 

(18) 

(19) 

Equations (19) differ from those given by Katz[lO] (equations 7 above) by the factor 2 as 
well as by the terms d’&/drF. This difference will be of importance in particular in cases 
where the functions 4i(ri) have large second derivatives. The above example of cji(ri) = w,r,” 

with large value of n is such a case. On the other hand, if n = 1, the second derivative is 
certainly nil1 and therefore the step-size is double that given by Weiszfeld as pointed out 
by Ostresh[4]. It is to be noted that the arguments mentioned above concerning the fast 
(linear) convergence due to the closeness of the eigenvalues to one another are valid in the 
general case (of any +i(rj)) as well. 

Another example that comes to mind is &i(r,) = exp (aw,rJ for large values of CL. 
Computer experiments with the problem 

minf(x, y) = 5 exp (cw,r, - C) 
1. .v (=I 

(20) 

where z and C are constants, have been made since it can rather easily be shown that for 
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a large enough value of a. (20) is a good approximation to the minimax problem 

min max wjrl. 
X.? I 

(21) 

The step to be used according to (19) is 

2 

t 

,g, [w, exp (~~irI - C)(X - ~i)/~J/~~,(w: + wi/ri> exp twirt - Cl 

&Un + &Xi, 
Vf=2 m 

IT, [w, exp (Wir, - WY - bi)lri 

i 

,z,CWl+ w,/ri) ev (w, - Cl 

(22) 

where the a has been included in the w,‘s for the sake of simplicity. In order to check this 
result numerically, a given problem has been solved using equation (22) with different 
constants replacing the 2. Similar to the results reported before[8], for 4i(ri) = wir:, the 
smallest number of steps to reach a given termination criterion was found when the value 
of the constant was indeed * 2. When the constant taken was too large (e.g. 3 or more), 
the process did not converge at all. 

4. THREE AND MULTIDIMENSIONAL PROBLEMS 

We try now to extend this method to multidimensional problems, the three dimensional 
one being the one which is most likely to be of practical use. The problem we would like 
to solve now is the same as (6), minimization being over X, y, z, . . . and where 

r? = (x - uJ2 - 0, - !J~)~ + (2 - ci)* + . . . . (23) 

Equation (16) should be extended to include a third component (and possibly more) of 
the gradient, 

af/az = f (d&/dri)(z - cJ/r, 
1=I 

(16~) 

and similarly more terms if the number of dimensions K is larger than 3. In the second 
differentiation, equations (17a, b) should be slightly modified and one or more equations 
should be added as follows: 

a’f/?x2 = f {(d2di/dr,Z)( x - ai)*/ri + (d4i/dri)[rF - (X - ~#]/r~) (24a) 
i=l 

aif/ay’ = jz, ((d”$Jdr,2)b - bJ2/ri + (d&/drJ[r? - 0, - Q*J/r?} (24b) 

Z?fik’ = ,g, ((d24i/dr:)(z - CJ*/ri + (d&JdrJ[r: - (Z - ci)*]/r,3} (24~) 

and similar equations if K > 3 dimensions are involved. 
According to the discusssion of the previous section the best step size in the steepest 

descent method can be determined by 2/(1,, + &,,,). However, in the multidimensional 
case it is impossible to find exactly i,,, + i.,,,,, as was done for the two dimensional 
problems. We shall postulate here that the average eigenvalue of the Hessian is approx- 
imatley the same as the average of E,,, and i_,, namely, 

(A, + . . . + &J/K Z (I,,, + &J/2. (25) 

This cannot be proved, of course, precisely, but the arguments given in [8] and above, 
namely. that the Hessian is rather close to be diagonal with nearly equal diagonal elements: 
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strongly support this assertion. An empirical test of the resulting step-size for a concrete 
probelm is given below. Again, since the trace of a matrix is an invariant we can write 

2, + . . . + I./( = d2f/d.Y2 + a’f/a$ + afjc’? + . . . (96) 

Combining (25) and (26) we have 

W,, + k-d z K/(1, + . . . + iK) = K/(dzf/iW + azf/a.$ + . . .I, (27) 

and summing up equations (24a, b, c . . .) we get 

This term should now replace the one preceding the gradient vector on the r.h.s. of 
equation (19). Of course, the gradient vector itself is now K dimensional (K 2 3) rather 
than the two dimensional one in (19). 

Let us consider now the special K dimensional problem in which cji(rJ = w,r;. The 
steepest descent step to be taken here is 

namely, the original Cooper step-size should be multiplied by Cr = K/(n + K - 2). Of 
course, this reduces back to 2/n in the two dimensional case. 

