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LOCATION PROBLEMS WITH COSTS BEING 
SUMS OF POWERS OF EUCLIDEAN DISTANCES 

Department of Physics and Astronomy and Faculty of Management, Tel-Aviv University, 
Tel-Aviv, Israel 

*pe=rd puqose+A crucial problem while considering the location of a new facility with respect 
to existing facilities is to determine the kind of distance dependent function which is to be 
minimized in order to get an optimum in a desired sense[l]. For certain problems, one wishes to 
minimize the weighted sums of Euclidean (straight line) distances, e.g. to minimize transportation 
costs between the given facilities and the new one, under the assumption that costs are strictly 
proportional to the distances (minisum). 

In many cases, however, this nicety of a strict linear relation between distance and cost of 
transportation seems to be an oversimplification (e.g. [2], [6], [12], [14-161, [21-221). In some cases, 
one can expect the cost to be a sublinear function of the distance[l6] which is an example of the 
well known situation of “economies of scale”. On the other hand, a strongly superlinear cost 
function should be considered in problems such as the location of emergency facilities, in which 
service to the farthest customer is the main concern (minimax). Cases of moderately superlinear 
cost functions are also of importance when one wishes to solve the hybrid problem which is 
intermediate between the minimax and the minisum ones[22]. The most obvious choice for such 
sublinear and superlinear functions are the power function r:, with n < 1 in the former case and 
n > 1 in the latter[l2,14]. 

The present work presents an amendment to a method previously suggested by Cooper[l2] to 
solve this problem of minimizing the sum of weighted powers of the Euclidean distances. This 
amendment enables the solution of the problem even for rather large powers of the distances, which 
could not be done by Cooper’s original method. It also expedites substantially the iterative 
procedure for smaller values of the power n. 

Abstract-The Cooper problem of minimizing the sum of weighted powers of the Euclidean 
distances is further studied. The practical significance of this problem is that instead of the Weber 
problem where the weighted sum of the Euclidean distances is minimixed, here economies and 
diseconomies of scale are allowed for, which results in a problem of minimizing the sum of weighted 
powers of the Euclidean distances. The original Cooper solution has been a modification of the 
Weisxfeld method for the Weber problem; it can be shown to be a steepest descent method with 
a step size determined by an expression depending on the weights and distances, which is not 
optimal in any sense. In the present work, the matter of the best step size to be taken is investigated. 
It is shown that multiplying the step size given by Cooper by 2/n -where n is the power of the 
Euclidean distances, improves the iterative process substantially. For the cases with n 2 1 
considered by Cooper, namely 1 I n 5 3, the number of steps needed to reach a certain termination 
criterion is reduced. For higher values of n, the original Cooper step size is usually too large and 
there is no convergence. With the present amended method, the problem can be solved, using an 
appropriate normalization, even for powers of 100 and more. A semi-intuitive proof for this step 
size is given as well as numerical examples of solutions with n = 1, 10 and 100. The method can 
easily be extended to location problems in three (and more) dimensions. 

INTRODUCTION 

The Weber location problem, also known as the Fermat or Steiner problem, is that of 
locating a “service facility” while a set of m facilities located at (a, bi), i = 1 . . . m, is given, 
so that the sum of weighted distances is minimized. The “metrics” by which the 
(generalized) distance between two points is considered may be different in various cases. 
(For a recent discussion on the impact of “distance” on location problems see Krarup and 

Pruzan[2].) Here we concentrate on Euclidean distances or powers of Euclidean distances. 
The weighted problem with Euclidean distances is 
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where 
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rXx, .Y) = [(X - ai)’ + (Y - bJ2]’ (2) 

and where wi are the weights associated with the given points (a,, bJ (wi representing, say, 
the amounts to be shipped between the two points in a given period of time). (x, JJ) is any 
point in E2; the extension to EK for K > 2 will also be briefly mentioned below. An iterative 
solution of this problem has been suggested by Weiszfeld [3] for the equiweighted problem 
(wi = 1), which has later been studied and extended to include the non-equiweighted 
case+1 I]. The conditions for getting a minimum in (1) are reached by partial 
differentiation off(x, JJ) with respect to x and y and equating the derivatives to zero. This 
yields 

x = !I (WPi/ril/ f (wi/rik 
i=l 

Y = f (wbi/riJ/ 5 (Wilri) 
i=l i=l 

(3) 

where, of course, the rls are functions of x and y. Weiszfeld’s iterative algorithm was based 
on this, namely, (x~~‘,y~+‘) is calculated in the (N + 1)th iterative step from (x”, JJ”), 
using 

