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Abstract—The solution of the Cooper location problem min £ wr” where r; is the radial
X ) i=1
(Euclidean) distance between the ith given location (a, b;) and the center (x, y) to be located is
further investigated. The iterative method given by Cooper (which includes the well known
Weiszfeld procedure for n = 1) was previously amended using semi-intuitive arguments. In the
present work a better proof is offered for the results given before. Furthermore, using the same
line of argument, a broader group of problems previously mentioned by Katz and others can be

efficiently solved. These are the problems min }E ¢Lr;) where ¢, are non-decreasing functions of
x¥ i=1

the Euclidean distances. The method is also extended to solve similar problems in EX with K > 2.

Apart from the theoretical account, computational experience is reported for the three dimensional
m

Cooper problem with differet values of n. Computational results of the min T exp (awys; — C)
1

Xy =

which is a different member of the Katz class of problems, are also presented.

1. INTRODUCTION
The Weber problem of optimally locating a service facility with respect to the location of
a number of demand points in E?, was given its first iterative solution by Weiszfeld {1]. This
problem, in which costs are assumed to be proportional to the Euclidean distances, was
further studied by a number of authors[2-5]. Cooper[6] extended the Weber problem by
posing the problem of minimizing the weighted sums of powers of the Euclidean distances

min f(x, ) = 3. wry 1)

i=1

where r, = [(x — a)* + (v — b)’]'? and where (a, b,), i = 1, ..., m are the given fixed points
having weights of w;, and (x, y) the variable point in E? to be located optimally. Cooper
pointed out that n > 1 represents the case of “diseconomies of scale” whereas n < 1 is that
of “‘economies of scale”. n =1 is, of course, the original Weber problem. Cooper also
showed that for n > 1, the problem is convex and therefore, a local minimum reached by
any iterattve process must be global. When n < 1, the objective function is not convex and
therefore several local minima may exist. Cooper{6] suggested an iterative process to solve
problem (1) which was an extension to Weiszfeld’s method. Starting from any point in the
convex hull of the given points (g, b)), usually from the “center of gravity”

m [

x'=Y w,-a,«/

i=1

i w; 0= i Wfb;/i w; 2

i=1 i=1 i=1

Cooper’s Nth step is given by

xNrl= Z walr(x", yMY - 2/ Z wir e, yMp -2 (3a)
i=1 i=1

o= $ bl 2 B it (3b)
= i=1

whereas Weiszfeld's step is the special case in which n = 1. Other authors (e.g. [4, 7))
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showed that Weiszfeld’s iterative process is just the steepest descent method with a

step—size determined by the denominator ¥ wy,~'. Chen[8] showed that in the more
i=1

general case of n not being necessarily unity, Cooper’s iterative step is also along the
steepest descent direction, the Nth step is given by

xVH o xN = i wia; — xMr(x", y™ /i wir{x", yMp 2 (4a)
i=1 [ =

m

yN+l_yN=Zw(b y n Z/Z wr” 2 (4b)

i=1

Again, the step-size is determined by the denominator ): wyr/~ 2. Cooper{6] solved his

problem with values of n of up to 3. In an attempt to approx1mate the minimax solution,
Chen[8] tried to solve problem (1) with large values of » and found that for » > 3, the
process usually did not converge at all. Empirical results as well as a “semi-intuitive” proof
showed that Cooper’s step-size is too large for high values of n and Chen|[8] showed that
convergence occurs even for very high values of » if equations [4] are replaced by

xN+Hi=x +(2/n)Zw(a—-x "= Z/Z wrl~? (5a)

i=

»" ‘y”+(2/n)ZW(b -y ”"/Zwr" g (5b)

i=

For large values of » this reduces substantially (by a factor of 2/n) the Cooper step-size
whereas for the original Weber problem (n = 1) this doubles the step-size. This particular
result (for » = 1) is in accord with a statement by Ostresh[9] to the same effect. The proof
given by Chen[8] was based on the properties of the Newton step (without search). It was
shown that the Hessian matrix is nearly diagonal and that the diagonal elements are
approximately equal to each other under the assumption that the given points are
distributed over a given area. One of the purposes of the present work is to provide a more
accurate proof for the result expressed by equation (5) which removes many of the
restrictions in the previous work. Katz(10] and Cordellier and Fiorot[11] extended the
Cooper problem so that more general cost functions are included. The objective function
is now written as

min f(x,7) = 3. $r) Q

where the ¢.’s are “‘radial” cost functions, i.e. they depend on the Euclidean distances r,
between (x, y) which is to be optimally located and the given points (a, b,), rather than
in any other way on (x, y). These authors showed that f(x, y) is convex if ¢; are convex,
differentiable and nondecreasing, which ensures that a local minimum is necessarily global.
This group of functions includes the Cooper case in which ¢(r,) = wr with n > 1, as well
as many other convex increasing functions. In analogy with the Weiszfeld[1] and Cooper[6]
iterative methods, Katz suggested the following iterative procedure for problem (6)

xVN+tl= xV 4 i [¢/(r Ya;, — -"'N)/"iN]/i [p/(rM)/r] (7a)

