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A new method for the solution of minimax and minisum location—allocation problems
with Euclidean distances is suggested. The method is based on providing differentiable
approximations to the objective functions. Thus, if we would like to locate m service
facilities with respect to n given demand points, we have to minimize a nonlinear un-
constrained function in the 2m variables x,,y,, . . . ,X,., y».. This has been done very
efficiently using a quasi-Newton method. Since both the original problems and their
approximations are neither convex nor concave, the solutions attained may be only local
minima. Quite surprisingly, for small problems of locating two or three service points,
the global minimum was reached even when the initial position was far from the final
result. In both the minisum and minimax cases, large problems of locating 10 service
facilities among 100 demand points have been solved. The minima reached in these
problems are only local, which is seen by having different solutions for different initial
guesses. For practical purposes, one can take different initial positions and choose the
final result with best values of the objective function. The likelihood of the best results
obtained for these large problems to be close to the global minimum is discussed. We
also discuss the possibility of extending the method to cases in which the costs are not
necessarily proportional to the Euclidean distances but may be more general functions of
the demand and service points coordinates. The method also can be extended easily to
similar three-dimensional problems.

1. INTRODUCTION

The location—allocation problem, first mentioned by Miehle [23] and later accurately
formulated by Cooper [4-6], is that of optimally locating a number (m) of identical
service facilities among n demand points and simultaneously assigning each demand
point to be served by the closest service facility. The problem as formulated and solved
by Cooper and others (e.g., see [8] and [10]) is that of minimizing the sum of weighted
Euclidean distances between the given demand points in R? and the service facilities.
One can also consider optimizing the number of service facilities to be determined.
We shall concentrate, however, on the problem with a given number of service fa-
cilities. The problem has usually been mathematically stated as

minimize = 2 z W [(a; — x])z + (b; — y)Z]l/Z

j=1i=1

1
subject to 22,.,. =1, Z;,=@0)1, i=1,...,n, M
ji=1
j=1,...,m,
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where s is the total cost per unit time; (a;,b,), i = 1, . . . ,n, are the coordinates of
the demand points; (x;,y;), j = 1, . . . ,m, are the coordinates of the service facilities
(which are to be determined); w; are the weights associated with the points (a;,b;); and
Z,; are the assignment variables which attain the value of 1 if point i is assigned to
service location j, and 0 otherwise. The analogous problem of locating P service points
on a network is usually termed the P-median problem, a term which is sometimes
used for the Euclidean distance case as well [12]. A special case of this problem is
that of locating optimally a single-service center by the same ‘‘minisum’’ criterion.
This was first solved by Weiszfeld [30] and further investigated by numerous workers
(e.g., see [15,17,18]). The main feature of the single-facility location with Euclidean
distances is that the problem is convex and therefore, if a local solution is found, it
is known to be global. The cost function is differentiable everywhere except at the
demand points. Kuhn [18] has shown how to identify directly cases where the solution
coincides with a demand point and how to bypass the (rare) situation where, although
the solution does not coincide with a demand point, it may pass through one during
the iterative process. The additional difficulty in solving the location-allocation prob-
lem as compared with the single-facility one is due not only to the fact that this is a
problem in 2m variables rather than merely two, but mainly to two additional factors.
The main additional difficulty is related to the fact, shown by Cooper [4,5] and others,
that the problem is neither convex nor concave, and, therefore, any solution that one
may find while using any nonlinear programming method is usually only a local
minimum. The other difficulty is associated with the fact that the cost function is not
differentiable in additional points to the demand points. This is related to an abrupt
possible change of the assignment variables Z;; from zero to unity or vice versa.

Concerning the nonconvexity of the problem, Cooper [5] pointed out the possibility
of considering all the possible assignments of demand points to service facilities. This
number is given by

—_— i < m — K — n
S(n,m) ol ZO (K) (=D (m - K)", )
the Stirling number of second kind. For large n these are extremely large numbers
and, therefore, the possibility of considering all the assignments is feasible only for
very small problems. A number of heuristic methods that can be used for solving
larger problems have been developed. Cooper [5] suggested arbitrarily choosing a set
of m initial positions for the service facilities, assigning each demand point to the
closest service facility, locating each service facility as a single facility with respect
to the demand points currently assigned to it, and checking at the end of such cycle
if each demand point is still assigned to the closest service facility and, if not, reas-
signing it appropriately. The process is repeated until a certain termination criterion
is reached. The solution thus obtained is a local, not necessarily global, solution.
Eilon, Watson-Gandy, and Christofides [8] improved this method and made it a true
iterative decision process in that first a reallocation and then a relocation decision is
made at each iteration, whereas Cooper’s method optimally locates facilities before
testing the allocation. Eilon et al. solved a problem with 50 demand points and 2,3,4,