As a first approximation one can use the “center of gravity” solution, namely, 

x0 = m w*a, m wi; yo = f w*b, c ./lx i f wi. (5) 
i=I i=l i=l i=t 

Cooper[l2] suggested the extension of problem (1) so that the minimization will be 

$2 f (x, y ) = i wf: (6) 
i=I 

where ri is given by (2). The case of n < 1 is that of economies of scale whereas n > 1 means 
diseconomies of scale. In other words, n c 1 represents the sublinear case in which the cost 
element J(r) is such that d2A/dr2 < 0. IZ > 1 represents the superlinear case in which 
d*J/dr* > 0. Cooper showed that the objective function is convex when n 2 1 and therefore 
every local minimum is a global minimum. When PI < 1, he showed that the objective 
function is neither convex nor concave, therefore any iterative process we choose will lead 
to a local minimum which by no means is necessarily global. It is to be noted that the 
function (6) is not differentiable at the given points (ai, bi) for n I 1. This difficulty can be 
by-passed in the original Weber problem[8] (n = l), anyway we shall concentrate on the 
cases where FI > 1. 

Cooper extended the Weisfeld method by following the same steps of equating 
the derivatives to zero and writing the index N + 1 on the 1.h.s. and N on the r.h.s., 

Cooper solved problems of this kind with valites of n up to 3. 
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Only few of the researchers dealing with problem (1) stated that the Weiszfeld method 
is nothing but the steepest descent method with a step size determined by the denominator 
in eqns (4a) and (4b) (e.g. see Ostresh[9] and Avriel(l3]). 

We shall show in this work that the Cooper method for solving problem (6) is a steepest 
descent method as well. It will be shown that the step size determined by the denominator 
in (7a) and (7b) is far from being optimal. Empirical results as well as a semi-intuitive proof 
show that the optimal step size is 2/n times that given by the Cooper method. Whereas 
the original Cooper method does not usually converge for n > 3, the amended method 
suggested here converges very efficiently (say, starting from the initial point of the “center 
of gravity”) even for values of 12 as high as 100 and more. The implication of such a 
solution for very large values of n as an approximation to the minimax problem will be 
mentioned. 

MOTIVATION 

A number of authors discussed the Cooper problem with II < 1 and n > 1 (e.g. see a 
review paper by Scott[l4]). It seems indeed that non-linear elements of the cost functions 
are to be considered (e.g. see Dearing [ 151). However, it seems that when such non-linearity 
occurs, the dependence is more often than not sublinear rather than superlinear (e.g. [16]). 
The method proposed here can expedite the iterative procedure for n < 1 as well as for 
n 2 1, however, in the former case, the problem is not convex and therefore, a solution 
reached by any iterative procedure may not be global. Also, as discussed below, at the 
demand points (a, bi) the objective function is not differentiable when n < 1 which may 
impair the process. 

An important application of solving the Cooper problem for large power n is to get 
a good appro~mation for the minimax problem which is often used for the location of 
emergency facilities (for a review on the problem and other possible ways to solve it see 
Ref. [ 171). As described by Drezner and Wesolowsky[l8], for any set of positive numbers 

G...,G 

maxfC,, . . . ,c,> = pil (C,” + . . . + c,mp. 

Thus, a good approximation for the minimax problem 

min m?x Wjri 
-KY 

will be given for large value of n by 

(9) 

Drezner and Wesolowsky continued their solution from this point by resorting to the 
solution of differential equations. The solution will remain the same if we raise the 
expression to the nth power, namely solving 

which is the Cooper problem with the weights being wr. The solution of the minimax 
problem by using this approximation will be described elsewhere. At this point we only 
mention that, as compared to other minimax algorithms, the one suggested here is 
attractive due to its very simple extension to multi-dimensional minimax problems. In the 
context of appro~mating a minimax problem by a minisum one, a recent paper by Krarup 
and Pruzanfl9] should be mentioned. Although conceptually they are dealing with the 
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same kind of transformation minimax+minisum, their treatment is different since they 
solve O-1 programming problems. 