,VN+I =yN+ Z [¢:(r”\’)(bl _yN)/rl,N]/.i [(bil(er)/riN]' (7b)

i=|
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This also is a steepest descent iteration with the step-size determined by the denominator
in equation (7). A better step-size will be suggested here which includes the second
derivative d’¢,/dr?. Finally, the solution of three dimensional and multi-dimensional
location problems with cost functions similar to those mentioned above will also be briefly
mentioned.

2. PROOF OF THE AMENDED COOPER STEP-SIZE
As mentioned above, Chen([8] found the amended Cooper process expressed by

equations (5) empirically, and supported it by a “semi-intuitive” proof based on the
properties of the Hessian. The proof that equations (5) constitute the best step-size to
be taken is changed here, based on the diagonal terms of the Hessian only. Following some
early works[12-14], Cohen[15] has recently summed up the matter of rate of convergence
of descent methods. For the case of steepest descent he showed that if we write the ith
iterative step as

xN+1 =xN__9Nva (8)
where 0% €8, 2/A., — 6], 6 €(0, 1/4,,,) and 4., is the largest eigenalue of the Hessian at

x ", then the descent method converges linearly. The best estimate of the convergence ratio
occurs when

N
= 2/(;Lmax + 'lmm) (9)
where /4., 1s the smallest eigenvalue of the Hessian, the resuitant ratio being

g=( — i YA +1

3
Y T \“max “smin// \/*max ! J

m
min/* 1y

In the present location problem which is two dimensional, the Hessian has, of course only

two eigenvalues, namely, 4, and A_,,. Since the trace of a matrix is invariant, we can write
for these problems

Aenin + Amax = 02f[0x2 + 8%f /0> (an
The first and second derivatives of (1) as given by Cooper[6] are

m

offox =n Y wr!¥x —a) (12a)
A3 = n \"'1’ wrlh=2(y _ h) 191
S NAY " L Wi (84 ui) \ILU}
i=1

and b 1
floxt=n Y wr! T+ n(n—=2) Y wr'4(x — a) (13a)

i=1 i=1
o ley? —nZwr"‘2+n(n—2)Zwr"“‘(y b). (13b)

i=1 =]
2wt —ay + (v ~b)1 (14

S =n (=2 Y wrr =0t Y (15)
i=1

i=1
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By using equatlons (8). (9), (11), (12) and (15

as the one giving the best conv € T cording to Cohen[15]. Thus, the step-size
found empirically by Chen([8] to be the best, is now shown to be optimal in this sense. It
is to be mentioned, that the semi-intuitive proof given by Chen [8], showing that the
Hessian is “nearly”, diagonal with dlagonal terms nearly equal to one another indicate that
the two eigenvalues are rather close to one another. This is so since the eigenvalues of a
matrix are continuous functions of the elements of the matrix{16] and since in the extreme
case of a diagonal matrix, the eigenvalues are, of course, the diagonal elements themselves.
This would result in the ratio of convergence ¢ in equation (10) being a small number which
guarantees a fast linear convergence.

) we get the step-size given by equatlons (5)
a

=
a
=
T ag
a
M
=
C)

3. EXTENSION TO GENERAL RADIAL COST FUNCTIONS
We would like to extend the exnremmn for the step- size so that it includes the general

cost functions given in (6). By dlﬂ'erentlatmg (6) we get

/ i (do,/dr)(x — ai)/",-\

Vf=t - } . (16)
Y (dg/dr)(y — b,-)/r,/

i=1

0¥ fox= 3. [(/drix — alir? + (dg/dr)y — b)r/] (17a)
i=1
a’floy* = Z [(d2¢i/dri2)()’ - bi)z/riz + (do/dr)(x — a)¥/r/]. (17b)
i=1]
By adding up equations (17) we have
Amin F Amax = 0% [0x% + 37f]0y* = 3 [(d*¢,//dr?) + (do,/dry)/r). (18)

The best step-size, which is the extension of equation (5) is given now by

oo N 3 (@dr)x ~ ayr,
[2/ (e + Aama)IVS = {2 / Y [dp/dr? + (do, /dro/r]} (19)
S (d/dr)(y b,)/r,-/