__-and 5 service centers, each with 20 different sets of initial positions. As could be

expected, the final results indeed depended on the initial guesses; no simple correlation
was found between apparently ‘‘intelligent’’ guesses and good final results.
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Optimal attempts to solve the location—allocation problem have been made by de-
veloping branch-and-bound methods [9,16]. Their use has been limited, however, to
relatively small problems. More works on various versions of the heuristic solution
of the location—allocation problem are found in the literature [2,13,19,21,24,25,27,29].
In a recent work, Juel [14] developed a family of lower bounds on the objective
function value of the location—allocation problem. There are also a number of articles
dealing with location-allocation problems with rectilinear distances [20,21,22,28].
The state of the art at the moment seems to be that whereas small minisum location—
allocation problems can be solved optimally, larger problems are being solved using
heuristic methods which yield local minima that may or may not be global.

The essence of the present work is that we write a differentiable approximation to
the location—allocation objective function and solve it using efficient nonlinear pro-
gramming methods. Despite some advantages that will be discussed below, the main
difficulty—that the problem remains neither convex nor concave—is still there, and,
therefore, the solution is not necessarily global. The main novelty of this article is
that a similar approximation is being used for solving the minimax location—allocation
problem with Euclidean distances (analogous to the P-center problem in networks).
The solution of this problem has not been reported in the literature and, although the
solution here is also not necessarily global, it may be of use for practical problems
such as the location of several emergency facilities or a number of broadcasting stations
that should cover a given set of demand points. A discussion is given concerning a
heuristic way to evaluate how close a local minimum is to the global minimum.

2. METHOD FOR SOLVING MINISUM LOCATION-ALLOCATION
PROBLEMS

The problem as formulated in Equation (1) can also be written as

min ), w, min [(a; — x)* + (b, — y)}"%,  J=1,...,m. 3)
J

xp¥r i=1

The meaning of this formulation is that min; selects for each demand point the closest
service facility, 27, sums all the weighted Euclidean distances, and the minimization
is over the 2m variables x,,y;, . . . ,Xp, Y-

Although we choose the min; of the terms [(a; —x,)* + (b, — y,)?]"?, the index j
remains since we can assume that at least one demand point is assigned to each service
point. In order to reduce possible confusion, this index is denoted by J after the min;
istaken. Thus, the minimizationisoverx,,y,,J = 1,. . . ,m.Thetermsr; = [(a; — x;)?
+ (b; — y;)?]""* are all positive except for the possible coincidence of (a;,b;) = (x;,y)
which, as mentioned above, must be avoided anyway. Following Charalambous and

Bandler [3], we argue that for a given set of positive numbers C,, . . . ,C,, we have

m -1/N
- min{C,, . .. ,C,} = lim cv . 4
n{C, } = lim {,2. ; } )

Thus, a good approximation for the solution of (3) can be found by choosing a large
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enough value of N and solving

m m -1/N
f(x,y) = min >, w, [Z r,-,-‘"] , J=1,...,m. %)

XYy i=1 j=1

It has been found that setting N = 100 made the approximation very good.

The problem in 2m variables can be solved using standard nonlinear programming
methods. Since the quasi-Newton methods are considered very efficient, one of them—
the Broyden—Fletcher-Shano (BFS)—has been chosen (e.g., see, [1], pp- 332, 350).
An important feature of the quasi-Newton methods is that only first, not second,
derivatives are needed. For each J we can find the first derivatives 9f/dx, and 3f/
ay,, J =1,... m.

A difficulty may occur if r; is very small since r;" may be too large. This difficulty
has been overcome by choosing a small enough constant 1 such that if r; = m, the
demand point (a;,;) is assigned to (x;, ;) without using the approximation implied in
(4). This has been incorporated appropriately into the developed program by directly
adding in this case w;r;; to the objective function and, accordingly, to the derivatives.
It seems as if the possibility of exact coincidence (a;,b;) = (x;,y;) should be of concern.
However, it has been pointed-out-by_Overton [26] that the ill-conditioning_of_the
Hessian (in_a_multidimensional, single-facility location) is in precisely_the desired _

irection and actually results in quadratic convergence. It seems that the same situation
occurs here where an updated approximation to the Hessian is calculated in every
iteration. Furthermore, in some of the problems tested, such coincidence (up to the
chosen termination parameter €) did occur without damaging the performance of the
algorithm.