The main motivation for solving Cooper’s problem with n > 1 is thus the utilisation 
of this solution as a good approximation for minimax problems. In fact, the extension to 
even more general minimax problems, namely 

59 max_fXri) (12) 

where J are any increasing cost functions [ 151 seems rather straightforward. A point should 
be made, however, for studying problem (6) with n > 1, n not being very large. As claimed 
by Burkard et al. [20], “neither the minisum nor the minimax criterion alone capture most 
elements of a location problem where it is important to consider both the total costs of 
serving clients as well as the service provided to those clients who are located far away 
from the facility. The minisum criterion alone will not take the worst case solutions into 
account and may result in solutions which are unacceptable from a service point of view. 
On the other hand, the minimax criterion if used alone may result in very costly systems”. 
A similar point had been made previously by Halpern[21 j and Handler and 
Mirchandani [22] with respect to location on networks. Halpern [21] and Burkard et al. [20] 
attacked this hybrid location problem by taking a convex combination of the minimax and 
minisum terms with a parameter a that varied from 0 to 1 while the problem changed 
continuously from minimax to minisum. Handler and Mirchandani[22] preferred to deal 
with this “medi-center” problem by suggesting a “penalty approach”. Starting with the 
median framework for minimizing average distance, they want to penalize greater distances 
between facility and demand locations at increasing rates by generalizing the linear 
distance function d(x, y) in the minisum formulation to a nondecreasing convex (super- 
linear) function of the distance, f(d(x, y)). The most obvious choice for such a function 
is the power r; with n > 1 which in our case of a continuous space leads to problem (6). 
Of course, one has to determine beforehand the desirable value of n to be chosen; a larger 
n will be chosen when the “service to farthest customer” element is to be given a higher 
weight whereas a small (closer to 1) value will be taken when one wants to emphasize the 
“cost” aspect. 

AMENDMENT OF THE COOPER METHOD 

Let us show first that the direction determined by eqns (7a)-(7b) including the special 
case for n = 1, eqns (4a)-(4b), is the steepest descent direction. The partial derivatives of 
(6) at a point (x, y) are 

aflax = n i wir;-‘(&+,/ax) = n 2 wiry- ‘(x - a,)/r, 
i=l i=l 

aflay = n g wiry-Q - bJ/ri. 

i=l 

(134 

Pb) 

These expressions include the terms r;-‘(x - ai) and r;-‘(y - bi) which, at first sight may 
appear not to be defined for (x, y) = (ai, bi) for any i (which, of course implies ri = 0), when 
n 5 2. A closer look at eqns (13a) and (13b) show that the problem occurs only for n I 1. 
This is’s0 since the terms (x - ai)/ri and (y - bi)/ri, though not uniquely defined in the 
vicinity of the given points (a, bi) have finite values between zero and unity. For n > 1 these 
are multiplied by rl-’ which goes to zero for (x, y)+(a,, bi) and thus the contributions to 
aflax and aflay in (13a) and (13b) are nill. For IZ I 1, the gradient is indeed not defined 
at (a,, bi). As mentioned above, this has to be separately considered in the original Weber 
case (n = 1) and the “economies of scale” cases (n < 1). 

In order to see the direction given by the Cooper method (eqns 7a-7b), let us consider 
the step determined by two subsequent points in the iteration, 

X [rz(XN,yN)ln-2 i Wi[rr(XN,_fT2 I i=l 
(144 



Location problems of Euclidean distances 289 

and in the same way 

Comparing eqns (14a)-(l4b) and (13a)-(l3b) readily shows that the Cooper step (including 
the Weiszfeld step for n = 1) is in the direction of Vf, i.e. the steepest descent. The step 
size is determined by the factor Z~=,W&‘-~, the denominator in eqns (7) and (14). Two 
questions should be asked at this point. 

(1) Can we consider alternatives to using the steepest descent method? 
(2) If we do decide to use the steepest descent method, what is the best step size to 

choose. 
The alternative of using the Newton method has been considered by Harris[23] and 

ElShaieb[24] for the original Weber problem (n = 1). In the Newton method one has to 
calculate the inverse Hessian at each step, which is, of course, time consuming. This is 
usually compensated by the reduction in the number of steps needed to reach a certain 
termination criterion. The location problem as discussed so far is a two dimensional 
problem, therefore the additional complication of calculating the inverse Hessian does not 
seem too costly. However, as pointed out by Harris, two additional problems sometimes 
occur while using Newton’s method. His experience is based on solving the Weber problem 
(n = 1); similar difficulties were encountered in course of the present work while solving 
Cooper’s problem with n > 1. 