\i=1

Equations (19) differ from those given by Katz[10] (equations 7 above) by the factor 2 as
well as by the terms d?¢,/dr?. This difference will be of importance in particular in cases
where the functions ¢ (r,) have large second derivatives. The above exampile of ¢(r,) = wr/”
with large value of n is such a case. On the other hand, if » = 1, the second derivative is
certainly nill and therefore the step-size is double that given by Weiszfeld as pointed out
by Ostresh[4]. It 1s to be noted that the arguments mentioned above concerning the fast
(linear) convergence due to the closeness of the eigenvalues to one another are valid in the
general case (of any ¢/(r)) as well,

Another example that comes to mind is ¢fr)=-exp (awr) for large values of «.
Computer experiments with the problem
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a large enough value of a, (20) is a good approximation to the minimax problem

min max wy, (21)
X, ¥ :
The step to be used according to (19) is
/& S L. o
5 Y, [wexp (wr, —(,)(x——a,-)/r,»j/L(w + wyr)exp (wr,— C)
i=1] i=1
Ao + A Vf: Hom @

"""""" 2 wiexp (wir, — C)y — bi)/ri/ Z (w4 wir)exp (wr,— C) /

i=1 i=1

where the o has been included in the w,’s for the sake of simplicity. In order to check this
result numerically, a given problem has been solved using equation (22) with different
constants replacing the 2. Similar to the results reported before{8], for ¢(r)= wr’, the
smallest number of steps to reach a given termination criterion was found when the value
of the constant was indeed ~ 2. When the constant taken was too large (e.o. 3 or more),

SETTALAIL AEEEw WL AV aneE
the process did not converge at all.

4. THREE AND MULTIDIMENSIONAL PROBLEMS
We try now to extend this method to mulitidimensional problems, the three dimensional
one being the one which 1s most likely to be of practical use. The problem we would like
to solve now is the same as (6), minimization being over x, y, z,... and where

=(x—a,’)z—‘(y—bi)2+(z'—Ci)2+"" (23)

Equation (16) should be extended to include a third component (and possibly more) of
the gradient,

Wz — ¢)r. (16¢c)
ne LT \A0¢)

and similarly more terms if the number of dimensions K is larger than 3. In the second
differentiation, equations (17a, b) should be slightly modified and one or more equations
should be added as follows:

ShaUuig UL allUvu ads 1o

1o = 3 (@ dr)x — afir+ @ojanl —  ~aflY}  2%)
i=1

efayr =y {(d¢,/dr)y — b)r;+ (d¢,/dr)ir? — (v ~ b)Yr}} (24b)
i=1

o= Z {(d2¢i/dri2)(z —ceri+ @o/dr)ir? — (z — ci)z]/ri3} (24¢c)
i=1

and similar equations if K > 3 dimensions are involved.

According to the discusssion of the previous section the best step size in the steepest
descent method can be determined by 2/(4.;, + An..). However, in the multidimensional
case it is impossible to find exactly A, + A,.. as was done for the two dimensional
problems We shall postulate here that the average eigenvalue of the Hessian is approx-

imatiey the same as the average of Ay, and Ap,,, namely,

G+ . FNK (A + A )2, (25)

ASAS B Tt ' K71 = ‘min ' oTtmax/Ji =

This cannot be proved, of course, precisely, but the arguments given in [8] and above,
namely, that the Hessian is rather close to be diagonal with nearly equal diagonal elements;



92 REUVEN CHEN

strongly support this assertion. An empirical test of the resulting step-size for a concrete
probelm is given below. Again, since the trace of a matrix is an invariant we can write

At o+ Ae=0/ox>+ 8 ey + &f /67 + .. (26)
Combining (25) and (26) we have
2/ + Apar) = K/A + ..o+ A = KNG [6x* + O f /oy +. . ), (27)

and summing up equations (24a,b,c...) we get

2/(Ain + Amar) = K /i [d*p;/dr} + (K — 1) (dep/dr)/r). (28)

i=1

This term should now replace the one preceding the gradient vector on the r.h.s. of
equation (19). Of course, the gradient vector itself is now K dimensional (K = 3) rather
than the two dimensional one in (19).