First, in the examples given by Cooper [4], eight problems—each having seven
demand points and two service facilities—have been solved. All the results coincided
with those of Cooper with the exception of his case 6 where he apparently had an
error (see also [16]). These results, which Cooper obtained by checking all the possible
assignments, were found in the present work irrespective of the initial guess taken for
starting the iterative process. The computer used was the CDC 6600 and the average
CPU time needed was 0.2 sec.

Another problem tested by Cooper was one of 15 demand points and three service
facilities. The data are summed in Table 1. Cooper’s best result was (x,,y,) =
(8.888,14.466), (x,,y,) = (20.997,44.998), (x3,y;) = (40.361,17.968), and the value
of the objective function at the minimum was f,, = 143.209. Starting from the
following first guess—(xo1,y01) = (5,10), (xo2.¥02) = (12,30), (x03,Y03) = (30,25)—
the solution obtained using the present method after 1.0 sec CPU time was (x,,y,) =
(8.947,14.639) with points 1,2,3,4,5 assigned to the center, (x,,y,) = (21.000,45.000)
with points (3,6,7,8,9) assigned to the center, and (x3,y;) = (40.053,17.509) with
points 10,11,12,13,14,15 assigned to the center. The value of the objective function
was fr, = 143.1962, slightly better than Cooper’s. The same solution has been found

Table 1. Cooper’s data for a problem with 15 demand points and 3 service centers.
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a 5 5 5 13 12 13 28 21 25 31 39 39 45 41 49
b, 9 25 48 4 19 39 37 45 50 9 2 16 22 30 31
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while starting from different initial guesses. The example given here is the one in
which the initial positions differed most from the final solution. The point mentioned
above is seen here, namely, that a service facility (x,,y,) can coincide with a demand
point (No. 8).

Of course, it cannot be argued that the problem that is neither concave nor convex
turned convex using the present procedure. The present algorithm seems to be a
powerful method to achieve local minima. It is the structure of the problem that makes
the probability of a local minimum global, quite large at least for small problems [4—
6,16].

In order to check the solution of larger problems, we took that of locating 2,3,4,
and 5 service facilities among 50 demand points given by Eilon, Watson-Gandy, and
Christofides [8]. The comparison of our best results and Eilon’s are summarized only
briefly. In locating two facilities, Eilon’s result was now found in ca. 0.7 CPU sec
irrespective of the initial position of the facility points (four trials). In locating three
centers, their best result (out of 20 trials) was now found in one out of three trials.
The execution CPU time was ca. 1.2 sec. In locating four centers, all four trials
resulted in solutions within 0.1% from the best given by Eilon et al., the average
computation time being ca. 4 CPU sec. The best of the four was less than 0.01%
worse than the best reported by Eilon. In locating five centers, all three trials resulted
in the same result which was slightly better than the best reported by Eilon et al.; the
average time was ca. 6 CPU sec.

The problem has also been solved with the same demand points to 6,7,8,9, and 10
facilities. In the ten-facility case, an average time of 20 CPU sec was needed, and the
variation between the different results was larger. In five solutions found in the ten-

facility problem, the worst differed from the best by 7.5%.

Similar to other methods reported so far (e.g., [2,8,25]), the present method is a
strong heuristics for solving location—allocation problems with the advantage that the
search method used, i.e., the quasi-Newton method, is rather powerful. The main
point, however, about the present method is that it can be extended rather easily to
solve the minimax location—allocation problem, the solution of which has not been
reported so far.

3. SOLUTION OF THE MINIMAX LOCATION-ALLOCATION
PROBLEM

In analogy to the formulation of the minisum location—allocation problem as min
3 min [Equation (3)], the minimax location—allocation problem can be written as
min max w; {mm [(a; - xj)2 + (b — yj)z]uz}’ J=1,...,m ©
J

Xyt

Here, again, min; selects for each demand point its closest facility and the
min, , max; operations are to be performed. The procedure of finding the smallest of
m positive numbers, given by Equation (4), will be used here. We shall also need a
differentiable expression for selecting the largest of n given positive magnitudes. As

" shown in the literature [7,11], a possible approximation that can be used is

. n M
max {C,, . . . ,C,} = lim {2 cr} : )