(1) The Newton method has a risk of getting outside of the convex hull of the given 
points, in which case the method may break down. 

(2) Sometimes there may be a tendency for the solution process to oscillate so that the 
te~ination criterion may never be fu~ll~. Harris[23] points out that the oscillation may 
be reduced and some of the advantages of the Newton method retained if only the principal 
diagonal of the Hessian is used. This point will be further discussed below. 

COMPUTATIONAL EXPERIENCE 

We shall concentrate here on choosing a better step size, and show that very 
satisfactory results can be reached following this route. The first thing that comes to mind 
is to perform a line search along the gradient direction which would, of course, increase 
the time needed for each step, but probably reduce the number of steps needed. This has 
been done by Cooper and Katz[25] for the Weber problem (n = 1); they found that for 
some choices of line search, the method was rather inefficient. Only one search method, 
namely Armijo’sf26] inexact line search has made a considerable improvement of saving 
about one third of the CPU time. The price to be paid is, of course, the complication in 
the programming, i.e. an increase in the programmer’s time. In the method suggested in 
this work, a similar saving of CPU time has been achieved with the problem tested by 
Cooper and Katz with practically no complication added to the program. As mentioned 
already, the main feature of the present method is that it can be used for n > I and even 
for very large values of n with only a slight change in the original program. 

While aiming at getting a good approximation to minimax problems, an attempt has 
been made in the present work to solve problem (6) with n being, say, 10 or more, by using 
eqns (7a)-(7b). In all these attempts, it has been readily seen that no convergence was 
achieved with such values of n. Empirically, smaller step sizes were taken so that instead 
of eqns (7) or (14), the following have been utilised 

Y N+1=yN+Ci~w,(b-yN)r~-2/i~lwir;-2. t15b) 

By trial and error, the constant C was chosen so as to get convergence of the iterative 
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process. Table 1 demonstrates some of the results for n = 1, 10, 100 and for different 
choices of C. (a, bJ were 100 points, the coordinates of which were “random” numbers 
(generated by the computer) between 0 and 100. Two sets of calculations were taken, one 
for the equi-weighted case (all wi = 1) and in the other, the weights wi were also random 
numbers between 0 and 100. 

A practical point concerning the magnitudes of the numbers involved should be 
mentioned. For large n, say n = 100, and values of ri of up to - 100, rr may be too large 
to be handled by the computer one uses. This problem can be remedied quite easily. The 
solution of problem (6) will remain unchanged if all the terms in the sum are divided (or 
multiplied) by the same constant. One should choose a constant r, such that Zy= 1 wXrJr,,) 
will not exceed the capacity of the computer to handle large numbers. In this “nor- 
malization”, each term in the sum in problem (6) has thus been divided by the same 
constant r,” and therefore, the solution is not changed. The choice of r,, depends on the 
actual computer one is using. For the small values of ri, an underflow may occur while 
(t-Jr,,)” is computed. The term is replaced by zero and does not contribute to the sum, as 
it should be. This shows, however, that one should not choose a too large value of r, since 
too many terms may “disappear”. The best policy to be used is to take r, such that the 
largest wi(ri/rJ’ is, say, two orders of magnitude below the maximum number handled by 
the computer, to allow for the contribution of the other terms. 

The results in Table 1 give the number of steps needed for reaching a termination 
criterion as a function of the chosen constant C in eqns (15) which determines the step size. 
For n = 1, values of C from 0.2 to 3.2 are taken in steps of 0.2. Both in the equi-weighted 
and weighted problems, the optimum is seen to be at C = 2.0. It has already been 
mentioned by Ostresh[27] that “there are theoretical reasons for suspecting that C = 2 
gives the fastest rate of convergence” if (x, y) does not coincide with any (a,, bi). He also 
says that C = 1 is the best when the solution is one of the given points, however, as 
mentioned by Katz[8], it is preferable to identify this situation directly and not to resort 
to the iterative process when such coincidence occurs. Anyway, it seems that this problem 
will not be of significance for n > 1 since, as mentioned above, there is no discontinuity 
in the derivative when n > 1. For n = 10 the optimum is readily seen to be at C = 0.2 and 
for n = 100 it is C = 0.02. The empirical conclusion that one should always expect to have 
C = 2/n seems rather straightforward. As shown in the table, this is so for both the 
equi-weighted and weighted cases. The termination of the table is in each case at the value 
of C where no convergence is reached. It is rather obvious why Cooper’s choice of C = 1 