Let us consider now the special K dimensional problem in which ¢(r) = wy. The
steepest descent step to be taken here is

(/i + A1V = {[K/(n +K -2 / z } (29)

namely, the original Cooper step-size should be multiplied by Cr=K/(n + K —2). Of
course, this reduces back to 2/n in the two dimensional case.

in order to check the applicability of this method, including the validity of the postulate
(25), three dimensional Cooper problems (equation 1) have been solved. The problem
consisted of 100 given points distributed in random over a cube of 100 x 100 x 100. The
problem has been solved twice for the same points, once with w, = 1 for all / and once when
the weights were also random numbers between 0 and 100. Three values of n have been
taken, namely, # = 1, n = 10 and n = 100. The coefficient in equation (29) is expected to
be here, for K =3, Cy=3/(n + 1). These problems have been solved, with a given
termination criterion and with different values of C replacing the ““optimal” Cr. In each
case, the iteration started from the center of gravity point {(equation (2) extended to three
dimensions). The results are shown in Table 1. Each column in the table terminates when
such a value of C is taken which results in a divergence of the interative process. It can
be seen in the table that for “moderate™ values of », choose the value of C = C; reached
theoretically above, yields the best results. In the case of very steep functions, exemplified
here by ¢r) = wr with n = 100, divergence occurs at relatively small values of C, and
the optimum found here is seen to be C = 0.8C,. The reason for this seems to be that the
postulate in equation (25), emanating from the special properties of the Hessian when the
cost functions are radial[8], is less accurate when steep functions are concerned. The
empirical conclusion is to take a step-size¢ somewhat smaller than Cr, say, C =0.8Cr.
Similar results have been found in the solution of an exponential three dimensional
problem of the form (20) with rather large value of a; the details are not given here. As
can be seen in the table, taking C = 0.8C; may be a good choice whenever one is in doubt
whether the functions in hand are to be considered *“‘steep” or not. The number of iterative
steps may increase slightly, but the risk of having divergence decreases substantially.

5. CONCLUSION

Continuous location problems with costs which are non-linear functions of the
Euclidean distances have further been investigated in this work. A result pertaining to the
best step-size in the solution of Cooper’s problem (1), which was previously found
empirically and supported in a semi-intuitive way|[8), has now been given a more ngorous
proof. The same proof has been extended to the problem (6) first by Katz[10] in which
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Table 1. Number of steps in iterations for various step-sizes

C given in units of n=1 Cr=15 n = 10; Cr=0.273 n = 100; Cr=0.0297
=3/(n+1) w, random w;= | w; random w,=1 w; random w;=1
0.1 61 61 59 51 228 169
0.2 33 33 32 27 124 93
0.3 22 23 22 19 86 65
0.4 17 17 16 14 67 51
0.5 13 13 13 11 54 4]
0.6 10 11 10 9 46 35
0.7 9 9 9 7 40 30
0.8 7 7 7 6 35 26
0.9 6 6 6 5 37 31
1.0 5 5 6 6 43}
1.1 6 6 8 8
1.2 8 8 12 11
1.3 10 10 18 14
1.4 13 13 31 20
1.5 17 18 96 32
1.6 23 26 69

1.7 36 44
1.8 68 119

the cost elements are ¢(r,), general functions of the Euclidean distances. As mentioned
already, the objective function f(x,y) i1s convex if ¢, are convex, differentiable and
nondecreasing (e.g. the Cooper problem in which ¢(r) = wr/ with n > 1), and therefore,

a minimum reached by anv converging iterative nrocess is necessarilv a olobal minimum

G IHMINIIIGINL GRAtIIV Uy QiLy VRLVI gilip slviGlive PIUROSS 25 DR SSaR Ly a Saas 1AMaiiIaAuIL.

However, the iterative procedure developed here is expected to be very efficient in the cases
where f(x, y) is not convex as well. The usefulness of this point is, of course, rather limited
since in these cases (e.g. ¢{r,) = wr with n < 1), the resulting solution is a local minimum
and not necessarily global.

The method has also been extended to multidimensional problems of the same kind,
of which at least the three dimensional ones seem to be of potential practical importance.
The proof for the step-size here is less rigorous since it is based on the postulate that the
eigenvalues of the Hessian are not very much different from one another. From empirical

reculte it annearc that thig acgertion and the recultine sten-cize are correct for “moderate®
resuits, it appears thatl Inis asseriion ang ne résuluing siep-61ze are Correct Ior mogerate

functions. For “‘steeper” functions, the empirical conclusion is that a step-size somewhat
smaller than that found theoretically should be taken for best convergence. It is to be
mentioned that such a problem with steep cost functions (e.g. ¢p{r,) = (wr)" with n = 100)
or problem like (20) with large a can be utilised for the solution of minimax location
problems (21) in Euclidean space[8]. It appears that at this time, this is the only feasible
method for solving three dimensional minimax location problems.
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