M=o =)
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In order to approximate expression (6) by a differentiable function, we have to use
both (4) and (7), along with two large parameters N and M; for the sake of simplicity
we take N = M. Usually, N = M = 100 was found to suffice. Using (7), we can
now write

m -1/N
f{x,y) = w; min [(a; — ’Cj)2 + (b; — )’j)zlllz =w; {Z %—le} . ®)
J Jj=1
We are now interested in min, , max; f;(x,y) which can be approximated as

n N
min max f(x,y) = min {2 [f.-(x,y)]"} : Q)

Xy i=1

Substituting expression (8) into (9) yields the differentiable approximation to (6),
namely,

n m -1\ /N
min(E w,.{z (@i — x)* + (b; — y,)2]-~'2} ) ) (10)

xy \i=1 j=1

For any finite value of N, large as it may be, raising the objective function to the Nth
power should yield a problem that minimizes at the same points. Thus, we can solve
the equivalent problem

n m =1
min Z Wi{z (@i — x)* + (b — }’j)z]_N/z} . 11)

XYy =1 j=1

Similar to problem (5), this is an unconstrained minimization problem of a differentiable
nonlinear function in 2m variables, x,,y;, . . . X Ym- Again, the function is neither
convex nor concave and, therefore, nonlinear programming methods would yield local
minima which may depend on the initial guess taken for starting the iterations. The
problem has been solved by using the same quasi-Newton method mentioned above.
Here, also, only first derivatives are needed. These are directly found by differentiating
expression (11) with respect to the 2m variables. The convergence was quite rapid.
Again, for small problems it was found that chances are good to get the global
minimum, whereas for larger problems the final result did depend on the starting point
of the iteration. In order to check the method, a problem with 20 points, as shown in
Figure 1, has been solved. The demand points are within the area of two overlapping
circles, one centered at (4,4) having a radius of 3 and the other centered at (10,4)
with a radius of 4. Three of the demand points are located on the circumference of
each of the circles. One would expect the value of the objective function at the solution
to be equal to the radius of the larger circle in this equiweighted problem; N = 200
has been chosen. A rather ‘‘bad’’ initial guess has been chosen, namely, centers at
(3,1) and (1.5,1.5). After a computation time of 0.3 CPU sec, the solution was found
at (10.032,4),(4.5,4.3) and the radius of the larger circle was 4.000, as expected. It
should be noted that a different (better) solution would have been found had we

‘6

—‘moved’’ the two demand points at (10,0), (10,8) on the circumference much closer

to the smaller circle. At a certain point, it would be ‘‘profitable”’ for one or both of
these points to be served by the other center, increasing the radius of the smaller
covering circle, but decreasing the radius of the larger (critical) one, thus improving
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0] 2 4 6 8 10 12 14

Figure 1. Twenty points in the plane used as demand points for the two-center location—
allocation problem.

the solution. The fact that the second point found was (4.5,4.3), which does not
coincide with the center of the second circle (4,4), is related directly to the fact that
this circle is not critical. Furthermore, the distance of the farthest point assigned to
this center is smaller than the ‘‘value’” of the solution, namely 4.000. This points out
the freedom in choosing the location of all but the critical center. Once the location
of the critical center and the allocation of demand points to centers are established,
another criterion may be used for the exact location of the m — 1 centers, for example,
by relocation of each of them as a one-center problem.

It has been mentioned that it is advantageous to transfer demand points from as-
signment to one center to assignment to another and thus reducing the largest circle
though increasing another, provided that the increased one does not exceed the mag-
nitude of the largest. Thus, it can be argued heuristically that a property of a ‘‘good’’
solution is that the radii of the different covering circles are as close as possible to
one another, with this being the main criterion for examining the final solution in
more complicated cases.

Though different size problems have been solved, only the largest one will be
reported here, namely, a problem with 100 demand points and 10 service facilities.
The demand points were generated using random numbers; they were equiweighted
and distributed over a square of 100 X 100. The problem was solved several times
starting from different sets of initial values. The worst and best results obtained are
given in Tables 2 and 3, respectively. The first and second columns are the x and v
coordinates of the demand points and the third one gives the distance from the center
to which it is assigned. In Table 2, the critical center is No. 7 and the value of the
minimax solution is 28.329. In Table 3, the critical point is No. 3 and the value of
the solution is 21.11. The computation time was about 20 CPU sec. It is certainly not
claimed that this is the global minimum. Neither is it possible at this stage to check
how far this solution is from the global optimum. Some heuristic considerations can
be made as to the goodness of this solution—apart from the fact that this is the best
one found in a number of trials. One feature of the ‘‘good’’ result is that there is a