Table 1. Number of steDs in iterations for various steD sizes 

?I = 10; 2 = 0.2 
?I 

n = 100; z= 0.02 
?I 

c w,= 1 Wi c wi= 1 Wi c wi= 1 Wi 
random random random 

0.2 51 51 0.02 54 31 0.002 135 116 
0.4 31 28 0.04 29 19 0.004 76 67 
0.6 22 20 0.06 20 13 0.006 54 48 
0.8 16 15 0.08 15 10 0.008 42 38 
1.0 13 12 0.10 12 0.010 34 31 
1.2 11 10 0.12 10 ; 0.012 29 26 
1.4 9 8 0.14 8 6 0.014 25 23 
1.6 8 7 0.16 7 5 0.016 22 20 
1.8 6 6 0.18 6 4 0.018 20 18 
2.0 6 5 0.20 5 3 0.020 18 16 
2.2 I 8 0.22 I 4 0.022 24 26 
2.4 10 10 0.24 9 0.024 209 231 
2.6 13 14 0.26 11 2 
2.8 18 25 0.28 15 8 
3.0 26 29 0.30 21 10 
3.2 50 0.32 33 14 

0.34 63 19 
0.36 34 
0.38 119 
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does not bring about convergence for rather large values of n. It is to be noted that very 
similar results were found for other problems, namely, for other given data. 

As shown below in the semi-intuitive proof to this result, the condition for getting the 
result that C = 2/n is that the number of given points m is rather large and that they are 
distributed more or less uniformly in a given range of x and y. In fact it has been found 
that the choice of C = 2/n is a very good one even when m is small, say m = 5 and when 
the given points are not distributed over a square but say, on a rectangle of 10 x 100. The 
rate of convergence does reduce substantially if the points are distributed nearly linearly, 
e.g. on a rectangle of 1 x 100. At large values of n, divergence may occur for a C which 
is only slightly larger than the optimal. To be on the safe side, one may decide to choose 
a value for C which is slightly below 2/n (say, 1.8/n). The number of steps may slightly 
increase, but the risk of not having convergence is substantially reduced. 

A SEMI-INTUITIVE PROOF 

The main point about the semi-intuitive proof which is presented here is based on a 
comparison between the steepest descent and the Newton methods. Whereas in the steepest 
descent method the iteration is along - Vf, in the Newton case the step is - H - ‘Vfwhere 
His the Hessian matrix at the current point. The effect of the multiplication of the gradient 
by H - ’ is twofold, it changes the direction of search and determines the step size. In spite 
of the difficulties sometimes occurring with the Newton method as mentioned above, it is 
usually expected to be quite efficient. In the present account, we would like to simplify the 
Newton step while retaining some of its desirable properties; in this sense we follow 
HarrisI who empirically suggested to use (for n = 1 only) the diagonal elements of the 
Hessian. We shall show that in a favorable case in which the existing facilities are quite 
numerous and are distributed uniformly over, say, a square, the H-l matrix will be 
approximately diagonal (i.e. the off-diagonals will be much smaller than the diagonals) and 
the diagonal terms will be approximately equal. The magnitude of the diagonal terms will 
determine the step size to be 2/n times the Cooper stepsize. 

The elements of the Hessian will be found by differentiating eqns (13a)-( 13b) (see also 

Pm 

Ff/ax2=nfwir~-2+n(n-2)fkvir;-4(x-ai)2, 
i=l i=l 

dZfidy2=nTwir:e2+n(n -2)f~,r7-~(y -bi)2, 
i=l i=l 

(16) 

(17) 

a’flax+ = n(n - 2) 2 w~P$-~(x - ai)(y - bJ. (18) 
i=l 

Let us consider now the contribution of a certain (a, bi) to the sums in eqns (16)-(18). 
Figure 1 shows the location of (a,, bi) relative to the current (x, y). ei is the angle at which 
(a,, bi) is seen from (x, y) or, more explicitly, the angle between the horizontal direction 

3 
(ai, bi) 