In order to check the applicability of this method, including the validity of the postulate 
(25), three dimensional Cooper problems (equation 1) have been solved. The problem 
consisted of 100 given points distributed in random over a cube of 100 x 100 x 100. The 
problem has been solved twice for the same points, once with w, = 1 for all i and once when 
the weights were also random numbers between 0 and 100. Three values of n have been 
taken, namely, n = 1, n = 10 and n = 100. The coefficient in equation (29) is expected to 
be here, for K = 3, C, = 3/(n + 1). These problems have been solved, with a given 
termination criterion and with different values of C replacing the “optimal” C,. In each 
case, the iteration started from the center of gravity point (equation (2) extended to three 
dimensions). The results are shown in Table 1. Each column in the table terminates when 
such a value of C is taken which results in a divergence of the interative process. It can 
be seen in the table that for “moderate” values of n, choose the value of C = C, reached 
theoretically above, yields the best results. In the case of very steep functions, exemplified 
here by qb,(r,) = w,r,” with n = 100, divergence occurs at relatively small values of C, and 
the optimum found here is seen to be C = 0.X,. The reason for this seems to be that the 
postulate in equation (23, emanating from the special properties of the Hessian when the 
cost functions are radial[S], is less accurate when steep functions are concerned. The 
empirical conclusion is to take a step-size somewhat smaller than Cr, say, C = 0.8Cr 
Similar results have been found in the solution of an exponential three dimensional 
problem of the form (20) with rather large value of cr; the details are not given here. As 
can be seen in the table, taking C z 0.8CT may be a good choice whenever one is in doubt 
whether the functions in hand are to be considered “steep” or not. The number of iterative 
steps may increase slightly, but the risk of having divergence decreases substantially. 

5. CONCLUSION 

Continuous location problems with costs which are non-linear functions of the 
Euclidean distances have further been investigated in this work. A result pertaining to the 
best step-size in the solution of Cooper’s problem (l), which was previously found 
empirically and supported in a semi-intuitive way[8], has now been given a more rigorous 
proof. The same proof has been extended to the problem (6) first by Katz[lO] in which 



Solution of location problems with radial cost functions 

Table 1. Number of steps in iterations for various step-sizes 
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C given in units of n = 1; c,= 1.5 n = 10; C, = 0.273 n = 100; C, = 0.0297 
c,= 3/(n + 1) I(‘~ random H’, = 1 w, random H’, = 1 w, random w,= 1 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

61 
33 
22 
17 
13 
10 
9 

61 
33 
23 
17 
13 
11 
9 

0.8 
0.9 
1.0 
I.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 

6 

6 
8 

10 
13 
17 
23 
36 
68 

6 
5 
6 
8 

10 
13 
18 
26 
44 
119 

59 
32 
22 
16 
13 
10 
9 

6 
6 
8 

12 
18 
31 
96 

8 
11 
14 
20 
32 
69 

228 
124 
86 
67 
54 
46 
40 
35 
37 

169 
93 
65 
51 
41 
35 
30 
26 
31 

431 

the cost elements are &(ri), general functions of the Euclidean distances. As mentioned 
already, the objective function f&y) is convex if @i are convex, differentiable and 
nondecreasing (e.g. the Cooper problem in which $i(rr) = wir” with n > l), and therefore, 
a minimum reached by any converging iterative process is necessarily a global minimum. 
However, the iterative procedure developed here is expected to be very efficient in the cases 
wheref(x, 1’) is not convex as well. The usefulness of this point is, of course, rather limited 
since in these cases (e.g. 4i(~i) = wir: with n c l), the resulting solution is a local minimum 
and not necessarily global. 

The method has also been extended to multidimensional problems of the same kind, 
of which at least the three dimensional ones seem to be of potential practical importance. 
The proof for the step-size here is less rigorous since it is based on the postulate that the 
eigenvalues of the Hessian are not very much different from one another. From empirical 
results, it appears that this assertion and the resulting step-size are correct for “moderate” 
functions. For “steeper” functions, the empirical conclusion is that a step-size somewhat 
smaller than that found theoretically should be taken for best convergence. It is to be 
mentioned that such a problem with steep cost functions (e.g. +((ri) = (w+-J” with n zz 100) 
or problem like (20) with large a can be utilised for the solution of minimax location 
problems (21) in Euclidean space[8]. It appears that at this time, this is the only feasible 
method for solving three dimensional minimax location problems. 
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