___large number of nearly critical points. The distance of ten demand points from their

respective centers was over 20 and 11 additional points had distances between 19 and
20. Thus, 21 demand points were within 10% of the value of 21.11. In the ‘‘bad’’
solution, on the other hand, only five points were in the range of 10%, namely, above
25. »



_ Table 2. Minimax location of 10 service points and allocation of 100 demand points: worst

case.
Initial values:  j 1 2 3 4 5 6 8 9 10
xo | 25. 8. 30. 75. 70. 30. 60. 99. 10.
yo | 75. 30. 8. 70. 20. 30. 60. 0. 10.
a b; ri a; b, Tij
Center No. 1 16. 72.  8.202 | Center No. 5 47. 9.  24.427
at (16.828,80.161), 8. 60.  22.009 | at (69.210,19.169), 77. 8. 13.617
points allocated 4. 65. 19.859 | points allocated 74. 4. 15.907
to center 1 14. 77. 4.241 | to center 5 59. 19. 9.792
2. 98. 23.197 70. 4. 15.189
23, 59.  22.042 51. 0. 26.439
15. 78.  2.830 63. 20.  6.265
1. 77.  6.629
13. 59. 21.504 | Center No. 6 28. 29.  2.698
5. 89. 14.766 | at (27.717,31.683), 15. 35. 13.142
11. 54, 26.802 | points allocated 30. 25.  7.063
21.  60. 20.588 | to center 6 24. 43, 11911
7. 79.  9.896 4. 35. 16.618
18.  47. 18.139
, 28. 37.  5.324
20. 47. 17.151
Center No. 2 89. 25. 10.296 7. 49. 27.001
at (80.,30.), 8s. 46. 16.763 18. 36. 10.632
points allocated 74. 33. 6.708 37. 53, 23.250
to center 2 81. 25. 5.099
70.  36.  11.662 | Cepter No. 7 22.  20.  3.151
84. 43, 13.601 | 5 (21.002,22.989), 7. 25. 14.146
83. 18.  12.369 | points allocated 26.  13.  11.170
83. 3L.  3.162 | 4 center 7 4. 4. 28311
79.  40.  10.050 2 14 9476
87. 34. 8.062 21' 17' 5 989
Center No. 8 41. 50. 21.471
Center No. 3 43. 88, 15.463 |2 (60.,60.), 68. 44.  17.889
at (29.625,80.241), 40. 89. 13.578 |Powns a“‘gcatcd gg' gg- “é“‘gg
points allocated 38. 81.  8.409 | center o & & 300
to center 3 27. 75. 5.862 68' 52' 11.314
25.  61. 19.789 6 70 11662
39.  63. 19.625 o 71 18008
o I;‘gfg 74. 59, 14.036
: : : 75.  62. 15.133
53. 86. 24.074 s 75 13418
62. 71. 11.180
60. 46.  14.000
Center No. 4 88. 85. 4.684 55. 38. 22.561
at (84.506,81.881), 92. 89. 10.336 49. 61. 11.045
points allocated 96. 96. 18.206 65. 75. 15.811
to center 4 93. 97. 17.342 73.  56. 13.601
87. 84.  3.273
77. 66. 17.566 | Center No. 9 91. 10. 12.806
72.  97. 19.621 | at(99.,0.), 99. 5.  5.000
78. 88.  8.931 | points allocated 98. 17. 17.029
96. 63. 22.105 | to center 9
82. 83. 2744
85. 94. 12.129 | Center No. 10 12 3. 7.8
99. 89. 16.148 | at (10.,10.), 1. 9.  9.055
98. 61. 24.862 | points allocated 19. 1. 12.728
94, 92. 13.878 | to center 10 9. 19. 9.055
95. 89. 12.681 1. 12. 2236
90. 89.  8.992 28. 0. 20.591
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Table 3. Minimax location of 10 service points and allocation of 100 demand points: best