Fig. 1. The ith given facility (ae b,) as seen from a point (x, y). r, is the Euclidean distance and 
0; is the angle between the horizontal and the line connecting the two points. 
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and the direction connecting (x, y) and (a,, bi). The following relations are rather obvious, 

(x _ Q/r,2 = cos2 0;; ( y - bJz,/r~ = sin2 ei; (X - a,)(~ - &J/r,2 = sin (3, cos 19~ (19) 

Using these, eqns (16)-Q 8) can be written as 

Pf/ih2 = n~wirr:-2+n(n-2)~wir~-2COS2ei, (16’) 
i=l i=l 

a’fiay2=$wir;-2+.(,-2)&ir;-2sin20i, 
i=l i=l 

(17’) 

a’fiaxay = n(n - 2) i W*T; --2 sin ei c0s 6,. 
i=l 

(18’) 

If the given points are distributed uniformly and if the current point in the iteration is not 
too far from the final result, the angle 0, can be considered to be uniformly distributed, 
0 I t$ < 2x. Denoting the average value of a function (over, say, 2a) by (.), we can write 

(cos2 ei> = (sin2 ej> = f;csin 0, CO.3 fQ = 0. (20) 

The following point is the weak part of the proof, due to which it has been termed 
“semi-intuitive”. We replace cos* 8, sin* Bi and sin ei cos Bi in eqns (16’)-( 18’) by their 
average values and get 

(16”) 

and, in the same way 

and 

azflaxay moo. (18”) 

The validity of these results has been checked in actual cases and it has been found that 
typically, the oIIXiagona1 elements were an order of magnitude smaller than the diagonals. 
The diagonal terms differed from one another by up to a factor of 1.5 which, again, shows 
the approximate nature of these considerations. Combining the relation (16”)--( 18’7, we get 
the approximate Hessian 

H =krz2.g wirTm2 x I (21) 
r-l 

where I is the two dimensional unity matrix. The inverse Hessian will therefore be 
approximately 

combining eqns (13a, b) and (22) we readily have 

H-‘Vf!%((2/n) ~~~~~~~~~~~~ 

hence we found the Cooper iteration step with step-size multiplied I by 2]n. 

(22) 

(23) 
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DISCUSSION 

A substantial improvement has been suggested in this work to the method originally 
proposed by Cooper [ 121 to the problem (6) of minimizing the weighted sums of n th powers 
of the Euclidean distances. Empirically, it has been found that the iterative procedure is 
expedited by multiplying the Cooper step size by 2/n. This method enabled the solution 
of the problem for very large values of n, as high as 100 and more whereas the original 
Cooper method did not converge usually for n > 3. The semi-intuitive proof that is given 
as a partial support to the empirical results is based on the particular structure of the 
problem, namely, that the elements of the sum to be minimized are “radial”, i.e. depend 
on the Euclidean distances (rather than depending in any other way on (x, y)). In the proof, 
it is shown that the steepest descent direction should not differ by much from the Newton 
direction (under the appropriate assumptions), and that the Newton step-size can be 
approximated by 2/n times the Cooper step-size. It is somewhat surprising, however, that 
the performance of the present method, which as shown here can be regarded as an 
approximation to the Newton method, is superior to the latter in the sense that the two 
possible ailments mentioned by Harris[23], i.e. divergence and oscillations never occurred 
in the problems solved in this work. It is possible that another proof, not based on the 
Newton step can be devised in order to justify the multiplication of the Cooper step-size 
by 2/n. Attempts in this direction have not succeeded so far. 

An extension of the method to three dimensional (as well as multidimensional) 
problems is straightforward. Three dimensional problems have been solved in course of 
the present work with results almost as good as described above for the two dimensional 
problems. The given points were here (a,, bi, ci) for i = 1, . . . m; the initial values in eqn 
(5) should include z” = CyS ,w,cJCy! ,wi and we added to the iteration equations (15) 

zN+1=ZN+C~W,(C(-ZN)r~-2 &,f;-2 
i=l I i=l 

uw 

where still C = 2/n was found to be the best choice in (15a-c). li in eqns (15a-c) is now 

ri(x, y, Z) = [(x - aJ2 + 0, - bJ2 + (Z - Cifl’. (2’) 

The term “best choice” should be understood here, in the following “average” 
meaning. In some cases, in particular in problems where n x 1, the smallest number of 
iterative steps was achieved for values of the factor C x 1.5/n. For large values of n, it was 
closer to 2.5/n. Anyway, the choice of C = 2/n always resulted in quite fast convergence. 

Although all the considerations in this work were related to the location of a single 
facility, the same principles can be applied in the solution of multifacility location and 
location-allocation problems. These will be elaborated elsewhere. 

REFERENCES 
1. R. L. Francis and J. A. White, Facility Layout and Location: An Analytical approach. Prentice-Hall, 

Englewood Cliffs, New Jersey (1974). 
2. J. Krarup and P. M. Pruzan, The impact of distance on location problems. Eur. J. Op. Res. 4, 256 (1980). 
3. E. Weisxfeld, Sur le point pour lequel la somme des distances de n points don&s est minimum. TGhoku Math. 

J. 43, 355 (1937). 
4. H. W. Kuhn and R. E. Kuenne, An efficient algorithm for the numerical solution of the generalized Weber 

problem in spatial economics. J. Reg. Sci. 4, 21 (1962). 
5. H. W. Kuhn, On a pair of dual nonlinear programs. Nonlinear Programming (Edited by J. Abadie), p. 37. 

North Holland, Amsterdam (1967). 
6. I. N. Katz, On the convergence. of a numerical scheme for solving some locational equilibrium problems. 

SIAM J. Appl. Math. 17, 1224 (1969). 
7. H. W. Kuhn, A note on Fermat’s problem. Math. Prog. 4, 98 (1973). 
8. I. N. Katz, Local convergence in Fermat’s problem, Math. Prog. 6, 89 (1974). 
9. L. M. Ostresh Jr., On the convergence. of a class of iterative methods for solving the Weber location problem, 

Op. Res. 26, 597 (1978). 
10. Z. Drexner, Rounds on the optimal location to the Weber problem under conditions of uncertainty. J. Opl 

Res. Sot. 30, 923 (1979). 
11. U. Ekkhardt, Weber’s problem and Weisxfeld’s algorithm in general space. Math Prog. 18, 186 (1980). 
12. L. Cooper, An extension to the generalized Weber problem, J. Reg. Sci. 8, 181 (1968). 



294 R. CHEN 

13. M. Avriel, A geometric programming approach to the solution of location problems. J. Reg. Sci. 20, 239 
(1980). 

14. A. J. Scott, Location-allocation systems: A review. Georg. Anal. II, 95 (1970). 
15. P. M. Dearing, Minimax location problems with nonlinear costs. J. Rex Nut. Bur. Stand. 82, 65 (1977). 
16. P. Kolesar, W. Walker and J. Hausner, Determining the relation between fire engine travel times and travel 

distances in New-York City. Ops. Res. 23, 614 (1975). 
17. D. W. Heam and J. Jesunathadas, Analysis and extensions of algorithms for Sylvester’s matrix location 

problem. Res. Report. 8&l, Ind. Syst. Engng Dept., University of Florida (1980). 
18. Z. Drezner and G. 0. Wesolowsky, A new method for the multifacility minimax location problem. Op. Res. 

Sot. 29, 1095 (1978). 
19. J. Krarup and P. M. Pruzan, Reducibility of minimax to minisum O-l programming problems, Eur. J. Op. 

Res. 6, 125 (1981). 
20. R. E. Burkard, J. Krarup and P. M. Pruzan, Efficiency and optimum in minisum, minimax O-1 programming 

problems, J. Opl Res. Sot. 33, 137 (1982). 
21. J. Halpem, The location of a center-median convex combination on an undirected tree. J. Reg. Sci. 16, 237 

(1976). 
22. G. Y. Handler and P. B. Mirchandani, Locution on Networks, Theory and Algorithms, Chap. 4. The MIT 

Press, Cambridge, Mass. London, England, (1979). 
23. B. Harris, Speeding up iterative algorithm-the generalized Weber problem. J. Reg. Sci. 16, 411 (1978). 
24. A. M. El-Shaieb, The single source Weber problem-survey and extensions, J. Opl Res. Sot. 29,467 (1978). 
25. L. Cooper and I. N. Katz, The Weber problem revisited. Compur. Math. Applies 7, 225 (1981). 
26. L. Armijo, Minimization of functions having continuous derivatives. Pacific J. Math. 16, 1 (1966). 
27. L. M. Ostresh, Jr., The multifacility location problem. Applications and descent theorems. J. Reg. Sci. 17, 

409 (1977). 