case.
Initial values: J 1 2 3 4 5 6 10
Xjo 0. 99. 30. 75. 70. 50. 10.
yo | 50. 50. 8. 70. 20. 50. 10.
a; b; ri a; b; Ty
Center No. 1 16. 72. 15.350 | Center No. 6 41. 50. 13.104
at (11.764,57.246), 8. 60. 4.664 | at (54.070,50.950), 68. 44, 15.568
points allocated 24. 43, 18.780 | points allocated 48. 68. 18.098
to center 1 4. 65. 10.973 | to center 6 66. 62. 16.261
23. 59. 11.372 52. 60. 9.284
25. 61. 13.758 68. 52. 13.970
13. 59. 2.146 44, 35. 18.863
18. 47. 11.995 39. 63. 19.295
11. 54. 3.334 60. 46. 7.725
0. 42. 19.257 55. 38. 12.984
20. 47. 13.146 49. 61. 11.256
7. 49, 9.523 37. 53. 17.193
21. 60. 9.638 73. 56. 19.592
26. 63. 15.355
Center No. 2 85. 46. 10.067 | Center No. 7 12. 3. 11.784
at (94.745,43.476), 96. 63. 19.565 | at (0.387,1.004), 1. 9. 8.020
points allocated 84. 43.  10.756 | points allocated 11.  12. 15.283
to center 2 83. 31. 17.134 | to center 7
98. 61. 17.824
83. 51. 13.944
o M1 Center No. 8 88. 85. 17.399
at (98.391,98.955), 92. 89. 11.830
Center No. 3 43. 88, 21.110 points allocated 96.  96. 3.801
at (22.385,92.542), 14. 77. 17.659 | tocenter8 33- 91- 2-733
points allocated 40. 89. 17.968 93' 39' 1 93; 4
to center 3 2. 98. 21.103 : : :
38, 8l. 19.418 94.  92. = 8.225
27.  75. 18.139 95.  89. ' 10517
. . 3.020
15. 78. 16.309 %. 8. 1
11. 717. 19.265
5. 89. 17.742
36. 85. 15.564 | Center No. 9 89. 25. 15.094
7. 79. 20.495 | at (94.374,10.895), 91. 10. 3.490
points allocated 77. 8. 17.613
Center No. 4 87.  84. 18.093 | to center 9 81. 25. 19.437
at (69.951,77.942), 77. 66. 13.867 | 99. 5. 7.49%
points allocated 66. 170. 8.870 83. 18.  13.411
to center 4 54. 77. 15.979 79. 19. 17.379
74.  59. 19.370 9. 17.  7.101
75. 62. 16.722
54. 72. 17.022
72. 97. 19.167 | Center No. 10 28. 29. 11.444
62. 1. 10.555 | at (26.314,17.681), 15. 35. 20.687
78. 88. 12.882 | points allocated 30. 25. 8.195
82. 83. 13.068 | to center 10 22. 20. 4.898
65. 75. 5.759 7. 25. 20.655
- 53. 86. 18.769 19. 1. 18.214
26. 13. 4.691
Center No. 5 47. 9. 16.423 9. 19. 17.364
at (60.826,17.862), 74. 33. 20.068 42. 4, 20.814
points allocated 74. 4. 19.123 28. 37. 19.393
to center 5 70. 36. 20.326 24. 14. 4.348
51. 0. 20.386 28. 0. 17.761
63. 20. 3.049- 18. 36. 20.118
70. 4. 16.622 21, 17. 5.358
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Another heuristic criterion for the goodness of the solution is related to the fact that
in some cases some of the service points do not move from their initial positions.
From both this and other examples it can be concluded that a characteristic of a good
solution is that none of its service points remains in the starting location. In the present
example, in the worst solution, four points do not move with the iterations whereas,
in the best one, all ten change position during the process.

4. DISCUSSION AND CONCLUSIONS

An algorithm for the solution of minisum and minimax location—allocation problems
in Euclidean space is proposed. The method is based on writing differentiable ap-
proximations to the problems and solving them using a quasi-Newton method. As
compared with other solutions of the minisum problem, the main advantage is in using
a very powerful nonlinear programming method as compared with previous methods
(e.g., [4,8]) which repeatedly use the Weiszfeld [30] algorithm which is a steepest-
descent method with fixed step size. As for the minimax case, the solution of this
problem has not been given in the literature so far to the best of the author’s knowledge.

An important feature of the present method is that it is amenable to an easy extension,
namely, to solve problems with more complicated cost functions of the Euclidean
coordinates. Although the examples given are for equiweighted problems, the problems
as formulated in Sections 2 and 3 include possible weights w;. Moreover, the extension
to more general functions of the Euclidean distances f,(r;) or other norms such as the
L, norm is straightforward. Also, the extension to three-dimensional problems can be
accomplished without difficulty, except that more variables (x;,y;,z))j = 1, ... ,m
are to be included.
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